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Abstract
We present a visual analytics (VA) framework for the comprehensive exploration and integrated analysis of radiogenomic and
clinical data from a cancer cohort. Our framework aims to support the workflow of cancer experts and biomedical data sci-
entists as they investigate cancer mechanisms. Challenges in the analysis of radiogenomic data, such as the heterogeneity and
complexity of the data sets, hinder the exploration and sensemaking of the available patient information. These challenges can
be answered through the field of VA, but approaches that bridge radiogenomic and clinical data in an interactive and flex-
ible visual framework are still lacking. Our approach enables the integrated exploration and joint analysis of radiogenomic
data and clinical information for knowledge discovery and hypothesis assessment through a flexible VA dashboard. We follow a
user-centered design strategy, where we integrate domain knowledge into a semi-automated analytical workflow based on unsu-
pervised machine learning to identify patterns in the patient data provided by our collaborating domain experts. An interactive
visual interface further supports the exploratory and analytical process in a free and a hypothesis-driven manner. We evaluate
the unsupervised machine learning models through similarity measures and assess the usability of the framework through use
cases conducted with cancer experts. Expert feedback indicates that our framework provides suitable and flexible means for
gaining insights into large and heterogeneous cancer cohort data, while also being easily extensible to other data sets.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Life and medical sciences;

1. Introduction

We investigate and present the design and development of a visual
analytics (VA) framework for the comprehensive exploration and
integrated analysis of radiomic and genomic data with regard to
clinical information in a cohort of cancer patients. Our framework
supports the workflow of cancer experts and biomedical data sci-
entists for the investigation of cancer mechanisms, on the basis of
high-dimensional and heterogeneous cohort data.

Radiogenomics refers to the combined study of imaging-derived
features, called radiomics, and gene sequencing data, called ge-
nomics. Combining these information channels is anticipated to be
more expressive of the mechanisms of cancer. However, challenges
arise regarding the size, heterogeneity, and complexity of the in-
volved data sets. These challenges make the analysis of the avail-
able information space tedious for cancer experts and hinder the
exploration and sensemaking of patient information. This is further
hampered when additional clinical information is included in the
analysis. In the context of radiogenomics analysis combined with
clinical data, visual analytics (VA) approaches offer promises for
tumor profiling. However, VA approaches bridging radiogenomic
and clinical data in an interactive visual framework are lacking.

Our VA framework enables cancer experts to highlight corre-
lations and patterns in the data, supporting the interactive stratifi-
cation of patient cohorts. Additionally, it facilitates the integrated
analysis of radiomic features together with genetic mutation and
clinical data. This is anticipated to help experts identify mecha-
nisms that may have an impact on the treatment process. We fol-
low a user-centered strategy and integrate domain knowledge into
a semi-automated analytical approach based on unsupervised ma-
chine learning. Our interactive visual interface further supports the
exploratory and analytical process in a free and a hypothesis-driven
manner. Although we showcase the capabilities of our framework
on a prostate cancer scenario, our approach is not bound to this
scenario and is extensible to other data sets.

In contrast to previous approaches, which focus either on
imaging-derived features (e.g., [RvdHD∗15,MWH∗20,GDKB17])
or on genomic information (e.g., [LSKS10, LSS∗12]), we support
the holistic exploratory analysis of radiogenomic features with re-
spect to clinical data in a unified, extensible framework. Our frame-
work allows users to examine different methods to reduce the fea-
ture space and recluster the data or subsets of the data on demand.
We expect that these data set combination and flexible analysis
capabilities support domain experts to gain new insights into can-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/vcbm.20231220 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0007-2603-5016
https://orcid.org/0000-0001-5059-2401
https://orcid.org/0000-0002-9126-003X
https://orcid.org/0000-0003-2184-1338
https://orcid.org/0000-0003-2468-0664
https://doi.org/10.2312/vcbm.20231220


El-Sherbiny et al. / Visual Analytics for the Integrated Exploration and Sensemaking of Cancer Cohort Radiogenomics and Clinical Information

cer mechanisms. To the best of our knowledge, radiomics and ge-
nomics have never been bridged in a visual interactive framework
for knowledge discovery and hypothesis confirmation before.

2. Clinical Background: Radiogenomic Analysis

The mechanisms and risk factors of prostate cancer are still not
fully understood. Besides age, risk factors of prostate cancer com-
prise family history, ethnicity, obesity, and environmental fac-
tors [PCKA∗17], while inherited gene mutations are also reported
as a frequent cause [Don06]. Diagnosing the disease includes ex-
amination, biopsies of the prostate and imaging tests such as com-
puter tomography (CT), magnetic resonance imaging (MRI) and
positron emission tomography (PET). A definitive diagnosis of
prostate cancer can currently only be made by histological anal-
ysis, which requires invasive procedures such as biopsy or surgery.

Radiomics refers to quantitative features extracted from medi-
cal images, obtained from radiological imaging modalities such as
computed tomography (CT), magnetic resonance imaging (MRI),
or positron emission tomography (PET) [KGB∗12, ZLVL20].
These features are derived using advanced image analysis tech-
niques and are used to characterize the tumor phenotype, assess
treatment response, and predict clinical outcomes. Radiomic fea-
tures include shape-based, intensity-based, and texture-based fea-
tures, among others. These features capture aspects of the tumor’s
spatial distribution, shape, intensity variations, and texture patterns.

Genomics involves the analysis of the exact DNA sequence in
the genome of cells or tissues to determine changes in the encoded
proteins that affect their biological function [Chr12]. It is related
to genetics that considers individual genes and their inheritance
throughout the generations but deals with the complete set of genes
in the cell or an organism. Genomic analysis of tumors aims to pro-
vide information on the behavior of cancer that affects the growth
and, hence, the treatment process. For prostate cancer, it is per-
formed on a sample of prostate tissue gained from needle biopsy or
from the tissue of the whole prostate, when it is removed from the
patient by surgery. As a result, genomic data is retrieved through
DNA sequencing for further analysis [NHG19].

Clinical data includes demographic data such as the age, weight,
or Body Mass Index (BMI) of patients. Moreover, it consists of
scores for patient management such as the Prostate-Specific Anti-
gen (PSA) or the Gleason score (GS). The former is derived from
blood tests, while the latter through visual inspections of the tissue
morphology of biopsies by pathology experts. Clinical data also
comprise prognosis information such as the Biochemical Recur-
rence (BCR), a rerise of the PSA value that might be an indica-
tion of the disease progression [LS09]. Finally, tumor staging de-
termines whether cancer cells have developed or spread within the
prostate or to other parts of the human body. All these values (tu-
mor staging values, BCR, GS, and PSA) are combined to determine
the D’Amico Risk stratification score [HNHP07].

Each of the three datasets of radiomic, genomic, or clinical data
includes indications of cancer [LXNR19, SRY∗21]. Therefore, a
combined analysis of these three datasets opens the potential to
support clinical experts in understanding their complex and het-
erogeneous data. The analysis of radiogenomic data together with

clinical data is expected to improve clinical decision support and to
assist the diagnosis and prognostic assessment for diseases, includ-
ing cancer treatment [LXNR19, SRY∗21].

3. Related Work

Visual analytics for radiomics involves the analysis and visualiza-
tion of radiomic data. Different tools and techniques have been de-
veloped to analyze radiomic and imaging-derived data. These in-
clude RadEx [MWH∗20], which identifies and visualizes relations
between radiomic tumor profiles and clinical or histological mark-
ers, IIComPath [CCW∗21], which employs imaging-derived fea-
tures to support hypothesis generation through interactive analysis
of patient groups, and the system by Raidou et al. [RvdHD∗15]
to explore and analyze the features space of imaging-derived
data of tumor tissue characteristics. Other approaches, such as
iVAR [YJY∗17], are used to analyze radiomic data of patient co-
horts through filtering [BBJ∗17]. Contrary to these approaches,
Gutenko et al. [GDKB17] use radiomic features to support the
alignment of temporal organ data. All existing approaches analyze
radiomic data either separately or in relation to clinical data. Sev-
eral techniques are employed for dimensionality reduction, cluster-
ing methods are used to identify patterns in the data, and statistical
or machine learning techniques help compare subclusters. Visual-
ization plays a crucial role in these approaches, with scatterplots,
heatmaps, parallel coordinate charts, and bar plots being commonly
used. Interactive features like data filtering, selection, and zooming
allow users to explore the data and gain insights.

Visual analytics for genomics involves the analysis and visual-
ization of genomic data. The most prominent challenges include
the visualization of long sequences and sparse distributions, the
interaction between distant sequences, and the diversity of data
types. Several approaches have been developed to address these
challenges. ClinOmicsTrail combines genomics with clinical data
for breast cancer decision support [SKT∗19], while Caleydo inte-
grates gene expression data with biological pathway models to in-
terpret individual effects and identify disease subtypes [LSKS10].
StratomeX analyzes genomic data sets in combination with clinical
data to identify subtypes [LSS∗12]. Caleydo StratomeX focuses
specifically on breast cancer patients and overcomes limitations
in identifying characteristic genes of cancer subtypes [TLS∗14].
Nguyen et al. [NNH∗14] allow a patient-to-patient analysis by pro-
viding an overview of the patient population in the similarity space.
These approaches mainly focus on genomic data combined with
clinical data and do not incorporate radiomic data or specifically
target prostate cancer data sets. The analysis of genomic data in-
volves so far filtering genes, applying clustering algorithms, and
performing statistical tests to identify significant differences. Di-
mensionality reduction techniques are used to reduce the complex-
ity of the data, and visualization revolves around the use of scatter-
plots, matrix heatmaps, genomic coordinates, and networks.

Visualizing clinical data is crucial in research and healthcare,
whether these range from demographic information to disease reg-
istries and clinical trials. Bernhard et al. [BSM∗15] visualize pa-
tient histories in prostate cancer research, Müller et al. [MSO∗20]
work with patient-specific data for laryngeal cancer decision sup-
port, and Angelelli et al. [AOH∗14] analyze brain measurements

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

122



El-Sherbiny et al. / Visual Analytics for the Integrated Exploration and Sensemaking of Cancer Cohort Radiogenomics and Clinical Information

Figure 1: Main tasks of our analytical workflow. (T0) Preprocessing to enhance the data quality and facilitate automated analysis and
visualization. (T1) Cohort stratification to identify and visualize patterns in the high-dimensional and complex data. (T2) Forward analysis
to freely explore the data for knowledge discovery. (T3) Backward analysis to assess and refine the hypothesis on the underlying data.

for cognitive aging. They employ various visualizations such as
data cubes, Bayesian networks, scatterplots, and bar charts to of-
fer insights and support decision-making for different scenarios.

Although radiogenomic data analysis has shown potential in
identifying correlations, predicting cancer, and providing pre-
cise prognoses, the complexity and high dimensionality of radio-
genomic data require advanced frameworks and algorithms. Com-
bining radiomic, genomic, and clinical data in an integrated vi-
sual analytics system has not been proposed before. Zanfardino
et al. [ZCP∗21] presented a framework for combining and ana-
lyzing radiogenomic data in breast cancer patients—yet, their ap-
proach lacks interactive exploration and knowledge discovery fea-
tures. Conversely, we provide an interactive interface that allows
users to perform a selection and repeated analysis of patients or fea-
tures of interest. In our interface, the user is encouraged to freely
interact with visual representations to support data sensemaking.

4. Data — Users — Tasks Analysis

Data characteristics: The available prostate cancer data sets—
hereby employed to showcase our framework—consist of 153 ra-
diomic PET/MRI-derived features, 10 307 gene mutations, and 18
clinical parameters from a cohort of 89 patients. Challenges in the
data include the high dimensionality, and also the missingness in
patient values and different data types, which hampers automated
data analysis. The clinical data consist of demographic informa-
tion and patient management scores determined through clinical as-
sessments. These include categorical data such as the pre-operative
therapy methods or the International Society of Urological Pathol-
ogy (ISUP) grade that represents a disease grouping based on the
derivation of extracted cells from normal cells [SDE∗16].

Target users: Our target audience comprises cancer experts and
biomedical data scientists. Cancer experts include pathologists,
biochemists, and nuclear medicine physicians aiming to investigate
and understand the mechanisms behind cancer data. They desire to
gain new knowledge from the data to identify clinical markers rel-
evant to cancer research, diagnosis, and treatment. Cancer experts
also strive to assess the correctness of any hypothesis or biologi-
cal mechanism they have in mind. Biomedical data scientists and
informaticians have, on the other side, different goals. Primarily,
they ought to attain insight into the underlying algorithms by in-

teractively comparing different analysis components to investigate
and understand their suitability and impact on the analysis results.

Tasks: Through structured interviews with our target users, we de-
fined collaboratively their goals and summarized them in an ana-
lytical workflow with four tasks (T0–T3). These are illustrated in
Figure 1. The data sets need to be prepared to enhance their quality
and facilitate automated analysis and visualization. Therefore, our
first task represents the data preprocessing (T0). This includes
identifying and resolving inconsistencies in the data [GGAM12],
handling mixed data types and missing data values [ANI∗20], de-
tecting outliers, and scaling the data. Subsequently, we enable the
identification of patterns in the high-dimensional and complex data
through cohort stratification (T1). This entails data analysis to
identify groups of patients with similar radiomic, genomic, or clin-
ical profiles. It requires a dimensionality reduction and clustering
step of the data to reduce the high-dimensional data into two di-
mensions that we visualize on screen. We support users in under-
standing the cohort stratified patterns through the forward analy-
sis (T2) step that allows users to freely explore the data for knowl-
edge discovery. Users can interact with the data by selecting and
processing patient subsets on the visualization depending on their
radiogenomic or clinical profiles. Furthermore, users gain insights
through identifying and interacting with characterizing and differ-
entiating features, patient distribution values, and the most frequent
gene mutations. The last step of the workflow represents the back-
ward analysis (T3) to assess and refine any present hypothesis on
the underlying data. This includes interactive filtering of patient
features on the visualization and the comparison of features im-
pacting the clustering based on a specified condition.

5. Visual Radiogenomics Analysis

Figure 1 illustrates the steps of our visual radiogenomics analysis
workflow. The workflow starts with data processing (T0), which
serves as an input to the cohort stratification (T1). Users can repeat-
edly apply the cohort stratification on patient subsets or examine
different parameters on data subsets. Through brushing the scatter-
plot points, users can compare patient subsets and their character-
istics, differences, and distributions in the different dimensionality
reduced and clustered spaces. The result of the cohort stratification
(T1) can be used as an input to the forward analysis (T2) or back-
ward analysis (T3). The forward analysis (T2) can be applied to the
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data selected through a hypothesis that results from the backward
analysis (T3), on the automatically created data clusters resulting
from the cohort stratification (T1), or on the unstratified data (T0).
Similarly, the backward analysis (T3) can be applied to the result of
the cohort stratification (T1) or a processed subset resulting from
the forward analysis (T2).

5.1. Preprocessing (T0)

The data analysis requires automated processing of the data sets
through statistical measures or unsupervised machine learning al-
gorithms. This comprises data cleansing, encoding, imputation,
outlier detection, and scaling as part of the preprocessing.

Data cleansing: Our data can be considered dirty due to miss-
ingness in feature values, and inconsistencies in numerical and
qualitative features that need to be handled properly for a correct
data interpretation [GGAM12,KCH∗03]. Therefore, we apply data
cleansing to identify and correct errors and inconsistencies in the
data [RZ19, GGAM12]. We perform cleansing by using replace-
ment rules that we define and confirm together with our cancer ex-
perts [KCH∗03].

Data encoding: The data sets are composed of mixed data types of
qualitative and numerical values, which hamper the automated data
analysis and visualization. To encode qualitative values as numbers
with minimal processing, we apply the one-hot encoding algorithm
on categorical features [CV22]. This indicates that for each categor-
ical variable, we convert each value into a new column and assign
a binary value of 1 or 0 to those columns.

Data imputation: We predict and replace missing data values
through imputation techniques [van18, ANI∗20]. Single imputa-
tions replace the missing values with the mean or median of the
respective feature. This reduces the variability of the distribution
and leads to a biased estimation [ANI∗20]. Advanced options that
deliver an appropriate level of accuracy and bias use multiple im-
putation algorithms. In contrast to single imputations, multiple im-
putations consider dependency between variables [ANI∗20,van18].
To identify the most suitable imputation strategy for each feature in
our data, we test and compare the error metrics of different impu-
tation methods on the basis of complete data. We compare single
imputation methods by using the mean, median, or most frequent
value of the feature. Furthermore, we apply linear regression, and
multiple imputation methods, such as Multivariate Imputation by
Chained Equations (MICE) and k-Nearest Neighbors (KNN).

To assess the robustness of the algorithms and assess the gener-
alizability of our approach, we simulate missingness percentages
ranging from 5 % to 95 % in the complete data subset that we
divide into a training and test set. We apply all imputation meth-
ods directly on the original data, not on partly imputed values, to
compare them with each other. As an evaluation metric of the im-
putation results, we use the Root Mean Square Error (RMSE) be-
tween the imputed and the true value in the training set. Figure 2
illustrates the RMSE (on the y-axis) for the continuous POST-PSA
feature. The simulated missingness percentages range from 5 % to
95 % (on the x-axis). The plot compares the RMSE of KNN and
MICE applied on all features with the BEST method that repre-
sents the imputation method with the smallest RMSE of all impu-

tation methods we tested for the specific features. In the case of
the POST-PSA feature, using the most frequent value is identified
as the best suitable for the given feature. For each feature, we set
the best option as the default imputation method in our interface.
This is an informed choice that users can change on demand—if an
imputation alternative should be used.

Outlier detection: Outliers affect the accuracy and stabil-
ity of automated data analysis and influence clustering out-
comes [LLWF21]. Therefore, we allow users to identify, highlight,
remove outliers, or compare them with the remaining data points
on demand, when combined with the upcoming forward (T2) and
backward analysis steps (T3). We deploy the unsupervised machine
learning method isolation forest for global outlier detection and re-
moval, given its linear time complexity and low memory require-
ment [LTZ08]. For local outliers, we provide the density-based lo-
cal outlier factor algorithm [CZD19]. Per default, no outlier detec-
tion is applied to the data. Users can choose through the interface
to apply local or global outlier removal on demand.

Data scaling: Values of data sets include measurements in differ-
ent units. Analyzing each measurement in its data-dependant scale
affects the outcome of the analysis process as values dominate over
others [THFM14]. Data standardization is preferable for data with
a Gaussian distribution and outliers, as it improves the signal-to-
noise ratio and the discrimination power of the data sets [Ng17].
If the data distribution is not known or non-Gaussian, data normal-
ization is advantageous [Ase22]. It eliminates bias in features with
high values compared to features with low values [Ase22]. Based
on the characteristics of our data, we set normalization as the de-
fault option and allow users to change it on demand.

5.2. Cohort Stratification (T1)

We identify and visualize patterns in the preprocessed data sets
through cohort stratification. This process divides patients into
meaningful groups based on similarities in their radiogenomic and
clinical profiles. It requires dimensionality reduction, clustering,
and visualization of the data.

Dimensionality reduction: Extracted radiogenomic features con-
tain redundant and unnecessary information that lead to overfitting

Figure 2: Comparison of the RMSE of the KNN, MICE, and BEST
imputation methods for missingness percentages ranging from 5 %
to 95 %, exemplified on the continuous POST-PSA feature.
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and hamper the generalizability of the machine learning models for
new data [SRY∗21, LXNR19]. Eliminating features that lack ro-
bustness against variability sources avoids overfitting [LLD∗17].
This is performed by applying dimensionality reduction algorithms
on the data [LLD∗17]. A reduced dimensionality of the data helps
to maintain imaging characteristics that strongly correlate with
clinical features [SRY∗21, LXNR19, SJG∗22].

We test and compare the algorithms Principal Component Anal-
ysis (PCA), Factor Analysis of Mixed Data (FAMD), Multidimen-
sional Scaling (MDS), Uniform Manifold Approximation and Pro-
jection (UMAP), and t-distributed Stochastic Neighbor Embed-
ding (t-SNE). PCA is a linear method that focuses on the global
data structure and highlights interclass differences [XWY∗21,
EMK∗21]. FAMD combines PCA with Multiple Correspondence
Analysis (MCA) and is applicable to complex data of mixed
types. Therefore, FAMD is better suitable than PCA for data
sets that contain mixed datatypes of qualitative and quantita-
tive values [GMS∗15]. MDS and UMAP are non-linear meth-
ods that balance the global and local structure of the data, while
UMAP assumes a uniform data distribution [XWY∗21, EMK∗21].
A non-linear method that focuses on the local data structure is
t-SNE which minimizes the divergence between two distribu-
tions [XWY∗21, VDM14]. We select t-SNE as the default dimen-
sionality reduction technique as it leads to the best cluster separa-
tion and forms visual clusters in our data. We further allow users to
test the outcome of different dimensionality reduction methods and
compare the resulting patterns on the scatterplot. Users can com-
bine methods by repeatedly applying them to patient subsets to get
the advantages of their different characteristics, such as progres-
sively exploring the local and global structure of a data subset.

Clustering: To improve the understanding of complex data sets,
clustering summarizes their underlying information based on their
similarities [SEK03]. Clustering supports the analysis of high-
dimensional data and helps users to gain insights into the data struc-
ture [KBZ∗21]. To overcome the curse of dimensionality, we apply
clustering on the reduced 2D data space [SEK03, KBZ∗21].

We tested distribution-based Gaussian Mixture Models (GMM),
density-based Ordering Points To Identify the Clustering Struc-
ture (OPTICS), hierarchical clustering, and the centroid-based al-
gorithms k-means and mean-shift. Distribution-based approaches,
such as GMM, are suitable for Gaussian-distributed data. Density-
based methods, such as OPTICS, are suitable for arbitrary-shaped
distributions. However, they cannot deal with high-dimensional
data or varying densities and do not assign outliers to clusters. Hi-
erarchical clustering is time-demanding and sensitive to parameter-
ization, e.g., to the linkage criterion [RG19]. K-means or mean-
shift lead both to the same clustering result on our t-SNE re-
duced data that highlights the available visual clusters in the data.
We determine the number of clusters for k-means with the elbow
method [Tho53] and evaluate the methods based on the similarity
measures and by considering distributions within clusters.

Table 1 shows the resulting cluster separation scores. We calcu-
late the Silhouette coefficient [Rou87], the Calinski-Harabasz in-
dex [CH74], and the Davies-Bouldin index [DB79] for all clus-
tering and dimensionality reduction methods. The higher the Sil-
houette Coefficient and the Calinski-Harabasz index, the better the

Table 1: Cluster separation scores: the first line for each cluster-
ing method represents the Silhouette coefficient, the second line de-
picts the Calinski-Harabasz index, and the third line represents the
Davies-Bouldin index. Based on these scores and by considering
the data distributions within clusters, the best default choices for
our data are t-SNE with k-means.

t-SNE MDS FAMD UMAP PCA

k-means
(k=2)

0.89
414.15

0.40

0.42
37.70
1.30

0.97
104.65

0.03

0.65
111.35

0.81

0.89
118.47

0.02

mean-shift
0.89

414.15
0.40

0.89
414.15

0.40

0.94
3671.70

0.13

0.60
98.33
0.79

0.98
29195.39

0.00

hierar.
(4 clust.)

0.52
255.10

0.92

0.36
38.67
1.06

0.94
3671.70

0.13

0.50
86.18
0.89

0.83
44959.24

0.31

hierar.
(6 clust.)

0.47
219.86

0.89

0.47
45.97
0.86

0.49
4467.11

0.44

0.44
82.32
0.88

0.58
85453.22

0.37

OPTICS
0.21

10.51
1.41

-0.39
0.53
4.32

-0.44
2.08
2.01

0.21
33.47
2.84

-0.31
0.20
2.09

GMM
0.50

239.68
0.88

0.36
33.19
1.13

0.94
2408.29

0.21

0.56
90.58
0.82

0.81
44417.79

0.32

clusters are defined. On the contrary, a lower Davies-Bouldin in-
dex is related to a better separation of clusters. While the scores
of FAMD and PCA indicate a good cluster definition, these scores
originate from single data points assigned to their own clusters. Be-
sides the high separation scores of t-SNE, this method distributes
the points well among the identified visual clusters. Therefore, our
preset uses the k-means algorithm, but knowledgeable users can
experiment with the integrated clustering alternatives.

Visualization: To present the patterns identified in the data, we
visualize the reduced and clustered data through a scatterplot (Fig-
ure 9A). We additionally show kernel-density estimation contours
on the scatterplot that represent an estimation of dense regions. We
also shade dense areas in a blue color to provide a visual indica-
tion of the cluster density and separation. The contours are de-
termined through the kernel density estimate (KDE) of the data
points [DLH11]. Visualizing the high-dimensional data through a
scatterplot matrix or a heatmap matrix of all feature correlations
instead, would capture only pairwise relations and hinder the iden-
tification of complex data patterns going beyond 2D.

5.3. Forward (or Free) Analysis (T2)

After identifying and visualizing the cohort stratification, we sup-
port users in exploring and understanding these patterns for fur-
ther knowledge discovery. We provide interaction possibilities with
the identified patterns through patient selections, subset processing,
and subset comparisons. Additionally, we propose heatmap and
barplot views for the identification of features that contribute the
most to the differentiation or characterization of the clustered data.

Analysis of patient stratification: To explain why the identified
clusters are similar or different, we analyze the obtained patient
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stratification. By applying Shapley Additive Explanations (Shap)
to the clustering result [LL17], we predict features that impact the
clustering the most and indicate the cluster characteristics. Further-
more, we need to determine pairwise differentiating features be-
tween the identified clusters. Thus, we employ Linear Discriminant
Analysis (LDA) or Stochastic Gradient Descent (SGD) [OH21].
SGD works with dense or sparse data, which matches our sparse
genomic or dense radiomic data. SGD further reveals more signif-
icant differences for our default preset of t-SNE, especially for the
genomic data. Therefore, we set SGD as the default method and
allow users to explore LDA on demand.

We determine the top 0.5% characterizing and differentiating
features of each cluster and combine them in a heatmap to pro-
vide users an overview of features that impact the clustering result
the most, as shown in Figure 3. In the first two rows, we employ lu-
minance to encode the feature importance (denoted in the columns)
for each of the clusters, while the third row highlights features rep-
resenting the pairwise cluster differences. In both cases, darker col-
ors indicate a higher contribution (either to importance or to differ-
ence). Figure 4 shows the heatmap view for more than two clusters.
On-demand, we offer a bar chart view that allows users to filter fea-
tures by the radiomic, genomic, or clinical data, as depicted in Fig-
ure 5. Users can select any feature through the heatmap or bar chart
views to highlight the feature values for all patients on the scat-
terplot view. In Figure 6 the values of the morphological diameter
feature from the radiomic data is highlighted on the scatterplot.

Patient selection: We support the understanding and exploration of
patterns in the data by allowing users to process or compare patient
subsets. The selection of these subsets can be performed by for-
mulating a hypothesis as part of the backward exploration (T3) or
through a lasso selection as exemplified in Figure 7 [BC87]. Com-
pared to a rectangular selection, a lasso provides flexible selection
that is not necessarily connected or neighbored in the scatterplot.

Top gene mutations: Cancer experts are interested in understand-
ing and identifying relevant gene mutations. Therefore, we inter-
actively determine and show the top gene mutations that occur for
most of the patients for any cohort subset selected on the scatterplot
by the user, as shown in Figure 7, using a ranked bar chart.

Navigation and tooltips: Navigating the scatterplot by zooming in
or out on the scatterplot helps to open up the data points and to
explore dense patient regions in more detail. To enhance the un-
derstanding of the clustering result and the features impacting the

Figure 3: Heatmap view on cluster characteristics (first two rows)
and differences (last row). Most contributing features are denoted
with darker red, and the resulting clusters are denoted with two
distinct hues (green and orange).

clustering the most, we show patient distributions of heatmap fea-
tures on demand through a tooltip. Additionally, we display patient
scores on mouse hover over a patient in the scatterplot, as demon-
strated in Figure 8.

Presets and parameters: Based on our quantitative assessment of
the imputations and cohort stratification options, we offer presets
identifying the most suitable parameters for the underlying data sets
(Figure 9E). Furthermore, users can manually change any analysis

Figure 4: Heatmap view with four clusters. It combines the clus-
ter characteristics (first four rows) and pairwise cluster differ-
ences (last six rows) for the features that impact the clustering the
most (columns). The pyramid plot on the tooltip decodes the fea-
ture distribution of patients in the selected (pink) cluster compared
to patients outside this cluster. For the cluster differences, the pyra-
mid plot illustrates the feature distribution of two cluster pairs.

Figure 5: Features characterizing one of the identified patient clus-
ters, sorted by their importance in forming this cluster. The glyphs
in front of each feature indicate the respective dataset from the
checkboxes above that serve for filtering and as a legend.
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option through the interface to explore how it affects the revealed
patterns in the data. We anticipate that changing the presets should
be relevant only for the biomedical data scientists, while the cancer
experts would proceed using the default options.

5.4. Backward (or Hypothesis-driven) Analysis (T3)

The backward analysis provides users with functionality for the
assessment of the correctness of a hypothesis in mind. Users can

Figure 6: Values of a radiomic feature highlighted on the scatter-
plot. The values on the top right cluster (indicated by light gray
data points) are lower than the values on the bottom left cluster
(indicated by dark gray data points).

Figure 7: Top gene mutations of an active lasso selection (enlarged
points) on the scatterplot, shown in a ranked bar chart. The selected
data points are enlarged upon selection for visibility reasons. In
this example, the gene MED12 occurs for most of the patients in
the selected cohort subset.

Figure 8: On the scatterplot, the tooltip reveals clinical patient
scores on mouse hover (left), while on the heatmap it shows patient
distributions of a selected feature (right).

select data subsets to include or exclude in the analysis, and inter-
actively filter, select, and compare data subsets [Shn94]. This en-
ables the identification of thresholds for hypothesis assessment or
the determination of new hypotheses for the underlying data. The
resulting data subset is selected on the scatterplot and can be used
as an input for further forward (T2) or backward (T3) exploration.

Hypothesis assessment: Users can visually assess the correctness
of any hypothesis in mind by selecting features of interest. We pro-
vide an overview of the feature distributions among all patients
through the display of a histogram of the selected features. Users
can specify feature ranges for the hypothesis assessment visually
by interacting with sliders on the feature histograms, which leads
to interactive data filtering on the scatterplot. To form a hypothesis,
features can be combined through logical and or logical or opera-
tors, while the not operator can be expressed visually through the
histogram bars. An example is shown in Figure 10 (Hypothesis).

Feature and patient subset processing: To identify new patterns
in patient subsets, we allow users to repeat the cohort stratifications
based on a hypothesis. This results in a representation of patient
subsets that fulfill a specified condition. Furthermore, users can se-
lect to include or exclude any feature subsets on demand. After this
selection, the previous steps of dimensionality reduction and clus-
tering will be repeated.

Hypothesis-based feature comparison: To identify the character-
istics and differences of patients based on a hypothesis, we allow
users to compare patients that match a condition against patients
that do not match it through the heatmap. Patients that fulfill a hy-
pothesis are assigned to one cluster and are subsequently compared
against patients not fulfilling it. The characterizing or differentiat-
ing features of the patients are updated in the heatmap (Figure 3)
and barplot views (Figure 5) for further data exploration.

6. Interface and Framework Components

Figures 10 and 11 give an overview of our framework and its com-
ponents. We divide the interface into three views (A–C) and employ
additional tooltips on demand (D) to reveal additional information
without cluttering the view (Figure 9). Furthermore, we integrate
five tabs (Figure 10) to visualize feature values, the most signifi-
cant features of the clusters, or the top genes. Our tabs also consist
of a processing view to specify data subsets for the analysis or a hy-
pothesis view to visually assess or refine hypotheses interactively.

(T0–T3) Component A shows the cohort stratification scatterplot,
where each scatter point represents one patient. The color of the
points indicates cluster assignment and is used consistently in all
other views. On the top right of the view, three buttons are revealed
when a selection of patients is made on the scatterplot. These al-
low users to zoom into the selection, to process and stratify only
the points of this selection, or to set an active selection to further
investigate its features through the heatmap (C) or in the clusters
and top gene views (B).

(T2–T3) Component B consists of five tabs to visualize feature
values selected on the scatterplot, a ranked list of the top cluster-
ing features, or the gene mutations that occur the most for an active
selection on the scatterplot. A detailed view of them is given in Fig-
ure 10. The values view (T2) demonstrates distributions of patient
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Figure 9: Main views of our visual radiogenomics analysis framework. (A) Scatterplot view for the result of the cohort stratification. (B) Tab
views for the detailed data exploration (see details in Figure 10). (C) Heatmap view for characterizing and differentiating clustering features.
(D) Tooltip view with patient distributions of a selected feature. (E) Advanced analysis options are displayed on demand.

Figure 10: Detailed view of the five tabs of our framework. These represent component (B) of Figure 9 and are composed of tab views to
visualize feature values, the most predictive features of clusters, or the top genes of the data. The processing view specifies data subsets for
the analysis and the hypothesis view provides a visual assessment and refinement of any hypothesis statements in mind.
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values for an active selection on the scatterplot. These distribution
values are grouped per cluster, which serves as initial feedback on
the data and the clustering scores. The clusters view (T2) presents a
ranked list of features that pairwise differentiate between two clus-
ters. This serves as a detailed view of the heatmap features that
allows filtering the features regarding their radiomic, genomic, or
clinical data. Instead of the differences, users can select to show
the characteristics of one of the identified clusters and explore these
features further. In the top genes view (T2) a ranked list of gene mu-
tations is presented. It is displayed by default for the complete data
set but can be filtered through any selection made on the scatter-
plot. The processing view (T3) allows the selection of any feature
subset of the radiomic, genomic, or clinical data for the analysis
process. By default, all features of all data sets are integrated that
can be filtered on demand. In the hypothesis view (T3), users can
highlight any feature combination of interest to a hypothesis and
assess its correctness for the underlying data. The feature ranges
can be interactively and visually defined through sliders.

(T2) Component C gives an overview of the features characteriz-
ing and differentiating the clusters through a heatmap. It consists
of values normalized between -1 and 1 that are colored through a
linear scale ranging from white to red color to make the ranking
scores comparable. The higher the value is, the higher its impact on
the current clustering on the scatterplot.

(T2) Component D presents a pyramid plot as a tooltip on the
heatmap to compare patient distributions between two clusters de-
picted on a scatterplot. It is visualized for a specific heatmap feature
on demand to preserve a clean view.

(T2) Component E offers advanced options on demand. These al-
low users to reveal the current analysis options and adjust them to
investigate how each change affects the patterns, clusters, or top
features and gene mutations of the data sets. This is mainly in-
tended for the biomedical data scientists or bioinformaticians.

7. Implementation

We implement our framework as a web application through Python
and JavaScript. The Scikit-learn library serves for the data encod-
ing, imputation, outlier detection, dimensionality reduction, clus-
tering, and prediction of the characterizing and differentiating fea-
tures of the identified clusters. For extended imputation capabil-
ities, we use the Impyute, AutomImpute, MiceForest, and Fancy-
Impute libraries. We utilize Pandas and Numpy for the data man-
agement and computations on the data. For the UMAP dimension-
ality reduction, we employ the umap-learn library. To reduce the
dimensionality of the data through the FAMD algorithm, we uti-
lize the prince library. On the frontend, we use the D3 plugins d3-
lasso for the lasso selection on the scatterplot, d3-contour for the
density-based contours on the scatterplot, and d3-tip to show the
heatmap tooltip with the distribution plots of selected features on
demand. Our code is available together with a generated toy data
set on GitHub, as the prostate cancer data we used is not publicly
available: https://github.com/saraheee/VACI.

8. Domain Expert Evaluation

We conducted a total of five structured workshops during the design
and development phase of the tool [KGD∗19], where a large num-
ber of experts (pathologists, biologists, nuclear medicine physi-
cians, data scientists, and medical doctors) provided comments on
our dashboard and raised hypotheses of interest. At the end of the
design phase, we evaluated the data analysis, knowledge discovery,
and knowledge management capabilities of our framework through
usage scenarios [IIC∗13, LBI∗12] that we conducted together with
two cancer experts (a biologist and a nuclear medicine physician).
The two cancer experts used the tool through a first set of 50 sce-
narios based on their hypotheses and provided ten additional hy-
potheses and directions to analyze. Beyond the structured work-
shops and the usage scenarios, we received ongoing feedback from
three cancer experts (a nuclear medicine physician, a biologist, and
a pathologist) on the clinical applicability of our tool. The nuclear
medicine physician also interacted with our application and pro-
vided additional comments. In the following section, we showcase
a selection of scenarios to illustrate the knowledge discovery and
hypothesis assessment functionalities of our framework.

8.1. Scenario 1: Features Impacting Cohort Stratification

In the scenario shown in Figure 11, the cohort stratification is based
on the clinical and genomic data sets, which can be freely specified
through the processing tab view. The result of the cohort stratifi-
cation is presented with the scatterplot that reveals two clusters,
denoted with orange and green (Figure 11, top). Users are pre-
sented with features that impact this clustering the most through
the heatmap at the bottom-left view. The heatmap reveals that the
pathological tumor (pT) stage is a strong characteristic of the or-
ange cluster and a differentiating feature between the two clusters,
as the respective heatmap cells are colored in darker red (see anno-
tation on the heatmap). Under the clusters tab view, a detailed view
of the cluster differences is shown by default, which offers addi-
tional filtering options. In this example, the user highlights the pT
feature on the scatterplot that indicates the disease level of cancer.
This is performed through a mouse click on the heatmap cell or the
respective bar of the feature in the barplot (annotated in red). The
values of the pT features are thereby indicated in the scatterplot
in light gray color (pT=2) or in dark gray color (pT=3). This re-
veals that the majority of the patients in the orange cluster (91.30%)
have a pT value of 3, while most of the patients in the green cluster
(80.95%) have a lower pT value of 2. This indicates that our stratifi-
cation regime is able to capture and reveal the two different disease
levels in the given patient cohorts.

Selecting only the clinical data as an input to the cohort strati-
fication leads to a clearer cluster division based on the pT value,
as illustrated in Figure 12. In this scenario, all values in the orange
cluster have a pT value of 2, while all values in the green cluster
have a pT value of 3. The pT feature is the first top characteristic of
the green cluster as shown through its top position on the bar plot
and the heatmap view (annotated in red).
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8.2. Scenario 2: Identification of Gene Mutations

Figure 13 illustrates a scenario for hypothesis assessment and
knowledge discovery. In this example, the clinical feature for the
ISUP grade and the radiomic feature for the morphological tumor
sphericity are selected. The clustering on the scatterplot is per-
formed based on the ISUP grade. Therefore, patients in the orange
cluster represent patients with an ISUP grade of 4 or 5, while pa-

Figure 11: Highlighting the pT feature on the scatterplot by se-
lecting it through the heatmap or barplot (red annotation). The
genomic and clinical features form the input of the cohort strati-
fication. Light gray scatter points have a pT value of 2, while dark
gray scatter points have a pT value of 3.

Figure 12: Highlighting the pT feature on the scatterplot by select-
ing it through the heatmap or barplot (red annotation). Using the
clinical features as an input to the cohort stratification leads to a
clear cluster separation on the scatterplot through the pT feature.
All patients in the orange cluster have a pT value of 2, while all
patients in the green cluster have a pT value of 3.

tients in the green cluster have ISUP grades ranging from 1 to 3.
In the top genes tab view, the BCOR gene is identified as a feature
from the genomic data set that contributes the most for patients
that fulfill the specified condition of having a low tumor spheric-
ity and an ISUP grade of 4 or 5. Mutations in BCOR are known
as an indication of aggressive cancer types [AFM∗19]. By click-
ing on the BCOR gene mutation in the bar chart, the feature values
are highlighted in the scatterplot. The red annotation on the scatter-
plot depicts the five patients that have this gene mutation expressed.
Three of them are dark gray as they have the gene mutation with
a higher values, while two of them are light gray as they have the
gene expressed with a low value. All of them are located in the or-
ange and in the top right visual cluster of the scatterplot. This way,
patients with an indication of aggressive cancer types can be easily
identified, and their radiogenomic and clinical characteristics can
be investigated.

8.3. Scenario 3: Generalization to Additional Data Sets

To assess the generalizability of our approach, we extend the set of
clinical features and add two new data sets as input, as shown in
Figure 14. In addition to the radiomic, genomic, and clinical data,
we integrate 17 extended clinical features, 25 immunohistochem-

Figure 13: Interactive hypothesis assessment is performed on the
black histograms by moving the sliders to define feature ranges of
interest. This reveals gene mutations that occur only for patients
that fulfill a hypothesis. Delineated points represent patients with
the BCOR gene mutation on a continuous range between 0 and 1.
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istry features, and 53 pathway-level features. This confirms that our
framework is generalizable to additional data. The scenario reveals
two visual clusters on the scatterplot. The heatmap indicates fea-
tures interesting for the analysis that influence the clustering the
most. For example, the radiomic features of the morphological tu-
mor volume is a characteristic of the orange cluster as annotated
in red color on the heatmap. Clicking on the heatmap cell of this
feature highlights its values on the scatterplot. A mouse hover over
this feature opens a tooltip with the distribution plot of the feature
among all patients. The tooltip illustrates that patients in the orange
cluster have low scores, while in the green cluster, they are almost
equally distributed among patients. With this scenario, we show-
case that our approach can be easily applied to other cases where
additional data sets should be integrated in the analytical workflow.

8.4. Expert Feedback

Our collaborating cancer experts perceived the resulting dashboard
as very clear and easy to understand. In our interviews with them,
they mention that the “framework reveals interesting insights on the
data and is very helpful” for them in assessing the correctness of
their hypotheses while identifying the role of any feature combina-
tion on an interactive visual basis. The values view represents “an
important analysis” for them to gain insight into the distribution
of any active patient selection in their data. They found it “impres-
sive” to compare characteristics and differences between patients
who fulfill a condition and those who do not fulfill it. Furthermore,
it is “highly interesting” for them to highlight the feature values
of patients indicated through the heatmap or bar plot views on the
scatterplot. This helps them to identify features that correlate with
one of the visual clusters, which is “highly interesting and meaning-
ful” for analyzing their data and generating new hypotheses. They
commented that the top genes view of a selection or hypothesis on
the scatterplot is “really essential” for them in the identification of

Figure 14: Adding three additional data sets (immunohistochem-
istry, pathway level data, and extended clinical features) besides
the radiogenomic and clinical data confirms that our approach is
easily extensible and generalizable to different data sets.

relevant gene mutations. Finally, they provided us with feedback
for future work, which we discuss in the upcoming section.

9. Conclusion and Future Work

We developed an interactive and flexible VA framework for ana-
lyzing complex radiogenomic and clinical data. It combines visual-
ization and automated analysis to help cancer experts and data sci-
entists to gain insights and test hypotheses. The forward and back-
ward analysis capabilities of our framework facilitate knowledge
discovery and hypothesis assessment. We validated our approach
using RMSE for imputation, similarity measures for cohort strati-
fication, and an evaluation with domain experts for usability. The
feedback from cancer experts confirms the suitability of our frame-
work for their workflow. There is potential for enhancing our ap-
proach through storing and reusing intermediate analysis results to
speed up the processing time on the backend. Furthermore, the best
analysis options are currently determined for the available prostate
cancer data. For using different data sets, an automated identifi-
cation of the best parameters would be helpful. In future work, we
plan to apply our approach to larger and varied data sets to assess its
scalability and clinical applicability. To enable experts to test iden-
tified correlations, we aim to include export functions for features,
genes, patients, and clusters. Another possible extension is provid-
ing an option to save, store, and compare analysis sessions. Lastly,
we recognize the need to link biological pathway information for a
comprehensive cancer mechanism analysis.
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