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Abstract

Medical imaging is vital in computer assisted intervention. Particularly cone beam computed tomography (CBCT) with defacto
real time and mobility capabilities plays an important role. However, CBCT images often suffer from artifacts, which pose
challenges for accurate interpretation, motivating research in advanced algorithms for more effective use in clinical practice.
In this work we present CBCTLITS, a synthetically generated, labelled CBCT dataset for segmentation with paired and aligned,
high quality computed tomography data. The CBCT data is provided in five levels of quality, reaching from a large num-
ber of projections with high visual quality and mild artifacts to a small number of projections with severe artifacts. This
allows thorough investigations with the quality as a degree of freedom. We also provide baselines for several possible re-
search scenarios like uni- and multimodal segmentation, multitask learning and style transfer followed by segmentation of rela-
tively simple liver to complex liver tumor segmentation. CBCTLITS is accesssible via https://www.kaggle.com/datasets/
maximiliantschuchnig/cbct-liver-and-liver-tumor-segmentation-train-data.

CCS Concepts
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1. Introduction

In the realm of computer-assisted interventions (CAI), precise and
reliable imaging, especially intraoperative imaging, is paramount.
Cone-Beam Computed Tomography (CBCT) is frequently em-
ployed to facilitate intraoperative interventions [RSC*06, RFF*23]
by providing detailed, three-dimensional representations of a pa-
tient’s anatomy utilizing a cone-shaped X-ray beam and a flat-panel
detector, integrated into a mobile system [JSWMO2]. However,
rapid intraoperative imaging often comes with the disadvantage of
significantly lower image quality [WAR"24] (compared to preop-
erative imaging), which can negatively impact the performance of
downstream tasks such as segmentation. Typical applications for
CBCT include intraoperative assessments and radiation therapy.

To assess the impact of reduced image quality on downstream
tasks, the availability of image datasets with ground truth anno-
tations is essential. We identified a scarcity of publicly available
CBCT datasets with ground truth annotations limiting research in
automated CBCT image analysis. On the dataset sharing platform
Kaggle, e.g. the search term CT Segmentation returns 79 datasets
while the term CBCT Segmentation returns only one. Due to this
lack of publicly available datasets there is comparably little re-
search in the field of CBCT image analysis, especially in the in-
traoperative setting. A comparison of Pubmed searches in the years
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2014 - 2024 with the search strings (CT) AND (Segmentation) AND
(intraoperative) and (CBCT) AND (Segmentation) AND (intraop-
erative) reveals, that research regarding intraoperative CBCT seg-
mentation is only 5.8% as common as intraoperative computed to-
mography (CT) segmentation research.

As stated by Bilc et al. [BCL*23], the liver, as the largest solid
organ in the human body, plays a crucial role in metabolism and
digestion. It is also a common site for both primary and metastatic
tumors, making it essential for comprehensive tumor staging and
treatment planning. Primary liver cancer is the second leading
cause of cancer-related deaths globally, and CT imaging is widely
used to assess liver morphology, texture, and focal lesions. The
Liver Tumor Segmentation Benchmark (LiTS) [BCL*23] dataset
consists of overall 201 abdominal volumes (with 194 containing
liver lesions), separated into a labelled training and an unlabelled
testing dataset. We chose this well studied dataset (1000 citations)
as a basis for our CBCT synthesised dataset due to the large amount
of volumes, the availability of masks and the availability of two
targets corresponding to different difficulty levels. These targets in-
clude the segmentation of relatively simple, regular and large liver
areas and complex, small and irregular liver tumor areas.

Contributions: To enable thorough research in the field of
CBCT analysis, a robust dataset with ground truth annotations
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Figure 1: Process of CBCTLITS generation: after centering the original CT volumes around the liver (using the liver segmentations), DRRs
were simulated from these centered CT. Then, CBCT were simulated and aligned with the original CT and masks.

is needed. We present CBCTLITS, an adaptation of the LiTS
dataset [BCL*23], providing ground truth segmentation masks and
paired CT samples. Our contributions include

e Dataset Creation: Development of CBCTLITS, including CBCT
with varying volume quality (five quality levels), ground truth
segmentations and paired CT samples, facilitating various re-
search scenarios such as uni- and multimodal segmentation, mul-
titask learning, and style transfer. The dataset consists of 201
samples, 131 in the training dataset with segmentations and 70
in the testing dataset.

e Baseline Results: We provide baseline results for potential re-
search directions, facilitated by CBCTLITS, including uni- and
multimodal segmentation, multitask learning and style transfer.

2. Dataset

To generate CBCTLITS the steps shown in Figure 1, were taken.
Initially, CT volumes were centered around either the liver (for
training data with available liver masks) or the volumes middle
(for test data). Following this, digitally reconstructed radiographs
(DRR) were generated, and utilized to synthesise CBCT scans. The
CBCT volume quality was varied by adjusting the number of DRRs
(undersampling) used in reconstruction. Finally, the original CT
volumes and corresponding masks were fitted to the synthesised
CBCT to match the same field-of-view.

As a basis for generating synthetic CBCT scans, real, diagnostic
CT volumes are needed. CT represents an imaging technology cor-
responding with a high visual quality with relatively few artifacts
and improved image quality parameters like intensity homogene-
ity (compared to CBCT imaging). The LiTS CT dataset [BCL*23]
was chosen as a basis to generate the synthetic CBCTLiTS data set.
LiTS comprises 131 abdominal CT scans in the training set and
70 test volumes. The 131 training volumes include segmentations

of both the liver and liver tumors. This dataset contains data from
seven institutions with a diverse array of liver tumor pathologies,
including primary and secondary liver tumors with varying lesion-
to-background ratios. It also features a mix of pre- and post-therapy
CT scans. The CT images were acquired using different scanners
and acquisition protocols. We refer to Bilic et al. [BCL*23] for
further LiTS details. LiTS was chosen due to its large number of
samples (201), label balance (ranging from relatively simple, regu-
lar and large liver area to complex, small and irregular liver tumor
area) and prominence. LiTS is also part of The Medical Segmenta-
tion Decathlon dataset [ARB*22].

In order to simulate CBCT from the CT volumes, DRRs were
generated using Siddon ray tracing [Sid85] under the assumption
of a monochromatic X-ray spectrum. Given that standard CBCT
with a centered detector typically exhibit small fields-of-view (ap-
proximately 25¢m), only specific areas of the original CT were
extracted. To make effective use of the provided ground truth
masks, the liver area was chosen as the center for CBCTLIiTS
training data. This center was calculated by taking the center of
gravity of the ground truth liver masks. The cone-beam projec-
tion geometry for DRR simulation was derived from the Loop-
X (TM) [KKSB22,KSB*22, RFF*23, WAR*24], a mobile CBCT
scanner used, e.g., in navigated spine surgery and radiation ther-
apy. These projections were then used in a CBCT reconstruc-
tion algorithm, implementing filtered back-projection, specifically
the Feldkamp-Davis-Kress (FDK) [FDK84] algorithm. The recon-
struction size of the CBCT was set to 252mm x 246mm X 250mm
around the center with a voxel size of 0.688 x 1.032 x 0.688. Un-
like in the case of real-world CBCT scans, X-ray pre-processing
steps such as beam hardening correction or Compton scatter cor-
rection were omitted, since idealized DRRs do not suffer from such
effects but show primary signals only.

To simulate CBCT of different qualities, CBCT reconstruction
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Figure 2: Different volumes of CBCTLITS data (vertically). Horizontally, the presented data consists of the aligned mask, the aligned CT
and the five different qualities of synthesised CBCT. np represents the number of projections used for CBCT synthesis.

was undersampled (by varying numbers of DRRs used for recon-
struction). For different numbers of projections np, the angular gap
between the generated DRRs was equidistantly distributed over a
360 degrees scan range of simulated full-fan acquisitions. The num-
ber of projections n, was varied between {490, 256,128,64,32} to
generate scans with high visual quality similar to CT (np = 490) as
well as scans showing clear degradations (n, < 128) and scans in
between (qualitative evaluation). Tasks like segmentation and style
transfer are facilitated by aligning the fields-of-view, rotation, and
spacing of the CT and masks with the synthesized volumes. Linear
3D transformation, combined with resampling is applied to align
the mask and CT with the simulated CBCT.

3. Experimental Setup

To provide baselines for several possible research directions en-
abled by CBCTLITS, this section introduces a segmentation base-
line, based on unet [RFB15] and model adaptations investigating
multitask learning (Subsect. 3.1), multimodal learning (Subsect.
3.2) and style transfer (Subsect. 3.3). All evaluated segmentation
models are based on 3D unet [CAL*16]. This 3D unet was adapted
by applying batch norm after each layer in the double convolutional
blocks.

All models were trained utilizing a sum of binary cross-entropy
and Dice similarity. Training was performed on an Ubuntu server
using NVIDIA RTX A6000 graphics cards. To binarize the masks,
a threshold of 0.5 was applied to each channel of the unet (seg-
mentation) output. All experiments were trained and evaluated four
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times to facilitate stable results with the same random splits. Adam
was used as an optimizer with a learning rate of 0.005. For train-
ing, the converted CBCTLiTS training data was separated into
training-validation-testing splits with ratios of 0.7 (training), 0.2
(validation), and 0.1 (testing), respectively. In experiments where
the whole volume was applied directly (holistic) the volumes had
to be downscaled (isotropic) by the factor of two due to the large
size of the volumes and memory restrictions (48 GB VRAM).

3.1. Combining segmentation and image reconstruction using
multitask learning

The aim of this adaptation is to investigate if the additional target
of image reconstruction added to a segmentation model is benefi-
cial for training the segmentation model [TCMSG24]. To accom-
plish this, a multistream architecture is utilized with two layers in
the end, with the first layer establishing baseline segmentation. The
second stream leads into a 3D convolutional layer with a linear acti-
vation function to facilitate image reconstruction. Therefore the up-
dated loss contains a segmentation loss as well as an image recon-
struction loss (12). Two cases of this additional image reconstruc-
tion setting are investigated. The first investigated case is the re-
construction of the input CBCT (Table 1: multitask-c), i.e. the sec-
ond stream is similar to an autoencoder. It aims to add morpholog-
ical regularization to model training. The second case investigated
how the reconstruction of the highest possible quality CBCT effects
segmentation performance (Table 1: multitask-b) adding additional
denoising effects. For more information we refer to Tschuchnig et
al. [TCMSG24].
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Table 1: Results based on CBCTLITS. Results are presented for different CBCT qualities and liver as well as liver tumor segmentation. The
first results show baseline segmentation scores using CBCT, both holistically and patched. Then, results of multitask learning approaches
multitask-b and multitask-c, followed by multimodal learning approaches with varying degrees of misalignment are presented. Finally, the
basic 3D unet was applied to CBCT data, style transferred into the CT domain. Data presented in bold was superior to its corresponding
baseline (holistic or patched). Baseline CT (aligned) segmentation reached a mean Dice of 0.930 for liver and 0.303 for tumor segmentation.

Liver Segmentation Liver Tumor Segmentation
490 256 128 64 32 490 256 128 64 32

base CBCT [TCMSG24] | 0.884 0.884 0.859 0.817 0.784 | 0.165 0.162 0.093 0.061 0.029

base patch CBCT [TCMSG24] | 0.811 0.814 0.768 0.693 0.650 | 0.122 0.122 0.060 0.042 0.028
multitask-c [TCMSG24] | 0.877 0.879 0.874 0.826 0.771 | 0.149 0.153 0.092 0.058 0.049

11 multitask-b [TCMSG24] | 0.877 0.884 0.871 0.836 0.775 | 0.149 0.147 0.078 0.051 0.028
’ patch multitask-c [TCMSG24] | 0.847 0.821 0.786 0.720 0.609 | 0.171 0.127 0.112 0.036 0.031
patch multitask-b [TCMSG24] | 0.847 0.831 0.771 0.720 0.591 | 0.171 0.154 0.079 0.028 0.021
perfect alignment [TSG24] 0933 0931 0931 0933 0932 | 0330 0322 0298 0.325 0.297
affine-s1 [TSG24] 0906 0.897 0.879 0.857 0.806 | 0.154 0.124 0.057 0.023 0.051
affine-s0.5 [TSG24] 0.895 0.891 0.875 0.863 0.851 | 0.096 0.098 0.077 0.056 0.107
affine-s0.25 [TSG24] 0904 0906 0.893 0.883 0.883 | 0.181 0.160 0.163 0.169 0.171

3.2 | affine-s0.125 [TSG24] 0908 0.900 0.889 0.884 0.887 | 0.187 0.166 0.166 0.152 0.185
elastic-s1 [TSG24] 0907 0.897 0.880 0.857 0.801 | 0.153 0.122 0.057 0.022 0.049
elastic-s0.5 [TSG24] 0895 0.891 0.870 0.845 0.800 | 0.098 0.103 0.085 0.029 0.049
elastic-s0.25 [TSG24] 0.893 0.898 0.869 0.853 0.846 | 0.154 0.142 0.136 0.129 0.122
elastic-s0.125 [TSG24] 0910 0901 0.891 0.885 0.887 | 0.186 0.168 0.163 0.151 0.168

3.3 | sty-transfer CBCT 0901 0.888 0.867 0.835 0.787 | 0.104 0.097 0.065 0.029 0.040

3.2. Multimodal learning, combining preoperative CT and
intraopertative CBCT

One approach to improve intraoperative imaging is to combine low
quality intraopterative volumes with potentially misaligned, high
quality, preoperative volumes [TSG24]. This multimodal learning
approach was investigated by performing early fusion of CT, as
high quality, preoperative data and low quality CBCT, as intraop-
erative data. Different forms of misalignment with affine (random
scaling, rotation and translation, Table 1: affine-s) and affine fol-
lowed by elastic misalignment (Table 1: elastic-s) were performed,
simulating real world scenarios with different degrees of alignment.
To keep the number of parameters minimal, an alignment param-
eter oz was introduced, controlling the maximum strength of all
misalignment methods. Misalignment was performed using Tor-
chIO RandomAffine and RandomElasticDeformation. For more in-
formation we refer to Tschuchnig et al. [TSG24].

3.3. Converting CBCT to CT using style transfer

Since the synthesised CBCT volumes are of lower visual qual-
ity then the CT volumes, a style transfer from the CBCT do-
main to the CT domain has the potential of segmentation perfor-
mance increases. By performing this image-to-image style trans-
fer, structureal CBCT artifacts and noise can theoretically be re-
moved. This theory was experimentally investigated by using the
CBCTLITS test dataset to train a 3D Pix2Pix model, available
at https://github.com/MaxTschuchnig/TFVox2Vox, for style
transfer from the CBCT to the CT domain. Then, this model was
applied to the CBCT training dataset to convert the CBCT scans
of different data qualities to CT scans. The transformed data was

subsequently used for liver and liver tumor segmentation using the
baseline segmentation unet (Table 1: sty-transfer CBCT).

4. Results

Figure 2 shows example results of the data generation process with
several CBCTLITS samples. It displays, from left to right random
samples of the masks and CT, aligned and in the same field of view
as the generated CBCT followed by different visual quality levels
of the CBCT. Liver lesions are labelled with the value 2 (white) and
the liver with the value 1 (grey). The background voxels are labeled
as 0 (black).

Table 1 shows results of different segmentation setups with the
goals of liver and liver tumor segmentation. All presented results
are based on CBCTLiTS, with the first results showing segmen-
tation scores using CBCT, both holistically and patched. Further,
results of three different adaptations, multitask learning, multi-
modal learning and style transfer, using the unique components of
CBCTLITS are presented. All CBCT results are reported for the
different CBCT qualities (labeled using the amount of projections
np) and for both liver and liver tumor segmentation. Baseline seg-
mentation using the aligned, high quality CT reached a mean Dice
of 0.930 for liver and 0.303 for liver tumor segmentation. For com-
parison, one of the best performing models of the original LiTS
challenge reported scores of 0.962 for liver and 0.739 for liver tu-
mor segmentation [[JK*21,BCL*23].

5. Discussion

The presented CBCTLiTS dataset is a unique dataset with paired
CBCT and CT data. The dataset is also labelled, making it suitable
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for segmentation. In its most basic form, the CBCT dataset can
be used to train segmentation models to segment relatively sim-
ple, regular and large liver areas and complex, small and irregu-
lar liver tumor areas. However, the different CBCT volume quali-
ties enable a range of further research and evaluation possibilities,
from simulating low dose CBCT to facilitating multitask learning
(multitask-b). By far the most significant investigated segmenta-
tion performance increase resulted from the paired CBCT and CT
data, used in the different multimodal learning approaches. Using
multimodal learning, assuming perfect CT and CBCT alignment,
even the baseline CT model could be beat in several cases. Here,
the differing CBCT qualities again allow for important insights,
showing a negative correlation between reducing volume quality
and improvements attributable to multimodal learning. Multimodal
learning could further be enriched by preoperative masks, poten-
tially further increasing segmentation accuracy. Finally, the pair-
ing of CBCT and CT data allows for experimentation of image-to-
image translation approaches. Here, further experimentation using
e.g. diffusion models is enabled by CBCTLiTS. CBCTLIiTS is a
unique dataset useful for a multitude of research scenarios, espe-
cially for studies in the field of intraoperative medical imaging.

6. Conclusion

We have introduced CBCTLIiTS, a novel synthetic, paired
CBCT/CT dataset designed to facilitate research in medical image
segmentation and style transfer. CBCTLiTS addresses the scarcity
of high-quality, publicly available CBCT datasets with annotated
segmentations by providing ground truth segmentation masks and
paired CT data. This dataset is available in five different CBCT
quality levels, ranging from visual quality comparable to the origi-
nal CT to low visual quality with a significant amount of artifacts.

Additionally to presenting the dataset and the process of dataset
generation, several possible research scenarios, like uni and mul-
timodal segmentation are introduced and baseline values for seg-
mentation model adaptations are given, including holistic as well
as patched approaches, These adaptations include multitask learn-
ing, multimodal learning and style transfer. Additional experiments
show that CBCTLiTS is an especially capable resource to in-
vestigate intraoperative models. To further evaluate CBCTLiTS,
a highly interesting future research direction, would be to evalu-
ate the presented results with real CBCT/CT paired datasets, like
Pancreatic-CT-CBCT-SEG [HRC*21].
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