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Abstract
X-ray coronary angiography is the primary imaging modality for evaluating coronary artery disease. The visual assessment of
angiography videos in clinical routines is time-consuming, requires expert experience and lacks standardization. This compli-
cates the calculation of the SYNTAX score, a recommended instrument for therapy decision making. In this work we propose
an end-to-end pipeline for segment-wise stenosis prediction in multi-view angiography videos to facilitate the calculation of the
SYNTAX score. While recent approaches mainly focus on stenosis detection on frame- or video-level, our method is developed
and evaluated for stenosis prediction on patient-level. The pipeline is composed as follows: (1) Selection of frames show-
ing arteries filled with contrast medium using a convolutional neural network, (2) Stenosis detection and segment labelling
on selected frames using a region-based convolutional neural network for object detection, (3) Linkage of detected regions
showing the same stenosis by tracking the optical flow of the detections in the angiography video, (4) Segment assignment to
the detected and tracked stenosis to predict stenotic segments on patient-level. The workflow is adjusted and evaluated using
the image data and diagnostic annotations of 219 patients with multi-vessel coronary artery disease from the German Heart
Center of the Charité University Hospital (DHZC), Berlin. To fine-tune the models, we used manually flagged frames for the
frame classification model and bounding box annotations provided by a cardiac expert for the stenosis detection model. For the
segment-wise prediction of all patients, we achieved a total sensitivity of 56.41, specificity of 85.88, precision of 52.81 and F1
score of 54.55 with varying results for the 25 coronary segments. The established workflow can facilitate visual assessment of
CAD in angiography videos and increase accuracy and precision in clinical diagnostics.

CCS Concepts
• Applied computing → Health informatics; Life and medical sciences;

1. Introduction

Coronary artery disease (CAD), the leading cause of death world-
wide [WNAB16], is caused by atherosclerotic plaque resulting in
pathological narrowing of the coronary vessels. This leads to re-
duced blood flow followed by insufficient supply of the heart mus-
cles and increases the risk of ischaemia [LT05]. In clinical environ-
ments treatment options for patients with complex CAD are dis-
cussed in meetings of cardiac experts, known as heart teams, with
the aim of identifying the optimal treatment strategy [HRZM13].
X-ray coronary angiography (XCA) can visualize coronary arteries
filled with contrast agent in video sequences and is the gold stan-
dard imaging modality for CAD assessment [RGZ21]. The inter-
pretation of XCA depends on visual assessment by the physician,
which is poorly reproducible, highly variable and bias prone.

As recommended in the ESC/EACTS Guidelines on Myocar-

dial Revascularization [NSUA∗19], the anatomical SYNTAX score
quantifies the extent and the complexity of CAD and stratifies the
risk between the two common revascularization strategies: percu-
taneous coronary intervention (PCI) and coronary artery bypass
graft (CABG). The score is calculated with the help of an inter-
face that asks sequential and interactive questions about left-right
dominance, segments involved per stenosis and adverse character-
istics [Off22]. Stenoses identified in proximal segments of the coro-
nary tree are scored higher than stenoses in distal segments (Fig. 1).

However, there is a significant concern about bias and inter-
individual variability in calculating the SYNTAX score. An ever-
increasing amount of patient data, therapeutic options, complex
metrics and image-based disease classifications, new research stud-
ies, and the patient’s personal preferences all add to the complex-
ity of decision making. (Partially) automating the CAD assessment
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process could facilitate guideline-compliant decision making, re-
duce inappropriate use of revascularization methods and improve
overall patient outcomes.

Figure 1: Vessel segments of the right coronary artery (RCA) and
left coronary artery (LCA) in the SYNTAX score scheme [Off22]:
(1) RCA proximal, (2) RCA mid, (3) RCA distal, (4) Posterior de-
scending, (5) Left main, (6) LAD proximal, (7) LAD mid, (8) LAD
apical, (9) First diagonal, (9a) Add. first diagonal, (10) Second di-
agonal, (10a) Add. second diagonal, (11) LCX proximal, (12) Inter-
mediate, (12a) Obtuse marginal, (12b) Obtuse marginal, (13) LCX
distal circumflex, (14) Left posterolateral, (14a) Left posterolateral,
(14b) Left posterolateral, (15) Posterior descending. Weighting fac-
tors for the corresponding coronary segments [SMKM05].

Earlier approaches apply convolutional neural networks (CNNs)
to XCA images for vessel segmentation prior to stenosis classi-
fication by finding locations along the extracted centerline with
decreased diameter [ZGS∗21]. Recent studies investigated direct
stenosis detection using region-based CNNs and achieved reliable
results [DKG∗21, LCG∗23]. Typically, clinicians inspect the en-
tire XCA video sequences since the visibility of coronary arter-
ies and stenoses varies with the diastolic and systolic phase of the
heart. Only few stenosis detection methods include temporal in-
formation [PAF∗21, CKdV∗23]. However, the calculation of the
SYNTAX score requires information about the affected coronary
segments. A recently published dataset includes segmented and la-
belled coronary segments in XCA images according to the SYN-
TAX score scheme, which allows for training multi-class segmen-
tation models [PAZ∗24]. A multi-step AI workflow for coronary
stenosis detection, segment assignment and prediction of the steno-
sis degree in XCA videos has been published recently with reli-
able performance of the described components [LCT∗24]. But the
method excludes segments with poor visibility and is evaluated
only on video-level, thus, lacks patient-level evaluation considering
multiple projection angles. To tackle the difficult task of segment
assignment the pipeline includes a multi-class vessel segmentation
algorithm reaching a Dice score of 74% which could potentially be
improved.

The visibility of segments and stenoses in the XCA video relies
on the location in the coronary tree and the viewing angle, since
arteries can overlap or appear oblique in the complex 3D tree struc-
ture. In clinical practice multiple videos with different projection
angles are recorded with the aim to capture all stenoses in the pa-
tient [RGZ21]. Therefore, evaluation on patient-level is indispens-
able, and has been conducted in more recent works which still lack
separate segment prediction [CKdV∗23, PAH∗24].

In this work we present a four-step end-to-end workflow to pre-
dict stenotic segments in multiple XCA video sequences captured

with different viewing angles to facilitate the calculation of the
SYNTAX score. Standing out from recent works, the pipeline was
developed to predict coronary stenoses for each of the 25 coro-
nary segments respectively, and is evaluated on patient-level using a
clinical dataset of multi-vessel CAD patients. The dataset includes
multi-view XCA videos and information about the segment-wise
presence of stenoses for each patient. To evade the difficult task of
multi-class vessel segmentation our pipeline includes a detection
model which directly classifies the affected coronary segment for
stenoses detected in XCA frames. For model training a dataset was
created by annotating selected frames with bounding boxes and the
corresponding segment. Another novelty in our approach is the us-
age of optical flow to combine detections showing the same steno-
sis in one video by tracking the movement of detected stenoses over
all frames.

2. Material and Methods

Our workflow for automated stenosis detection includes four steps
and processes XCA videos recorded with multiple projection an-
gles (Fig. 2). First, a classification model is used to select frames
with sufficient vessel lumen visibility in each XCA video. A steno-
sis detection model is applied to the selected frames to find regions
likely to show a stenosis and predict the corresponding coronary
segment. Subsequently, a movement tracking algorithm is used to
follow the movement of a detected region and link detected bound-
ing boxes showing the same stenosis in different frames. The seg-
ment of a set of linked bounding boxes is predicted through ma-
jority voting. A graphical user interface was developed to show the
projection videos of a patient and display the detected and linked
boxes along with the predicted segments.

2.1. Material

The dataset for model training and patient-level evaluation was col-
lected from two cohorts of CAD patients from the German Heart
Center of the Charité University Hospital (DHZC), Berlin. The first
cohort consisted of 126 patients with complex triple vessel dis-
ease and high SYNTAX scores who were being prepared to receive
CABG surgery. The second cohort included 93 patients with mod-
erate SYNTAX scores and primarily LAD stenoses, who were eli-
gible for hybrid procedures (PCI and CABG). The average age of
all patients was 70.0±10.1 years old. 23.4% were identified as fe-
male and 76.6% as male. The number of stenoses per segment is vi-
sualized in Figure 3. The XCA videos were exported directly from
a clinical system without pre-selection and show the right coronary
arteries, left coronary arteries, the aorta or the catheter track. In to-
tal, 1137 of 5165 coronary segments are marked with stenosis, of
which 832 have a stenotic degree of > 75% and require treatment.
Several minor stenoses were not marked in the dataset.

Selected frames were annotated by a cardiac expert using a cus-
tomized annotation tool which shows regions which were already
detected by a trained stenosis detection model, fine-tuned on a pub-
lic dataset [DKG∗21] and allows to verify correct detections, in-
sert missed stenotic regions and annotate the corresponding seg-
ments [PAH∗24]. Not every stenosis visible in a labelled frame was
annotated as such, resulting in an incompletely labelled dataset.
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Figure 2: Stenosis prediction pipeline. Input: Several XCA videos of the same patient with different projection angles. Four steps: (1)
Selection of frames with sufficient contrast agent to show the coronary vessels, (2) Detection of stenotic regions with confidence score > 0.8
and classification of the corresponding coronary segment on selected frames, (3) Tracking of the detected regions in all frames of one
sequence to combine detections showing the same stenosis, (4) Segment prediction by majority voting of the predicted classes in a set of
linked stenoses. Output: Segment-wise stenosis prediction at the patient-level after processing all XCA projections through the pipeline.

2.2. Methods

Frame selection: For the selection of frames with sufficient ves-
sel lumen visibility we used Inception-v3, a basic and computa-
tionally cheap CNN-based classification model to enable fast infer-
ence [SVI∗]. In order to create a training dataset for this task, the
first two frames of selected XCA videos were labelled as inappro-
priate, and the two mid frames which typically show high contrast
were labelled as suitable resulting in 4462 labelled frames. The
model was initialized with ImageNet weights and trained for 10
epochs with the initial learning rate 1e−4, batch size 8 and binary
cross entropy loss function.

Stenosis detection: For stenosis detection, we used the pre-
trained Faster R-CNN ResNet-101 V2, as it achieves the high-
est accuracy in detecting stenotic regions among multiple object
detection networks [DKG∗21]. The network consists of a CNN
for object detection, including a region proposal network which
shares full-image convolutional features with the detection network
[RHGS15]. One prediction consists of the bounding box, the confi-
dence score and the estimated class among 25 classes for the coro-
nary segments according to the SYNTAX score scheme. The model
was initialized with COCO weights [LMB∗14] and fine-tuned over
105 iterations using the weighted smooth L1 loss for localization,
the weighted focal loss for classification and a gradually decreasing
learning rate of initially 1e−4. Detections with a confidence score
of > 0.8 were considered for further processing. The threshold was
chosen after evaluation of the model using different thresholds.

Region tracking: To combine the detected regions showing the
same stenosis on different frames, we applied a stenosis tracking
algorithm. The RAFT model is a pre-trained deep network archi-
tecture to measure optical flow by calculating the correlation of all
pixel-pairs based on per-pixel features and iteratively updating a
flow field through a recurrent unit [TD20]. In order to define one
flow vector per detection, we calculated the average vector of all
optical flow vectors in the vessel region within the detected bound-
ing boxes. The vessels were segmented using the Frangi vesselness
filter [FNVV98]. Detected boxes with a minimum overlap rate of
0.1 were linked to the tracked stenosis.

Segment prediction: A set of detections, showing the same
stenosis in one video, is assigned with the coronary segment which
was predicted most frequently. Single detections not associated
with a set were rejected. Coronary segments with at least one as-
signed set of detections in the available projection videos were
marked as stenotic, resulting in a segment-wise prediction per-
patient.

3. Results

To evaluate the frame selection of step 1 and the stenosis detec-
tion of step 2, we divided the CAD patients of our clinical dataset
(Sec. 2.1) into five subsets for five-fold cross-validation with a 4:1
split for training and testing of the models. Due to the low inci-
dence of some stenotic coronary segments (Fig. 3) we did not use
a completely separate test set to evaluate the workflow. The result-
ing five frame selection models achieved a mean accuracy, sensi-
tivity, specificity and F1 score of 95.67, 93.79, 97.56, and 95.60
on the classified frames across the folds. The five stenosis detec-
tion models achieved a mean sensitivity, precision and F1 score of
27.9, 55.04 and 46.64 for region detection and a mean accuracy
of 59.71 for segment classification on the 5664 annotated frames.
Additionally, the fine-tuned detection models were evaluated using
the part of the external ARCADE dataset which consisted of XCA
frames annotated with bounding boxes [PAZ∗24] and achieved a
mean sensitivity, precision and F1 score of 18.90, 58.07 and 35.00.
The five fine-tuned models of steps 1 and 2 were applied to the
frames of all XCA videos of the patients in the respective test set
to predict stenotic regions for further processing in pipeline steps 3
and 4. For evaluation of the total pipeline we compare the segment-
wise labels from the physician with the segment-wise predictions
of our workflow.

647 out of 1137 stenotic segments in the clinical dataset were
successfully predicted as stenotic by the model, resulting in a sen-
sitivity of 56.41. 3411 out of 3901 healthy segments were not pre-
dicted as stenotic, resulting in a specificity of 85.88. 647 out of
1350 predictions correctly show a stenosis resulting in a precision
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Figure 3: Number of patients who actually have a stenosis in the segment (red bar). Number of patients for whom the stenosis in the respective
segment was successfully predicted by the model (dark blue bar) and the number of patients for whom a stenosis in the respective segment
was predicted despite no stenosis was labelled for the patient (light blue bar).

of 52.81. The total F1 score was 54.55. Figure 3 shows the num-
ber of patients with a present stenosis in the respective segment and
the number of patients for whom the present stenosis was correctly
detected by the workflow. The figure also shows additional predic-
tions that partially correspond to unlabelled stenoses (stenotic de-
gree < 50%). These unlabelled stenoses were counted as false pos-
itives in our metrics. Segment 15 (left posterior descending) was
left out for evaluation because stenoses in this segment were not
labelled by the clinicians.

4. Discussion

We proposed a four-step workflow for segment-wise stenosis pre-
diction in multi-view XCA video sequences, which can be used to
facilitate the calculation of the SYNTAX score. For evaluation on
patient-level we used a clinical dataset of multi-vessel CAD pa-
tients with marked stenotic segments and XCA video data. Con-
sidering the stenoses present in the clinical dataset, most stenoses
occurred in the main branches or proximal segments (1, 2, 6, 7, 9,
11) (Fig. 3). Descending arteries contained less stenoses (4, 9a-10a,
14-15, 16a-c). Considering the detection performance, the system
succeeded well in predicting stenoses in the main branches of the
RCA (1,2,3) and proximal segments of the LCA (6,7,11) which are
visualized with more contrast in XCA compared to smaller and dis-
tal vessels. The increased visibility facilitates automated prediction
equivalently to visual diagnosis (Fig. 4, top left).

The system had difficulties with detecting stenoses occurring in
smaller vessels and distal regions (4, 8, 9a, 10, 10a, 12, 12b, 14a,
14b, 16a-c). This can can be explained by lower segment class
representation in the training data, lower contrast and increased
vessel overlay due to the branched structure in the distal regions
(Fig. 4, top right). The system was able to predict stenoses disre-
gardful of the stenotic degree. Since many stenoses with low degree
(< 50%) were not marked in the dataset by the clinicians (Sec. 2.1),
some low degree stenoses predicted by the system were mistakenly

counted as false positives, which had a negative impact on sensitiv-
ity and specificity (Fig. 4, bottom left). Thus, the evaluated perfor-
mance is a pessimistic estimate that could possibly be improved if
the ground truth labels of all stenoses were available.

Correct detections, particularly in the side branches, were often
classified with the wrong segment, which increases the number of
missed stenoses and of false predictions (Fig. 4, bottom right). This
leads to the assumption that the topology of the coronary tree was
difficult to identify for the model in distal regions. Furthermore,
some stenotic regions were left out by the clinician when annotat-
ing frames with the annotation tool. These incompletely labelled
frames complicated the training process of the detection model.

Compared to the approach of Labrecque Langlais et
al. [LCT∗24], which included the classification of detected
regions based on prior segmentation of coronary segments, our
approach could not reach their sensitivity of 70.72, but clearly out-
performed their method in terms of specificity, (87.43 over 76.71),
precision (47.93 over 39.42) and F1 score (54.55 over 51.15).
Considering that we included all segments and used a different
cohort of multi-vessel CAD patients, our results are satisfactory
and encourage further development and model fine-tuning.

Next steps include further improvement of the proposed work-
flow, such as fine-tuning the CNN models used, separating RCA
and LCA, investigating different segment prediction schemes and
focusing more on under-represented segment classes. Completing
the annotation of the dataset (Sec. 2.1) is likely to improve the per-
formance in two ways: by making XCA frames with annotations
for all visible stenoses available for training and by correcting the
false positive rate. Future enhancements could comprise the con-
sideration of typical projection angles for certain segments or the
prediction of the stenotic degree and calcification type based on im-
age features. The automated assessment and quantification of CAD
can facilitate the calculation of the SYNTAX score and improve
clinical decision-making in heart team discussions.
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Figure 4: Cases of successful successful prediction (top left) and
unsuccessful prediction: Missed stenosis (top right), false predic-
tion (bottom left), false segment classification (bottom right).
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