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Figure 1: Each row represents a path depicting the shrinkage (to the left) and growth (to the right) of drusen, w.r.t. a reference state in the middle
(in the orange circle). The first row shows a path of multiple drusen, taken from the StyleGAN that was trained for 2000 epochs without weighted
sampling, and the path model is Warp [TTP21] in Z space. The second row shows a path of a single druse, taken from the GAN that was trained
for 100 epochs with weighted sampling, and the path model is PDE [SKSW23] in Z space. The green bar on top of the images indicates that the
respective latent codes fall in the support of the GAN’s Gaussian prior (p>0.05), and are therefore expected to align with the training data.

Abstract
We propose an algorithmic pipeline that uses interpretable Generative Adversarial Networks (GANs) to visualize the variability of the
visual appearance of drusen in Optical Coherence Tomography (OCT). Drusen are accumulations of extracellular debris between
Bruch’s membrane and the retinal pigment epithelium of the eye. They are a hallmark of age-related macular degeneration (AMD)—the
most common cause of vision loss in the elderly. Imaging the morphology of drusen with OCT reveals different subtypes, which might
have different relevance for disease severity and the risk of progression. We compare two GAN architectures and three recently proposed
methods for the unsupervised discovery of interpretable paths in their latent space with respect to their ability to visualize natural
variations in drusen appearance. We also introduce a color code that indicates generated images that extrapolate beyond the training
data and should, therefore, be interpreted with caution. Our results suggest that, even when trained on cross-sectional data, GANs can
recover smooth and anatomically plausible variations of drusen that are in agreement with changes over time that are known from
longitudinal observations.

CCS Concepts
• Computing methodologies → Computer vision; Neural networks; • Applied computing → Health informatics;

1. Introduction

Age-related macular degeneration (AMD) is a medical condition that
leads to a gradual worsening of vision in the center of the visual field
with age. It can severely affect the ability to perform daily life activities
and worsen a person’s quality of life. Important diagnostic markers
of AMD are drusen, which are deposits or clusters of extracellular
material between Bruch’s membrane and the retinal pigment epithelium.
Imaging drusen cross-sections with spectral domain optical coherence

tomography (SD-OCT) has provided clinicians with a classification of
these deposits into different sub-types. Yet, a more detailed investigation
of the drusen ultrastructure might improve our ability to understand
and track the disease, or even to predict its progression [KKIT08].

Recent research on interpretable generative adversarial networks
(GANs) has demonstrated their ability to discover relevant modes
of variation in natural images. For instance, these variations include
changes in hair length and color, gender, head pose, or skin tone in
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Figure 2: Schematic overview of our proposed pipeline.

images of human faces [VB20, TTP21, SKSW23]. In this work, we
explore the potential of such methods to smoothly and interpretably
visualize the variability in drusen appearance, as shown in Figure 1.

In this work, we introduce an algorithmic pipeline that involves the
generation of suitable image patches based on drusen instance segmen-
tation. Within this scope, we also compare alternative approaches to
training interpretable GANs in an unsupervised manner, including paths
that are linear or nonlinear in latent space. We conclude that GANs are
able to synthesize OCT images of drusen with realistic variations that
resemble those observed in longitudinal studies, despite the fact that
our training set was cross-sectional.

2. Related Work

Previous work has used GANs on OCT images for a variety of applica-
tions, including anomaly detection, domain adaptation, super-resolution
and de-noising, and data augmentation for classification or segmentation
tasks [KACRC22]. GANs have also been used to produce synthetic
fundus images related to AMD [BJP∗19]. To our knowledge, we are
the first to use GANs to generate synthetic images of drusen in OCT
and to identify interpretable modes of variation in their appearance.

Several efforts have been made to discover and manipulate latent
spaces in GANs that control and interpret variations in generated
images—very few of which focus on finding interpretable features
on medical images [FBK∗20, SSP22]. Within other general domains
of application, Voynov and Babenko [VB20] investigate linear paths,
Tzelepis et al. [TTP21] search for non-linear paths based on learned

warping functions, and Song et al. [SKSW23] use potential flows for
location dependent paths. In their approach called AdvStyle, Yang et
al. [YCW∗21] search in the style space of StyleGANs. Additionally
to binary attributes, such as gender and hair length they also find non-
binary attributes, such as anime style. Another way to find interpretable
directions in GANs is described by Härkönen et al. [HHLP20]. They
use Principal Component Analysis (PCA) on a specific layer to find
directions changing this layer. As the features are found layer-wise, it is
possible to distinguish between high and low-level features. Interestingly,
this technique even finds biases in trained GANs. For example, adding
makeup changes images of women a lot, but only a little for men.

3. Methodology

Our proposed pipeline is illustrated in Figure 2. It creates image
patches around the individual drusen in an internal, not publicly
available OCT dataset, trains a GAN architecture on those patches,
and discovers interpretable paths in their latent space. Our imple-
mentation (with a detailed explanation of all steps) is available under
https://github.com/ChristianMuth5/IntDrusen.

Drusen are computed based on a state-of-the-art automatic segmen-
tation of Bruch’s membrane (BM) and the retinal pigment epithelium
(RPE) [MWFS23]. The BM can intersect the patch at various angles,
which is however not helpful to distinguish between drusen subtypes.
Therefore, we remove this undesired variability by rectification, moving
the individual columns of the image patch down to align the BM with
the lower boundary. In particular, each A-scan (image column) is shifted
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such that a Gaussian-smoothed (σ = 5) version of the BM becomes
a horizontal line. Drusen in close proximity are often merged in the
segmentation mask as shown in Figure 2. To isolate drusen instances, we
look for peaks in the RPE height with a minimum distance of 20 pixels
and a minimum height of 3 pixels. Drusen are separated if the valley
between two neighboring peaks is at least 9 pixels below both peaks.

Subsequently, we cut out an image patch centered on each druse.
Since rectification moves the drusen to the bottom half of the initially
square patch, we can remove the top half. The resulting patches
might still contain neighbors of the drusen on which they have been
centered. We create two variants of the training dataset: In the first, we
keep those patches as they are, which allows us to track interactions
between neighboring drusen. In the second, our goal is to focus on the
morphology of individual drusen. We, therefore, use the segmentation
mask of the central druse and smoothly blend out the surroundings.

On these two datasets, we trained two types of generative models,
DCGAN [RMC15] and StyleGAN2 [KLA∗20]. These were selected as
being the most common in the chosen papers for finding interpretable
paths. Both follow the GAN approach described by Goodfellow et
al. [GPAM∗14]. Since StyleGANs require square images, we pad our
rectangular ones with black bars on the top and bottom. To increase the
variance in our dataset, we augment it by randomly flipping it across
the vertical axis. However, to make sure the GAN captures the natural
variability in the data, rather than our augmentations, we refrain from
using augmentations that change the pixel values or that might introduce
features that are not present naturally, such as elastic deformations.

Drusen sizes are not well distributed in our dataset, with over 90%
belonging to the smallest of 10 classes. To investigate the impact
of the data distribution, we train both without and with weighted
sampling on epoch level. For the weighted sampling case, we split
our data into 5 classes, corresponding to drusen volume, which
is the number of pixels in the segmentation mask, respectively
[0,100),[100,300),[300,600),[600,1500),[1500,∞). The DCGAN has
been trained for 100 epochs with binary cross entropy loss and a latent
vector size of 20 as the dataset is not very complex. The StyleGAN
has been trained for 1000 epochs with and without weighted sampling,
and 2000 epochs without weighted sampling. Other hyperparameters
have been selected as gamma=0.1024, cbase=16384, map-
depth=2, glr=0.0025, and dlr=0.0025. All hyperparameters
used in this study were selected based on the recommendations from
the respective papers, where the employed models have been first
presented. The number of epochs was kept low to accommodate the
testing of various combinations.

On each of those generative models, we train three methods
for discovering interpretable paths in latent space: the GANLa-
tentSpace [VB20], WarpedGANSpace [TTP21], and PDETraver-
sal [SKSW23]. We hereby refer to them as Linear, Warp, and PDE,
respectively. We apply them to the latent space Z of both generative
models and the style space W of the StyleGAN. The three selected
approaches differ in how paths are calculated. Linear searches for linear
paths given by linear directions in space. Warp discovers non-linear
paths that follow the gradients of Radial Basis Function (RBF)-based
warping functions of the space. PDE views the multi-dimensional
input space as a dynamic potential landscape, in which the paths
can be understood as gradient flows. This allows the paths to flow
differently depending on the initial location of the input vector. The

Figure 3: Proposed mapping of p-values to color. Green indicates that
the latent code is likely well-represented by the training data, while
red indicates less reliable alignment with the training data, so that the
resulting images should be interpreted with caution.

parameters were chosen following the suggestions from the authors
of the corresponding papers where the employed models have been
described. For choosing the number of epochs used in each approach,
we have them run for a similar time. This results in 50,000, 20,000, and
100,000 for GANLatentSpace, WarpedGANSpace, and PDETraversal
when trained on the DCGAN, and respectively 20,000, 20,000, and
50,000 when trained on the StyleGAN2.

Finally, the resulting paths are visualized as animations or by placing
keyframes side by side. A path can be seen as a function f (x,d), with
original latent space position x and a signed distance d along the path.
When showing frames side by side, we show 5 images in each row:
f (x,−2ϵ), f (x,−ϵ), f (x,0), f (x,ϵ), and f (x,2ϵ), where ϵ is a step size
parameter. This is done for all paths we show. Animations show images
within the same range, but sample d more densely.

Since the latent space of the generative models is sampled during
training with a multivariate Gaussian prior, latent codes with low
probability under that Gaussian are no longer reliably aligned with the
distribution of the training data, and resulting images should therefore be
interpreted with caution. We detect those cases by computing p-values
of a Chi-square test that accounts for the Gaussian prior. For better
visualization we propose a colored bar on top of images depicting the p-
values, following the color bar in Figure 3, indicating images from green
to red depending on the level of data support. These color bars are miss-
ing for paths in style space W, where the training distribution cannot
be specified in closed form, so there is no simple way to calculate p.

4. Results

We present results from training our system on a set of 112 OCT scans
of patients with drusen, taken from a dataset that was previously used
for drusen segmentation [MWFS23]. Each scan consists of around 100
B-scans (2D slice images), with a resolution of 496×512 pixels. The
raw data consists of multiple equally spaced B-scans per patient that
stem from SD-OCT. To verify that our method is capable of generating
a diverse set of drusen, we used an established classification [KKIT08]
to select drusen that were present in the training data and manually
searched for respectively generated drusen. A comparison of drusen
found in the training and generated data is shown in Figure 4.

We trained 10 different generative models. Eight were combinations
of GAN/StyleGAN, with/without weighted sampling, on images of
multiple/single drusen. Additionally, 2 StyleGANs were trained for
2,000, instead of 1,000 epochs, without weighted sampling, on images of
multiple/single drusen. Weighted sampling increases the number of large
drusen but also leads to some images being repeated. As diverse drusen
types are present without weighted sampling, we conclude that it is not
worth training with weighted sampling. We found no obvious qualitative
difference between training StyleGANs for 1,000 or 2,000 epochs.
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(a) Homog. (b) Heterog. (c) Low-Refl. (d) HRF (e) Saw-tooth

(f) Homog. (g) Heterog. (h) Low-Refl. (i) HRF (j) Saw-tooth

Figure 4: Drusen examples from different categories for our training
data (top row) and respective images generated with a StyleGAN2
without weighted sampling (bottom row).

Figure 5: A path showing the growth of multiple drusen, taken from
a StyleGAN trained for 2000 epochs without weighted sampling. The
path model is Linear in Z space. For interpretation of the color bars,
please see Figure 3.

Figure 6: A path showing the growing path for a single drusen, taken
from the GAN trained for 100 epochs with weighted sampling. The path
model is PDE in Z space. For interpretation of the color bars, please
see Figure 3.

We visually examined paths in the latent spaces of the 4 GANs and
in the latent and style spaces of the 6 StyleGANs. The resulting 16
spaces were searched with all three methods (Linear, Warp, and PDE),
resulting in 48 path models. Drusen size was a feature that we observed
in many paths. Examples can be seen for multiple drusen in Figure 5,
and for single drusen in Figure 6. Figure 1 shows two paths where,
in addition to the middle drusen, also the right drusen change in size.
These smooth variations are anatomically plausible, since an increase
of drusen area and volume, as well as a confluence of drusen over time,
have been observed in a longitudinal study [YWR∗11].

In the multiple drusen setting, shifts in sizes are another type of
feature we observed. Their corresponding paths can be described as
different drusen in an image, where one is growing and the other(s) is
(are) shrinking. Figure 7 shows a path where the left drusen is growing,
and others are shrinking. In this path at the beginning, all drusen
seem to grow. Shifts in sizes also occur mixed with other features. An
example of another feature is given in Figure 8: a change in overall
image brightness. This has been observed rarely compared to size, with
less than one path per path model showing this feature.

When working with StyleGANs, we obtained more convincing
results when working in latent space Z than in style space W. In
particular, when applying the PDE and warp based methods in W, it

Figure 7: A path showing the shift in sizes for multiple drusen, taken
from the StyleGAN trained for 2000 epochs without weighted sampling.
The path model is Linear in Z space. For interpretation of the color
bars, please see Figure 3.

Figure 8: A path showing the lighting feature for multiple drusen, taken
from the StyleGAN that was trained for 2000 epochs without weighted
sampling. The path model is Warp in Z space. For interpretation of
the color bars, please see Figure 3.

Figure 9: A path showing abrupt change feature for multiple drusen,
taken from the StyleGAN trained for 1000 epochs with weighted
sampling. The path model is PDE in W space.

was sometimes difficult to see any changes along paths, or paths would
show sudden fast changes, as indicated in Figure 9. Here, images stay
almost the same for some time, then suddenly change, e.g., showing
slight growth, and after that do not change anymore.

The StyleGANs sometimes (about 1% of cases) show artifacts such
as bright spots, repeating patterns, or having drusen drawn on the black
bar at the top. Similarly, when searching StyleGANs in Z space with
the PDE-based approach, we occasionally encountered blurry images
that no longer depict retinal layers or drusen, as in Figure 10. This
also happened for three out of four GANs when searching with Linear.
We also observed other artifacts, such as missing parts of the image.
Examples can be seen in Figure 10 in the first two images of the second
row. We believe that they are a result of the well-known difficulties
of training GANs, which occasionally lead to inaccurate or unrealistic
images. Fortunately, these cases are rare and easily ignored by experts
when interpreting our visualizations.

According to the p-values of the Chi-square test, the paths in
Figures 5 and 7 lead into parts of latent space that are no longer
well-supported by the training data. Both were created by the Linear
method. The same observation held true for all paths of all generative
models that were found with the Linear method, so we conclude that
the PDE and Warp methods are better at staying in the part of the space
the generative model was trained on. In our analysis of paths with
implausible images such as Figure 10, about half stay in space, while
the other half leads slightly out of it, with p≈0.01.
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Figure 10: Illustrations of the rare remaining failure cases of the
StyleGAN (2000 epochs without weighted sampling). The path model
is PDE in Z space. In both rows, the last two images no longer show
plausible retinal structures. In the second row, the first two images are
missing information on the right image boundary. For interpretation
of the color bars, please see Figure 3.

Based on our experimental comparison, we conclude that paths
generated by the PDE and Warp methods yield good results, showing
diverse drusen subtypes that change smoothly and contain consistent,
human-interpretable features. This was also true when searching
StyleGANs with the Linear method in Z space, while searching
StyleGANs with Linear in W space did not work well. Overall,
pathfinding was successful in disentangling different modes of variation,
even though some paths remained showing a combination of multiple
human-interpretable features.

5. Conclusion

Our work is the first to use GANs to explore the generation of drusen
images and for the data-driven discovery of human-interpretable
features that define their appearance. We successfully generated
synthetic images of diverse types of drusen and discovered smooth and
realistic modes of variation in them. We tested GAN and StyleGAN
models with varying training parameters and found that both types of
models are useful for this task.

While standard GANs can be trained faster, StyleGANs have been
widely investigated in the context of GAN inversion [XZY∗22], which
would allow us to identify points in the GAN’s latent space that amount
to an approximation of a given real drusen image. Even though our
current dataset is cross-sectional, i.e., it does not track the same patients
over a longer period of time, it does contain a large number of drusen
at diverse stages of the disease. We believe that this allowed our method
to discover paths that correspond to previously described changes
of drusen over time, in particular, changes in size and confluence of
smaller drusen into larger ones.

Our main interest is to construct latent spaces that can serve as a basis
for modeling the temporal evolution of drusen, and to ultimately aid the
prediction of overall disease progression. Discussing our current results
with our clinical co-authors indicates that, even when trained on cross-
sectional data, GANs are able to learn latent representations of drusen
in which continuous paths reflect plausible changes over time. A more
comprehensive and quantitative evaluation will require longitudinal data,
which was not available for the current study.
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