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Abstract
Process mining tools empower process analysts to scrutinize business processes by leveraging algorithmic techniques and
event log datasets. To support the analysis of inefficiencies of business processes, different types of visualization techniques
have been introduced for process mining. These techniques enhance process models by incorporating performance data, for
instance to highlight activity duration by using gradational color palettes, and by mapping statistical parameters as text notes
directly into the model. So far, tool vendors have designed a diverse spectrum of visual features for enhancing models, but
research has not systematically provided insights into their mutual effectiveness. In this paper, we review the visualizations of
six common business process mining tools. To account for the variability in the visual display, we expanded existing taxonomies
for evaluating event sequences with marks and channels as well as accessibility dimensions, each important for end-user
comprehension. Then, we performed an expert survey to assess the legibility of the visualizations to test the validity of our
expanded taxonomy. In this way, we demonstrate the potential for improving process mining visualizations to expand its value
in today’s process mining tools.

CCS Concepts
• Human-centered computing → Visual analytics; Visual analytics;

1. Introduction

Over the past two decades, a variety of techniques and methods for
visualizing business processes extracted from event-log data has
emerged [ACD∗18]. Today, these methods have evolved into the
distinct research field of process mining [vdA16]. Process mining
advancements are aimed to enhance analysts’ ability to make in-
formed, quick decisions [vdA16]. Process mining includes the dis-
covery, conformance checking, and exploration of improvements
of processes [PWS∗15]. Visualizations help audiences in under-
standing problems, processes, and probabilities [SPS11]. Recent
visualization research has revealed how information is extracted
from visual displays. [FPS∗21]. Thus, it is not surprising that vi-
sualizations are increasingly fuelling process mining applications
and tools.The effectiveness of a visual display in aiding audiences
must be determined experimentally [FPS∗21]. This research is
still lagging for process mining models. While existing taxonomies
for event sequence visualizations categorize the information dis-
played for numerous examples from the literature, they do not yet
include the aspect of the visual design, arguably a key aspect for the
tool’s effectiveness in the work environment. Moreover, at present,
most research of process mining focused on development of im-
proved technology [vBJM∗21], while research on its visual rep-
resentation’s legibility and effectiveness is lagging. In this paper,
we surveyed process mining tool visual displays with a taxonomy
designed for event sequence visualizations. While this indicated

comparability, the displays however differed significantly in their
visual appearances. To account for these differences, we therefore
extended the framework to include layout, annotation, marks and
channels, and accessibility. We next evaluated the applicability of
our expanded taxonomy with a questionnaire with expert reviewers.
This revealed dimensions that are well-designed as well as areas for
improvements in current visualizations in process mining tools.

This paper is structured as follows. Section 2 describes existing
work that compared visual analytic tools for event sequences in
process mining. Section 3 presents and applies the existing and our
expanded taxonomy to six common process mining tools. We then
put the expanded taxonomy to test, and describe the study design
(4) and results of an expert survey (5). In section 6, we discuss
our results in the context of existing work, including limitations
and opportunities for future work intersecting visual analytics and
process mining. Section 7 offers concluding remarks.

2. Background:Event sequence visual displays

Process mining takes event log data as input and generate visual
diagrams to show real-world business processes. Common visual-
izations are event sequence graphs [GMFJ∗19] that explain the
link between two activities and the path in between. Here, the vi-
sual display represents the observed sequence of events. The data
contains e.g., the name and timestamp or events with additional at-
tributes and can further be subcategorizes into event enumeration,
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case-event enumeration, and case-state enumeration [YM]. Model-
based visualisation display abstracted rules to user with which se-
quences can be generated and its characteristics, rather than actual
sequences. These include directly-follows graphs, Petri nets, De-
clare constraints, and process trees [vdA16]. In directly-follows
graphs, nodes show a type of event and the links/arcs their directly-
follows relationships.

Despite different data inputs, visualizations in process mining
share an overall organization. Attributes captured and visualized
may include the timing, frequency, or changes of events (times-
tamp, duration, category, identifier). These events are depicted by
nodes (also referred to as points) and the event sequence is de-
lineated by links (also referred to as arcs), as well as usually by
a start and an end point. The arcs/links provide additional infor-
mation on the frequencies of instances following these event se-
quences. Arc/links can encode this information with variable line
marks (color, shape, size, weight) or are textually annotated. Thus,
the design space of such visualizations is defined by different ways
of showing nodes, links/arcs with different color codes but also the
relative arrangement, layout and orientation can carry information.

Yet, while having similarities in their overall visual display, dif-
ferent process mining tools vary in their precise visual realizations,
which can affect interpretation. Prior work has compared visualiza-
tion of process maps from the information theory and data perspec-
tive [GGJ∗22] [vdLdFvdEV] [YM24]. These surveys identified
coarse-granular visualization options for event sequence visualiza-
tions. For instance different displays may be compared based on
the scale of the events, which data is compared, the data size and
dimension, and also the visual display type and interaction mode.
These categories, and in particular the visual display and interac-
tion, must be designed with the end-user and their tasks in mind.
A recent work, the Event Sequence Visualization Framework (ES-
eVis), comprehensively compares the implementations of several
event sequences data analysis settings and in particular reviews
their visual displays [YM24]. The ESeVis compares event se-
quence data visualizations in process mining and information visu-
alizations research, a field that has dealt with event sequences from
various domains and previously systematized the various visual an-
alytics (VA) approaches used. Guo et al. characterized VA event
sequence based on analytical tasks and applications [GGJ∗22] and
defined four dimensions critical in implementations: the data scale,
automated sequence analysis covering the mining and modeling
techniques, visual representation describing the visual display, and
the interaction technique. These dimensions were expanded by van
der Linden et al. into a taxonomy of five dimensions that also in-
clude the ‘comparison type’ task and also covers data attributes
(as ‘data dimension’) and data size (as ‘size dimension’) [vdLd-
FvdEV].

3. Tool comparison

Only visual displays that have a comprehensible layout, recogniz-
able display type, annotated and distinguishable marks and chan-
nels can fulfill the information-seeking mantra of “Overview first,
zoom and filter, then details-on-demand” to empower users to “re-
late, history, and extract” [Shn]. We therefore first, summarize the
classification taxonomy by van der Linden (3.1), second, compared

the visualizations of six common tools in process mining (3.2), and
third, expanded the comparison dimensions (3.3).

3.1. Classification

To compare visualizations of six common tools in process min-
ing (Supplementary Figure: https://doi.org/10.6084/
m9.figshare.25665411.v2), we applied the existing taxon-
omy introduced by van der Linden, as it provides fine-granular
analysis criteria. A number of tools are used business process min-
ing [VSM20]. We chose four commonly used tools [KSC21],
namely Celonis, Apromore, ARIS, Mindzie, the Python library
PM4Py, which is gaining traction in data-driven algorithms, and
ProcessM, an add-on tool of Microsoft PowerBI. Based on the
description by van der Linden, we then classified the tools. The
taxonomy classes by van der Linden [vdLdFvdEV] are: Scale di-
mension (which data type is compared): Events, sequences, and
cohorts. Type dimension (granularity and positioning of compari-
son needed for task): One-to-one or directly-follows graphs, one-
to-many, or many-to-many—determined. Positioning refers to the
method of supporting comparisons in visualizations, classified into
juxtaposition, superposition, and explicit encodings. Size dimen-
sion (number of events, sequences or cohorts, number of their re-
spective attributes; property of the input data): Size is classified as
small (less than 100 sequences or events, less than 20 attributes),
medium (100 to 1,000 sequences or events, 20 to 100 attributes),
or large (over 1,000 sequences or events, more than 100 attributes).
Data dimension (how complex is data): Raw (attributes present in
the raw/original data) or derived data (attributes are computed by
running an algorithm or calculating extra data based on the raw
data). Visualization dimension (display type used for the data): De-
tailed (non summarizes, raw) or aggregated (summarized, derived)
data, e.g. timeline, hierarchy-based visualizations, flow-based vi-
sualizations, treemaps. Aggregated visualizations generally capture
higher-level information through data attribute aggregation. Inter-
action dimension: How end-users analyze data and adjust the dis-
play, are common interactions techniques [GGJ∗22] are enabled.

3.2. Tool comparison

We initially utilized Van der Linden et al.’s taxonomy to assess
the six business process mining tools. Our findings, illustrated in
Figure 1 (rows 1-6), indicate high comparability among the vi-
sual displays across the five taxonomy dimensions. However, this
highlights a limitation in the existing taxonomy for distinguish-
ing process discovery visualizations in process mining tools. In all
tools the ‘scale dimension’ is comparable, in that all tools visualize
events for a wide set of processes including classic Order-to-Cash,
Source-to-Pay and incident creation [vBJM∗21]. Likewise, all tools
have a granularity of one-to-one in the ‘comparison type dimen-
sion’, in that all are following one process across time. While some
tools offer a one-to-many solution (object-centric process mining)
[vdA23] for process mining we focused in this paper on this ba-
sic granularity. All examples used in this study share the size di-
mension ‘small‘, i.e. the visual displays show usually below 100
events with below 20 attributes, and the ‘data dimension’, being
univariate counts and frequencies of event sequences. Last, the ‘vi-
sual display and interaction dimension’ for all cases was a flow-
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Figure 1: Extended tool comparison

based diagram for showing the aggregated number of transitions
between events in the visualization. This display is also referred
to as Sankey-based representation, node-link diagram [YM24], or
directly-follows graphs [LPW19]. In each case, one attribute is vi-
sualized and no additional relations beyond the existing nodes are
presented. All tools compared were in their implementation inter-
active allowing users to interrogate data further and tweak data to
their needs.

3.3. Expanded Taxonomy

Although the visual displays of the business process model tools
were classified as equivalent, there are obvious differences in the
visual representation that are not captured with the taxonomy van
der Linden. Indeed, the Nested Model for Visualization Design
also considers the marks and channels used to encode data [Mun]
[BM]. Marks are geometric elements (points, lines, areas, or even
3D objects) that represent information or links, while channels con-
trol the appearance of marks, with e.g., color, pattern or shape. For
process visualizations, it is also important to decide if the employed
marks guide the user through the visual display, and if they also
encode data. For example, the color or size of a node could encode
their function, hierarchy in a process, while the color of a link could
encode the number of processes along this path. All information to
understand the overall visual display, and all marks and channels
should be available to the user, e.g. with text annotation or legends.
For each visualization, several design implementations and layouts
are possible, and the underlying global topography, with start and
end point, must be recognizable to users. Common reading direc-
tions in displays are left to right or top to bottom [HB18] and these
are often supported with arcs/links and arrows [HT06]. We there-
fore expanded the visual display category of Van der Linden’s tax-

onomy with the following dimensions and example questions for
each:

1. Layout dimension:
E.g., which reading direction is used? E.g., what kind of arrows
are present to support the reading direction?

2. Annotation dimension:
E.g., are legends used to explain the visual display, the marks
and the channels?

3. Mark dimension:
E.g. which marks are used for links? E.g. which marks are used
for nodes?

4. Channels dimension:
E.g., which color(s) are used for marks? E.g., which line weights
are used for marks (lines)?

5. Accessibility dimension:
E.g., are channels accessible to color-blind readers (e.g., distin-
guishable to Deuteranopia vision users), or to readers with poor
color vision (i.e. distinguishable in greyscale)

When applying our expanded taxonomy to the surveyed tools,
differences became apparent and could be classified (Figure 1, from
row 7). In 5 of 6 cases the reading direction of the event sequences
was organised from top to bottom, while one tool (Apromore) pre-
sented data from left-to-right. For PM4Py the default reading di-
rection was from top to bottom, however it is adaptable to left-
to-right orientation. All tools encoded the arcs with arrows, which
further support the reading direction. 5 of 6 tools employed both
forward and backward arrows, and only one tool (Apromore) re-
stricting the arrows to forward orientation. None of the tools em-
ployed text in the form or a title/subtitle or legend, meaning that all
annotations are restricted to the direct labels of the nodes and links.
Next, the marks used for denoting the nodes and link in the visual
display were varied, nodes were shown as circle (n=1), hexagon
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(n=1) or variations of rectangles (n=4). The line channels ranged
from solid to dashed lines, and several tools additionally varied the
line widths, showing up to 3 or 4 different stroke weights. The color
schemes of node and links ranged from 1-3 colors (links) to 2-5 col-
ors (nodes). Most tools varied the saturation/lightness of the node
hue. In 4/6 tools (Apromore, Celonis, ARIS, PM4Py) this was a
form of blue, blue-turquoise, or blue-purple, while ProcessM used
green. Only Mindzie varied the hue, combining purple, orange, and
yellow nodes. Most tools varied not only the node color and also
the link color, with 5/6 tools in total using five or more color chan-
nels. Despite most using a number of hues, all tools are accessi-
ble to readers with common color deficiencies, i.e. red/green col-
orblind safe [JB24]. However, a greyscale rendering showed that
most hues used side-by side are not distinguishable based on their
lightness values, having low ration in contrast ratio, meaning that
color accessibility is restricted [JB24]. Thus, our expanded tax-
onomy was able to classify the nuanced differences in the visual
display of the surveyed business process mining tools. Only a vi-
sual display that has a comprehensible layout, recognizable display
type, annotated and distinguishable marks and channels can fulfill
the information-seeking mantra of “Overview first, zoom and filter,
then details-on-demand” to empower users to “relate, history, and
extract”, which have become known as the eight golden rules for
user-interface design [Shn].

4. User study design

We next applied the expanded taxonomy in the form of an expert
review to assess if no known guidelines were violated in the process
model displays [TM]. We based our review questions on our ex-
panded taxonomy for assessing the visualizations of process min-
ing tools and applied these to the six selected tools. All participants
provided informed consent and no personal data was collected. In
total we interviewed eight experts from process mining and/or vi-
sualization research. This likely exceeds the number of required ex-
pert study participants, where three to five evaluators were shown
to suffice for identifying usability problems present study [ZSN∗].
The experts were recruited from both process mining (n=4) and
visualization (n=3) fields, or both (n=1). The experience in their
respective fields ranged from three to 10+ years of experience.

We next defined a hierarchical set of heuristics, covering a range
of taxonomic dimensions. We then applied all heuristics to each in-
terface item in a set of in total 17 closed-ended questions (Figure
2 ‘question’), each linked to one category of the taxonomy ’Vi-
sual Display,’ ’Layout,’ ’Annotations,’ and ’Marks and Channels’
to measure the effectiveness of each tool. We designed the ques-
tions to encompass both perceptual cognitive as well as the visual
[ZSN∗] information-seeking mantra [Shn]. Despite all tools being
interactive, we surveyed the expert opinions with a static image to
focus on the visual display design rather than interactive features.
Presenting static/still images is also the advised strategy for vali-
dation in the foundational ‘nested model for visualization [Mun]
design’ [BM]. Answers were collected using a dichotomous scale,
with experts indicating whether they agree/agree. To calculate the
final score for each question and tool, we tallied the responses. A
score of 0 indicated none of the participants agreed, a score of 1.0
indicated unanimous agreement, whereas a score of 0.5 indicated

parsimony. The final score thus provides a quantified measure of
consensus or divergence of opinions within the expert group. No
open questions and free text feedback were recorded.

5. User study results

Analyzing the provided data, it is evident that there are significant
variations in the visual representation of the selected process min-
ing tools. Starting with ’Visual Display’, the overall score is high,
indicating that most tools effectively show the basic visual repre-
sentation of process mining data, and allow most experts to easily
recognize nodes, arcs/links, and arc/link weights. The visual dis-
play of Celonis and ProcessM was rated slightly lower, and PM4PY
achieved the lowest rating. We next assessed the overall layout of
the visual display. Most experts were readily able to orient to start
and end point, with the lowest raging for PM4Py, which did not
explicity annotate these points. When asking about more complex
tasks, such as navigating along the longest or shortest path, the
scores decrease. Using only the static image, the advised starting
point for reviewing design strategies, experts particularly struggled
to navigate along event sequences with PM4Py, again as the vi-
sualisation for this study used a model that had no dedicated start
and end symbol. As this is an optional feature in the tool itself it

Figure 2: Heatmap of response scores tallied from all expert re-
viewers. Each expert was asked to rate each tool with the 17 ques-
tions representing the expanded taxonomy. Category ordered by
score.

maybe adjusted, which should lead to higher scores in this sec-
tion also for PM4Py. The ’Annotations’ taxonomy assessed if the
tool helps its user with title and annotations and reveals that many
tools insufficiently explained the data displayed and furthermore
employed what the experts rated as illegible texts (small/low legible
fonts, colors of text with low visibility on background). Thus, while
the tools may effectively display the data, conveying the meaning
through legible annotations is an aspect that has room for improve-
ment. Finally, ’Marks and Channels’ criteria, which include un-
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derstanding and decoding of marks, channels, and colors, overall
scored lowest across all questions. The ability to understand the
marks and channels in use, e.g., typically achieved with annota-
tions/legends, scored low across the tested tools (0-0.5, Apromore
scoring highest with 0.63/0.75). Arc/line styles and boldness of
text/numbers are fairly well understood (often directly annotated
and/or inferrable), while the comprehension of node and link colors
had very mixed scores, ranging in agreement of 0.14-0.67. A con-
sistent issue across most tools is distinctiveness of colors, which
scored from 0.5 to 0.75. Being able to distinguish colors is crucial
for users to effectively differentiate and interpret process visualiza-
tions, and often not explained e.g., by a legend - furthermore, even
when rating colors as distinguishable, we know that many experts
underestimated the number of different colors in use and thus could
not objectively distinguish all hues. Overall, our scores indicate that
while some tools excel in certain areas, there is room for improve-
ment across all tools, especially in making annotations more legible
and improving users’ understanding of marks and channels. These
insights could guide developers to enhance their process mining
tools, making them more user-friendly and effective for analyzing
complex data.

6. Discussion

We contributed to the field of visual analytics for process mining
by expanding the taxonomy to categorize the visual display of pro-
cess mining visualizations. We also put the expanded taxonomy to
test with our expert questionnaire, which compared the visualiza-
tions of six process mining tools. This work is foundational for next
designing a controlled, randomized survey to systematically com-
pare design choices and comprehensibility of process mining visual
displays. Here, we highlight three main implications and the limita-
tions of our study. Using our expanded taxonomy to survey process
mining visualizations, we revealed that indeed across tools expert
users were able to faithfully identify the broad category of the vi-
sual displays as being a type of flow-/event sequence visualization.
Furthermore, these visual displays are composed of nodes/points
and arcs/lines and the first step of a user, before gaining insights,
is to identify nodes and links, which was unanimously possible
for our expert reviewers with all tools tested, except one. Using
our finely-grained questions for layout revealed that most tools ef-
fectively are able to communicate start/end point. However sev-
eral tools presented as challenging when following paths, and those
tools, with e.g., bi-directional arrows, many arrows with crossings,
scored lower in the expert reviews. Many tools scored low in ques-
tions concerning annotations and of marks and channels, revealing
that our expanded taxonomy can also capture weaknesses in the
visualization of process mining tools. None of the tools included
captions and/or legends explaining the marks and channels in use.
When experts were able to understand what the process is about,
they derived this information from the node labels, rather than a
dedicated caption. The lack of explanation for marks and channels
in use, e.g., arc/line width and style (dash, non-dash), and colors
of nodes and arc/lines is particularly concerning, as these encode
important information in forms that are often not accessible to all
users. Whenever designing a visualization, it should be accessible
also to color blind users but more generally also consider possible
limitations of visually impaired audiences and the diversity in vi-

sual perception of visually able readers [JB24] [KJRK21]. A stan-
dard in creating accessible visual display is to include text-based
explanations of all elements, for process mining visualizations this
would be the arc/line and node marks and channels in use. In partic-
ular these aspects would benefit from attention by tool developers
and/or implementations of the software. A more comprehensive as-
sessment of accessibility could even ask if screen-reader software
may extract the information?

One limitation of the expanded taxonomy is its so far limited
practical user-testing. While visualization research [Mun] suggests
that marks and channels, layout and accessibility are likely impor-
tant for end-users, this needs further quantitative study for process
mining visualizations. Another limitation is that the example vi-
sualizations are not entirely comparable. We used default settings
and publicly available images, limiting direct tool-to-tool compar-
isons. However, we intentionally avoided scoring each tool and left
out comprehension questions due to dataset discrepancies, focusing
on the legibility of the display instead. Next, as software tools are
rapidly changing or becoming outdated, reviews thereof are limited
in insight. However, our focus is less on the specific software tested,
but rather on defining criteria to review the respective user inter-
faces for process discovery with process mining tools. Last, we ac-
knowledge that our initial studies have been conducted exclusively
with male participants without verifying their comprehension lev-
els in depth.

Our work highlights opportunities for further analysis and en-
hancement of PM tools’ visual interfaces. Our initial survey of-
fers insights, but lacks quantitative data due to design limitations.
Our next step therefore is a more systematic survey with robust
statistical design. This survey will gauge the effectiveness of en-
coding and interaction idioms using consistent datasets across tool
implementations and will incorporate important previous work on
conformance checking visualizations that defined a framework for
assessing the content and comprehension levels of visual inter-
faces [RPGK22]. This future research will also explore the appli-
cability of existing conceptual model understanding work to pro-
cess mining solutions, which offer diverse visual encoding options
[MSGGLR12] [MS08]. Despite limitations, our work extends ex-
isting visualization frameworks and taxonomies for process mining
[YM24] [GGJ∗22] [vdLdFvdEV] by incorporating aspects of ac-
cessibility and legibility.

7. Conclusion

A picture says more than a thousand words - this phrase is only
true if the visual is understandable to the target audiences. In pro-
cess mining, a ‘picture’ can significantly impact business decisions.
We expanded the review-taxonomy for event sequence visualiza-
tions to also address legibility to the end-users. Our expert survey
validated this taxonomy, pinpointing areas for improving current
process mining models. This highlights the ability of visual analyt-
ics research for having a positive impact on process mining. Our
survey confirmed the usefulness of our expanded taxonomy in de-
signing user-friendly tools. Thus, while a poorly designed visual
display may spark a thousand questions, a well-designed picture or
dashboard indeed may fulfil the promise of visualizations.
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