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Abstract
Accurate and efficient segmentation of anatomical structures in medical images, e.g. ultrasound images, is crucial for diagnosis.
Deep Learning methods can provide automatic reproducible segmentation, and simulation of medical images with their intrinsic
ground truth could help to develop and tune these methods. We introduce a simulation pipeline for the example of mitral valve
segmentation in Transesophageal Echocardiography (TEE) images including different valve opening states. As anatomical
ground truth, we used a CT based patient phantom with simulated mitral valve closure. For each region within the phantom,
scatter intensities and reflections between tissue boundaries were set, and ultrasound images were simulated with incorporation
of attenuation and noise. To further improve realism of the simulated images a speckle reduction filter was used. The adjustments
applied to improve realism were assessed by testing the segmentation performance (including Dice score) of a deep learning
method trained on real TEE data. The initial Dice score for the simulation was 31 %. This value increased with image post-
processing (37 %), exclusion of surrounding cardiac structures (45 %) and the combination of both (46 %). In comparison,
the initial Dices score for real TEE was 72 %. On both simulated and real TEE images, the deep learning method performed
better on fully closed valve states (42 % and 77 %) than on fully open valves (27 % and 66 %). This work introduced a novel
pipeline for the realistic simulation of TEE images with different valve opening states. Our analysis demonstrated feasibility of
the proposed pipeline and highlighted the importance of accurate and dynamic valve phantoms, comprehensive simulations and
specific post-processing for the simulation of realistic TEE images. In the future, with further improvements of the simulation,
we will evaluate the pipeline for the training of Deep Learning methods on simulated data for the application on real data.

CCS Concepts
• Computing methodologies → Modeling and simulation; • Human-centered computing → Visualization;

1. Introduction

The segmentation of medical images to identify and classify
anatomical structures enables a quantitative assessment of these
structures. Challenges include anatomical variability and fluctua-
tions in image quality [MHL∗24]. To overcome these challenges,
Deep Learning (DL) methods have been used in the past to im-
prove the efficiency and, in certain cases, the accuracy of medical
image analysis [WLW∗21]. A wide range of DL methods are avail-
able for segmenting medical images, tuned for different medical
imaging modalities, procedures and the preferred anatomical struc-
ture. These segmentation models are created by training with image
data and the corresponding ground truth labels of the anatomical
structure. The simulation of training data for medical image data is
challenging [RIN∗24], because:

1. Available collections of medical image data are biased towards
specific diseases and demographics. However, representative
data is required in order for DL models to learn accurately seg-
menting all patient datasets.

2. No real ground truth data is available since the real underly-
ing anatomical structures depicted in the image data are not
known, which makes it difficult to do accurate benchmarking
of the models.

To address the first problem, data augmentation have led to higher
accuracy when applying the models to test data sets [GSLM23].
One idea to solve both problems is the simulation of medical im-
ages. Simulations offer the possibility to mimic different clinical
scenarios. In addition, they can be created on the basis of con-
structed phantoms representing a real ground truth and allow ac-
curate benchmarking as successfully demonstrated by Behboodi
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Figure 1: Generation of labelled Transesophageal Echocardiogra-
phy (TEE) phantoms with different valve opening states. The 3D
CT was segmented to obtain a labelled phantom. A bounding box
(green cube) was positioned covering the TEE acquisition region.
Thin 3D volumes were extracted with the rotation around the valve
axis. Different mitral valve opening states were incorporated into
the TEE phantoms.

et al. [BR19]. Employing causality-inspired data augmentation can
enhance model robustness against unseen domains [OCL∗22]. The
application example that we examined in this work is the segmen-
tation of the mitral valve in Transesophageal Echocardiography
(TEE). Due to the small size of the valve, the complex subvalvular
apparatus, its central location among numerous tissues as well as
its movement, precise segmentation of the valve can be quite dif-
ficult and requires a significant amount of expertise and effort. To
analyze the potential of simulations to train DL methods we aimed
to

1. Introduce a simulation pipeline for TEE ultrasound images from
CT-based 3D phantoms with different valve opening states.

2. Utilize a pre-trained DL method on the simulations to identify
the relative importance of the used pipeline parts for realistic
simulation.

2. Related Work

2.1. CT based 3D patient phantoms with different valve
opening states

Phantoms of the human body could serve as a helpful basis for
simulating medical images and providing real ground truth data
[WGK23]. Manini et al. [MNA∗23] presented a computational
phantom (Figure 1) created with anatomical structures extracted
from patient 3D full body CT in combination with a mitral valve
closure simulation [WGT∗21]. However, to our knowledge, no sim-
ulation pipeline for cardiac ultrasound images based on 3D CT
phantoms is available. To establish this pipeline, we used this la-
belled phantom model as the anatomical structures ground truth.
We extracted the 3D volume through which the TEE passes (190
mm × 143 mm × 7 mm) and sampled thin 3D volumes oriented
with different rotation angles of the TEE. For the simulation, 3
phantoms extracted from different patients were used in which we
considered 17 different rotation angles at 10-degree intervals. In
each angle, we had slices for 30 valve opening states from fully
open to fully closed. This resulted in 1530 simulated TEE images
with known ground truth.

2.2. Ultrasound simulation software

For the simulation of 2D ultrasound images from phantoms, Jensen
developed the software solution Field II (current Version 3.30)
[Jen]. 3D positions and intensities of the point scatterers are used
as input and the program utilizes the concept of spatial impulse re-
sponse to simulate the RF data, which can be then further processed
to a B-mode image.

2.3. DL segmentation method

The U-Net architecture proposed by Ronneberger et al. proved
to achieve high accuracy segmentations with limited datasets
[RFB15]. Numerous U-Net models now exist for image analysis
across various applications [SPED21]. In this work, the nnU-Net by
Isensee et al. was used. The nnU-Net is a versatile method for var-
ious medical images and provides automatically configuring pre-
processing, network architecture, training, and post-processing for
a given data set [IJK∗21].

3. Method

3.1. Ultrasound simulation pipeline

The pipeline for the simulation of TEE images based on 3D phan-
toms consists of pre-processing, simulation and adjustments, (Fig-
ure 2). For pre-processsing, the individual phantom slices from
each rotation angle and valve opening state were used as a map
to assign the intensities to the labelled tissues. The intensity values
used were chosen to visually cover the range of real TEE images
taken with different devices and different image quality. In addi-
tion, to mimic the ultrasound reflections at the tissue boundaries,
we calculated the axial gradient of the scatter intensity map and
added this to the scatter intensity map (Pseudo B-mode). A second
axial gradient of the tissue outside the myocardium was empiri-
cally dilated by 8 mm and multiplied by 400 to match the reference
TEE images reflections. For the simulation part, point scatters (263
/ cm3) were randomly positioned and intensities were assigned ac-
cording to the pseudo B-mode images. To match the visual appear-
ance of real valves 5,000 additional scatters were positioned in the
mitral valve. The parameters were set to a common TEE ultrasound
probe (phased array transducer with center frequency 7 MHz, sam-
pling frequency 40 MHz, focus 50 mm, 64 elements with height 5
mm and width 0.11 mm, sector with 143 mm depth and 190 mm
width) and the corresponding RF data was simulated with Field II.
Afterwards, the ultrasound attenuation was mimicked by an empir-
ically derived exponential axial decay (attenuation coefficient of
8.05 / m). Normal distributed noise with an empirically derived
standard deviation of 1 / 25,000 of the average B-mode intensity
near the transducer was added to the RF data. The B-mode was
then logarithmically compressed and compensated for mimicked
attenuation. In total, 1530 2D ultrasound images were simulated on
a 2.7 GHz Dual-Core Intel Core i5 CPU with a computation time
of around 3 minutes per image. To analyze the impact of image
post-processing, we applied further adjustments on the simulated
B-mode. To mimic image post-processing (speckle reduction) as
used in common TEE, the speckle reduction filter from the Image
Despeckle Filtering Toolbox (Version 1.0) in MATLAB R2023a
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Figure 2: Pipeline for the simulation of a Transesophageal Echocardiography (TEE) ultrasound B-mode. Based on the labelled TEE phan-
tom, the scatter intensities were set for each anatomical region and reflections at tissue boundaries were incorporated, resulting in a pseudo
B-mode. The simulated B-mode image was generated using Field II, incorporating ultrasound attenuation and noise. For an adjusted B-mode,
image post-processing (speckle reduction filter) was applied.

with a 3 × 3 neighborhood and the iteration parameter 2 was added
to the simulated B-mode image [LTPK14].

3.2. Training and running inferences with the nnU-Net

The real TEE images were collected from 21 patients (11 type I
mitral insufficiency with dilated annulus, 9 type II with prolapse, 1
volunteer) by a GE Vingmed Ultrasound Vivid E9 system (frame
rate 15-83 Hz, in-plane resolution 0.47-1.43 mm) using the same
17 rotation angles as in the phantoms. Each angle had a time series
of 3-6 frames capturing the valve closing process leading to a total
of 1904 ultrasound images with ground truth segmented manually
by cardiologists. The nnU-Net first extracted a dataset fingerprint
including dataset-specific properties such as image sizes (250 mm
× 250 mm), pixel spacing (0.4 mm × 0.4 mm) and intensity in-
formation. After selecting the 2D configuration, the training was
started with the pre-processed data and own splits. To prevent bias
during the training process, the images were not split individually,
but split by volume [TEHH22] with a random 15 - 3 - 3 split of the
valves for training, validation and testing respectively. During the
training phase, the nnU-Net was used with different data augmen-
tations including rotations, scaling, Gaussian noise, Gaussian blur,
brightness, contrast, simulation of low resolution, gamma correc-
tion and mirroring [IJK∗21]. The trained model was then applied
to the desired test data set and inference was run on the simulated
B-mode images to analyze the performance. To analyze the impact
of image post-processing and to focus on only the valve region, we
trained the nnU-Net again on the cropped real TEE data and applied
it on cropped B-mode images. Cropping was realized by placing a
bounding box (93 mm × 81 mm) randomly around the mitral valve
matching the next larger patch size of the nnU-Net. Training and
inference were run on a NVIDIA A40 GPU.

3.3. Statistics

Dice score, average symmetric surface distance (ASD) and Haus-
dorff distance (HD) [YV] were used to analyze the performance
of segmentation predictions made by the nnU-Net including cal-
culating average values and standard deviation. To compare the
Dice score distribution for fully open and closed valves a Wilcoxon
signed-rank test was carried out with a P-value < 0.05 considered as
significant. Statistic evaluation was performed in python 3.10 with

the nnU-Net evaluation module as well as the seg_metrics (1.2.6)
and scipy library (1.13.1).

4. Results

4.1. Qualitative results

A qualitative comparison of the real TEE images and the simulated
images in the general approach revealed that the simulated images
had a coarser-grained speckle pattern, a darker blood pool and the
tissues outside of the heart appear with a higher contrast. The sim-
ulated images had no image artefacts such as shadows, that could
be seen in some real images. After adding the speckle reduction fil-
ter in the simulated images, a less grainy speckle pattern could be
recognised.

4.2. Quantitative results

For each metric and adjustment, the average values and standard
deviation are shown in Table 1 and histograms for the respective
Dice score distributions are shown in Figure 3. These include the
289 real TEE images and the 1530 simulated TEE images before
and after adjustments (bounding box for real TEE as well as speckle
reduction and bounding box for simulated TEE). Before adjust-
ments, the trained DL model achieved on average about half the
values for Dice score, seven times higher values for ASD and six
times higher values for HD on the simulated TEE images compared
to the real TEE images. Moreover, the model was unable to predict
any segmentation at all for 20 of the simulated images (15 after
speckle reduction) and accordingly neither the ASD nor HD could
be determined. For the simulated TEE images the average relative
improvement of all metrics was 22 % for only speckle reduction,
56 % for only bounding box and 57 % for both combined. For the
real TEE images the average relative improvements of all metrics
was 4 % for using the bounding box. Furthermore, after using the
bounding box, the model was able to predict a segmentation in all
images. After all adjustments, the average relative improvement of
all metrics for fully closed valves compared to the fully open valves
was 40 % for simulated TEE images and 27 % for real TEE images
(Table 1 and Figure 4) with significant P-values < 0.05 for each
metric.
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Figure 3: Comparison of the mitral valve segmentation performance between real and simulated transesophageal echocardiography (TEE)
images before and after different adjustments (bounding box for real TEE as well as speckle reduction and bounding box for simulated TEE).
Valve segmentation in red and bounding box in green.

Table 1: Comparison of the valve segmentation performance between real and simulated transesophageal echocardiography (TEE) images.
Comparison metrics (mean values ± standard deviation) are differentiated before and after adjustments (bounding box for real TEE as well
as speckle reduction and bounding box for simulated TEE) as well as for the fully open and closed mitral valve state. Average symmetric
surface distance (ASD); Hausdorff-distance (HD).

Real TEE Simulated TEE
Metric

unit
Dice score

in %
ASD

in mm
HD

in mm
Dice score

in %
ASD

in mm
HD

in mm
No adjustments 72 ± 10 0.19 ± 0.07 1.0 ± 0.6 31 ± 14 1.53 ± 2.20∗ 6.4 ± 4.8∗

Speckle reduction 37 ± 15 1.14 ± 1.53∗ 5.1 ± 4.1∗

Bounding box 73 ± 9 0.19 ± 0.08 1.1 ± 0.7 45 ± 12 0.52 ± 0.24 2.8 ± 1.5
Speckle reduction + Bounding box 46 ± 11 0.51 ± 0.22 2.8 ± 1.5

After all
adjustments

Fully open valve 66 ± 9∗∗ 0.23 ± 0.16∗∗ 1.5 ± 0.8∗∗ 27 ± 14∗∗ 0.70 ± 0.40∗∗ 3.4 ± 2.0∗∗

Fully closed valve 77 ± 6∗∗ 0.16 ± 0.04∗∗ 1.0 ± 0.3∗∗ 42 ± 12∗∗ 0.46 ± 0.10∗∗ 2.4 ± 0.8∗∗
∗For certain cases no segmentation could be predicted by the model therefore the values had to be omitted.
∗∗A Wilcoxon signed-rank test was carried out for fully open and fully closed valves leading to significant P-values < 0.05 .

5. Discussion

In this work, a first approach to a novel pipeline for the simulation
of 2D TEE images from 3D phantoms with different valve open-
ing states has been proposed. The nnU-Net, trained on real TEE
images, provided surrogate information on the realism of the simu-
lated images as well as on the influencing factors. The results have
shown that the simulated images were able to achieve a compa-
rable appearance as real images, but still had a lower overall per-

formance. This discrepancy may be attributed to the limited quan-
tity of training data and the fact that the simulations were adjusted
to represent a wide range of TEE images apart from the training
data. Still, post-processing and the exclusion of tissue outside the
mitral valve were identified as major factors to improve the per-
formance of the DL method on simulated images. This suggests
that even structures far from the valve have a significant impact
on segmentation performance which could be handled by using an
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Figure 4: Comparison of the valve segmentation performance between the real Transesophageal Echocardiography (TEE) and adjusted
simulated B-mode images (bounding box for real TEE as well as speckle reduction and bounding box for simulated TEE) for the fully open
and closed mitral valve states. Valve segmentation in red.

object identifier prior to the DL model. Additionally, it could be
observed that the valve opening state influences the performance of
the DL segmentation suggesting, that this is a problem of the DL
model rather than due to differences in image quality due to valve
state. Further improvements for realism could be enhancements to
the phantoms such as incorporating myocardium movement, fine-
tuning simulation parameters, implementing additional ultrasound
properties like image artefacts, and employing more sophisticated
image post-processing techniques. Also, more datasets are needed
for a more representative analysis. With these improvements and
the availability of numerous and more diverse sets of phantoms,
the ultimate goal, to train the DL method directly on the simula-
tions with known ground truth, could be achieved.
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