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Figure 1: Screenshot of Cytosplore Simian Viewer showing data on cell composition within the middle temporal gyrus of humans and
chimpanzees with four different views: (a) heatmap, (b,c) scatterplots, (d) differential expression table, and (e) gene expression bar charts.

Abstract
With the rapid advances in single-cell sequencing technologies, novel types of studies into the cell-type makeup of the brain
have become possible. Biologists often analyze large and complex single-cell transcriptomic datasets to enhance knowledge of
the intricate features of cellular and molecular tissue organization. A particular area of interest is the study of whether cell types
and their gene regulation are conserved across species during evolution. However, in-depth comparisons across species of such
high-dimensional, multi-modal single-cell data pose considerable visualization challenges. This paper introduces Cytosplore
Simian Viewer, a visualization system that combines various views and linked interaction methods for comparative analysis of
single-cell transcriptomic datasets across multiple species. Cytosplore Simian Viewer enables biologists to help gain insights
into the cell type and gene expression differences and similarities among different species, particularly focusing on comparing
human data to other species. The system validation in discovery research on real-world datasets demonstrates its utility in
visualizing valuable results related to the evolutionary development of the middle temporal gyrus.

CCS Concepts
• Human-centered computing → Visualization systems and tools;

1. Introduction

Primates have evolved unique features that have led to the emer-
gence of several species across different groups. Among the great
apes, humans possess distinctive genetic and intellectual traits that

differentiate them from other great apes. Recent research [ASL*19;
BJH*21; JSE*22] has compared human cortical features with those
of other great apes to gain insight into the complex molecular,
cellular, and circuit substrates that underlie their cognitive abili-
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ties. One method for exploring these features is single-cell tran-
scriptomics, which generates large and complex datasets stud-
ied extensively by medical experts. Single-cell transcriptomics of-
fers insights into gene functionality and the synthesis of proteins
in individual cells, where the proteins generated by the multi-
functional RNA molecules are essential for carrying out various
cellular processes [DC13]. Comparative single-cell transcriptomics
is a method to examine differences, e.g., between species, by com-
paring the RNA transcripts of different samples [Sha19; AKJA21].
Biologists analyze such single-cell transcriptomics data to figure
out how individuals are related to each other and identify trends in
how transcriptomes have evolved.

Interactive visualization tools allow researchers to identify pat-
terns and relationships within large and complex transcriptomics
data that may not be apparent through traditional statistical analysis
alone. They also enable effective hypothesis generation and com-
munication of findings to others through visual representations of
data, such as heatmaps, scatterplots, and network diagrams, which
are commonly used in biology [OGG*10].

In this paper, we present Cytosplore Simian Viewer: a visual an-
alytics application designed to provide a comprehensive and intu-
itive way for explorative visualization of single-cell transcriptomic
data with a specific focus on comparisons of cell-type differences
and similarities between multiple species. The system combines
different linked views and interactive tools that allow researchers
to compare transcriptomic data from other species and identify pat-
terns and relationships that may be difficult to discern using tradi-
tional scripted analysis methods. We visualized independently es-
tablished neurobiology findings to validate the system using real-
world datasets. Cytosplore Simian Viewer was developed to ac-
company the study conducted by Jorstad et al. on transcriptomic
analysis of the human middle temporal gyrus, a specialized brain
region, in comparison to other great apes [JSE*22]. Our results
demonstrate the utility of our tool in generating valuable insights
about the middle temporal gyrus.

2. Biological Background

The middle temporal gyrus (MTG) is a highly specialized region of
the brain involved in higher cognitive functions [BTD*21], includ-
ing language processing and visual recognition [DTH*16]. It is also
linked to neurological disorders [CCL*22], making it an active field
of study in neuroscience. Recent large-scale research efforts used
single-cell RNA sequencing data to identify the cell types present in
the MTG and the genes that regulate these cell types to understand
the molecular mechanisms underlying MTG function [HBM*19;
LFG21]. Another important aspect of studying the MTG is gaining
an understanding of the spatial organization of cell types in differ-
ent layers of the cortex [QLL*23]. The primate cortex has distinct
layers, each with a mix of cell types, neuronal connections, and
functions. This layered architecture is instrumental in processing
information and performing complex cognitive tasks. In addition to
understanding cell function and organization in individual species,
scientists are interested in differences across various species. Here,
both the preservation of cell types between species and their spa-
tial organization in the layer structure of the brain are of interest.
Such insights will improve the understanding of how information

is processed and transmitted throughout the brain circuitry and ul-
timately enable insight into the shared biological mechanisms that
underlie certain traits and behaviors. Apart from cell type character-
ization, the most recent studies [LNH*22; XMM*23; KN23] link
human-specific cell types to genomic regions that are conserved
during evolution, but also to regions that underwent accelerated
evolutionary changes in humans. Jorstad et al. [JSE*22] compare
the distinctive characteristics of the human brain’s MTG with four
other non-human primate species at a cellular and molecular level
to understand specific changes in gene activity within certain types
of brain cells during human brain evolution.
Human Accelerated Regions (HARs) are regions of the genome
that are conserved in vertebrates but have undergone accelerated
changes in humans. They are thought to play a role in the devel-
opment and function of the human brain [PSK*06]. Several genes
have been identified that are expressed in the cell types specific
to the MTG, and that can be associated with these HAR- regions,
suggesting that they may play a role in human traits [KBW*09;
JSE*22].
Human Ancestor Quickly Evolved Regions (HAQERs) are also
fast-evolving genomic regions. HAQERs are heavily mutated in hu-
mans compared to the great apes and have undergone more genetic
changes in a given time frame than other genomic regions [KN23].
Both HAQERs and HARs show enrichment for the brain and gas-
trointestinal tract [MAM*22].
Human-specific conserved deletions (hCONDELs) are specific re-
gions within the human genome that are conserved in vertebrates
but have undergone human-specific deletions for certain genomic
regions. They possess the potential to exert a profound influ-
ence on unique characteristics that are exclusive to the human
species. hCONDELs exhibit abundant enrichment in transcrip-
tomic datasets, pointing towards their notable correlation with hu-
man brain functions [XMM*23]. Altogether, these insights can ul-
timately be used to develop more effective treatments for neurolog-
ical disorders and improve our overall understanding of the human
brain [HBM*19].

3. Related Work

With the ongoing influx of computational methods into life sci-
ences, visualization, and visual analysis have become important
tools for researchers. O’Donoghue et al. [OBC*18] surveyed the
use of visualization in emerging biological research areas. Within
this space, so-called omics-data, an umbrella term for genomics,
transcriptomics, proteomics, and others, has attracted significant at-
tention. In an early overview of the field, Nielsen et al. [NCD*10]
surveyed visualization tools for genome data, and Gehlenborg et
al. [GOB*10] present visualization methods for general omics data
in the scope of systems biology. Here, we review some of the exist-
ing omics-related visual analytic works.

Genomic data visualization typically deals with the visualiza-
tion of sequence data. Several tools and techniques exist to visu-
alize genomic data as surveyed by Nusrat et al. [NHG19]. The
genome contains the entire genetic information of an organism
in a long sequence of base pairs. As such genomic visualization
typically deals with the visualization of these sequences which
poses significant scalability issues, e.g., the human genome con-
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ID Description Species Type Items Attributes

DG1 pairwise cluster distances all graph nodes/links × species pair
nodes: in-species cluster (id)
links: distance (quantitative)

DT1 cell information all tabular cells × species
gene expressions (quantitative)
cluster assignments (categorical)

DT2 cluster hierarchy all tabular in-species clusters
cluster assignments (categorical)
e.g., cross-species cluster, neighborhood, etc.

DT3 gene attributes human tabular genes × cross-species cluster HARs/hCONDELs/HAQERs (binary)

DM1 various metadata mixed tabular cells × species
layer assignment, color (categorical)
UMAP coordinates (quantitative)

Table 1: Data Overview including cluster distance graph and several cell and gene information tables detailed in Section 4.1. Dataset
identifiers: DGx - Graph, DTx - Table, DMx - Metadata.

sists of approximately three billion base pairs. A common way
to deal with these issues is by aggregating repeating or similar
sequence snippets [NJBJ09; ORRL10]. Given a single genome
per individual, genomic visualization often deals with compara-
tive tasks, e.g., comparing genome sequences to identify mutations,
or differences between species, e.g., by aligning blocks with the
sequences [ARJL14; HJW*16]. MizBee [MMP09] compares ge-
nomic data across multiple species by visualizing synteny data re-
lationships at the genome, chromosome, and block levels and Path-
line [MWS*10] facilitates the visualization of pathway relation-
ships for genomic datasets.

Quantitative analysis of gene expression, i.e., which and how
many of the genes of the genome are active in a specific tissue,
and protein expression, i.e., which and how many proteins are
formed, are important areas of life science research. Visual analy-
sis of such data has been an active field of research in recent years.
MulteeSum [MMDP10] facilitates the visual analysis of gene ex-
pression of cells in Drosophila embryos. It provides temporal gene
expression profiles for individual cells, accompanied by their re-
spective spatial positions. Cytosplore [HPvU*16] allows the anal-
ysis of single-cell protein expression data. It uses a combination
of dimensionality reduction and clustering approaches to identify
functionally similar groups of cells and label them. Single Cell
Explorer [FWS*19], iS-CellR [Pat18], and ASAP [GDS*17] im-
plement similar workflows, combining dimensionality reduction
with secondary detail views, but for single-cell gene expression
data. Brainscope [HvM*17] introduces a novel dual dimensional-
ity reduction. It links an embedding of the original data, i.e., sam-
ples according to their expressed gene, with an embedding of the
transposed data matrix, i.e., genes according to their expression
in different samples. ImaCytE [SVK*19], Facetto [KBJ*20], or
Vitessce [KGM*21] are visual analytics systems extending the pre-
viously described concepts for visualizing abstract single-cell data
to spatially resolved imaging data. Somarakis et al. later also ex-
tended ImaCytE with functionality for cohort comparing [SIL*21].

While comparative analysis is common in genome visualization,
it has not been widely employed in the quantitative omics space.
Cytosplore Simian Viewer targets this area, with a focus on single-
cell transcriptomics data and the similarities and differences in cel-
lular and genetic composition between multiple species.

4. Domain Abstraction

This work is part of a longstanding collaboration between visu-
alization researchers and neurobiologists within the Cytosplore
Viewer project. During development, we embrace a participatory
design approach [JKKS20] with the domain experts. Over the
course of a year, we held regular Zoom meetings as well as an on-
site workshop. In the first phase, which was conducted completely
remotely, we identified the design goals and requirements for or-
ganizing and simplifying the datasets to make them more manage-
able for interactive visualization. In the following, we iteratively
discussed prototypes until the final design, which was presented to
and discussed with a wider audience of experts at an on-site work-
shop. Throughout, prototypes were deployed with and tested by our
partners and the final version will be made available publicly with
the publication of this study.

4.1. Data

A comparative study of various primate species was conducted by
our collaborators, as reported by Jorstad et al. [JSE*22]. Single-cell
RNA sequencing data were generated from five species; humans,
chimpanzees, gorillas, macaques, and marmosets. All cells in the
data were classified into three major classes: excitatory neurons, in-
hibitory neurons, and non-neuronal cells. They were subsequently
further categorized into subclasses based on marker gene expres-
sion. A total of 24 cellular subclasses were defined (18 neuronal, 6
non-neuronal). To establish a consensus cell type taxonomy across
species, cross-species clusters are defined, which represent groups
of clusters demonstrating similarity between species. As a result,
151 in-species and 86 cross-species cluster categories were defined
for the different cells, providing a comprehensive classification of
cell types across species [JSE*22, Figure 1D]. The complete data
comprises a variety of parts, listed in Table 1. Below, we will de-
scribe the individual components of the overall data in more detail.

DG1: Cluster Distances between the in-species clusters across all
five species (pairwise) are stored as a graph for each pair. Nodes in
the graphs represent in-species clusters of the compared species and
the links represent the distances between nodes. A detailed descrip-
tion of how these inter-species distances are derived can be found
in the original study [JSE*22, Taxonomy comparisons].
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Figure 2: Overview of the Task Abstraction showing three main tasks: T1 identify cross-species clusters of interest, T2 identify genes of
interest, and T3 compare expression values across species.

DT1: Gene Expression values are stored as tabular data. The table
provides information about the expression levels of genes within
each cell. Each row in the data table corresponds to a cell, while
the columns represent different genes. Depending on the species,
the data contains approximately 3000 to 9000 genes for neuronal
cells and 1500 to 3000 genes for non-neuronal cells. Additional
columns contain information on the different cluster assignments
of the cells following the classification by Jorstad et al. [JSE*22,
Within-species cell type taxonomies].

DT2: Cluster Mapping consists of information presented in a tab-
ular format linking in-species clusters to various categories of the
cells such as cross-species clusters, subclasses, neighborhoods, and
classes. This mapping allows access to the higher-level category in-
formation of cell groups corresponding to the in-species clusters.

DT3: Gene Attributes provide information into genes linked to
HARs, hCONDELs, and HAQERs. This data is stored as a table,
associating the evolving genomic region values with specific genes
found in cross-species clusters for humans. Additional information
regarding this can be found in the publication by our collabora-
tors [JSE*22, Enrichment of HARs and hCONDELs ].

DM1: Various Metadata. Various tabular datasets consist of in-
formation on the cell distribution across different layers per species.
Additionally, it consists of information on the total number of cells
considered for this distribution analysis, pre-calculated dimension-
ality reduction of DT1 to two dimensions, using Uniform Mani-
fold Approximation and Projection [MHM18], and predefined col-
ors for each cluster on all levels of the cluster hierarchy, consistent
with domain conventions.

In our discussions with the biologists, we realized that they were
mainly focused on the comparison at a cluster level instead of a
cellular level for the different primate species. This means that we
can aggregate DT1 to mean gene expression per cluster, instead of

keeping the complete cell × gene matrix which can be prohibitively
large (e.g., ∼ 140.000 × 12.000 values for human, resulting in
over 6GB at 32bit precision). While we keep the meta information
(DM1) per cell (e.g., for the UMAP visualization), this reduction
allowed us to design the system around clusters, e.g., to support on-
the-fly computation of differential gene expression between clus-
ters.

4.2. Analysis Goals

Based on our discussions we have formulated the following high-
level analysis questions together with our collaborators:

Q1 How do cell type characteristics, such as layer distribution or
gene expression, differ across species?

Q2 How are cell-type specific genes in human cross-species clus-
ters associated with HARs, hCONDELs, and HAQERs, and how
many genes are involved?

Q3 Are there genes that have comparable expression patterns
across multiple species?

Q4 Are there genes that have highly variable expression patterns
across multiple species?

While these questions are general when it comes to comparison
between two or more species, a main driver for the analysis of our
collaborators was the identification of human-specific traits. Thus
analysis is often started by pairwise comparison between human
and one of the other species. Only after that more general compar-
ison, i.e., of gene expression within a cross-species cluster across
all species is of interest.

4.3. Tasks

Based on the high-level goals, presented in Section 4.2, we identi-
fied the following analysis tasks based on Brehmer and Munzner’s
model [BM13] that we aim to support with our solution:
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T1 identify cross-species clusters of interest by exploring in-
species cell cluster attributes (Q1)

T2 identify genes of interest (Q2) for the identified cross-species
clusters according to their attached meta information

T3 compare gene expression values between species (Q3, Q4)
based on cross-species clusters

In the typical workflow, the user starts on the cluster level (T1),
then moves to the gene level (T2, T3), and finally iterates between
the gene and cluster levels for different species (T1, T2, T3). This
iterative process helps determine the underlying similarities and
differences between the species.

The individual tasks in this workflow can be further refined
to provide a clearer picture of the individual steps (Figure 2). In
Task T1 the user identifies a cross-species cluster of interest. The
trivial way to do this is to simply lookup a cluster the user was al-
ready interested in beforehand. In the explorative setting, the user
would identify the cluster in the following way. First, they would
select a pair of species to compare and a so-called neighborhood.
The neighborhood here stands for a group of similar cell types
rather than a spatial region. For this selection, the user explores
the distances of the cross-species clusters and their contained in-
species clusters. Finally, the user compares the additional infor-
mation, like the count, distribution, and layer assignment of the
contained cells.

After the cluster identification stage, the user transitions from the
cluster level to gene-level exploration. Task T2, is to identify genes
of interest either by lookup if a gene of interest is known before-
hand, or by selecting a cross-species cluster of interest and then ex-
ploring genes with large differential expression values. Addition-
ally, for human comparisons, the users may also want to lookup
if the gene is associated with additional metadata such as HARs,
hCONDELs, and HAQERs.

Finally, in task T3, the user aims to compare gene expression
values among species by selecting a gene of interest and compar-
ing the expression values across species to identify similarities and
differences. Furthermore, they may also compare the differential
expression values of humans with the other species.

Following the indicated iterative process, the results from the
previous steps may lead the user to identify and select a new
species to navigate to its cluster level and explore the cluster-level
attributes and the gene-level attributes.

5. Cytosplore Simian Viewer

We designed and implemented Cytosplore Simian Viewer in an it-
erative process together with our domain expert collaborators. The
implementation is done as a plugin for Manivault [VKT*24] in
C++, Qt, and D3.js [BOH11]. Source code is available on Github.
Executables are distributed through the Cytosplore Viewer Project.

Cytosplore Simian Viewer supports the tasks defined above with
five linked views shown in Figure 1. The heat map view (Figure 1a)
provides a display of the in-species cluster distance values (DG1)
between two species, supporting the identification of clusters of
interest (T1). From here, the user can query and compare meta

information on cluster-related attributes such as layer distribution
and cell count information (DM1) (T1). The next two views in-
clude the scatterplot views (Figure 1b and Figure 1c), presenting
the low-dimensional embeddings (DM1) of the cells which help
to compare the cluster overlap between species (T1). The differ-
ential expression view (Figure 1d) allows the computation of and
displays differential gene expression values for each gene in the
cross-species cluster (DT1) (T2). It also displays the HAR, hCON-
DEL, and HAQER (DT3) information (T2, T3). The expression
comparison view (Figure 1e) presents data related to gene expres-
sion (DT1) and differential expression per neighborhood for a gene
selection to help compare expression values between all species in
the selected neighborhood (T3). All views are linked to support
smooth interaction and easy transitioning from one state to another
in the visual exploration process.

5.1. Heatmap View

One critical challenge with respect to the visualization design was
supporting the cluster distance comparison of multiple species in
terms of screen space availability. Given the focus of our users on
pairwise comparison, usually with a focus on human vs. one of
the other species, we decided to show the cluster distance graph
(DG1) for a selected pair of species in a heatmap representation
(Figure 3). The heatmap supports reading the distance values pro-
vided as attributes on the edges well, given the large enough size
of individual cells. Additional information such as the cluster map-
ping (DT2), and cell layer distribution (DM1) to support task T1
are shown in a detail view on hovering over the corresponding cell
(Figure 4). To make sure cells are large enough for readability, but
also to function well as a click target we split the complete graph
into the individual cell type neighborhoods, resulting in heatmaps
with tens of items on each axis compared to over a hundred for
the complete graph. The neighborhoods are also usually inspected
separately, meaning no information is lost in the process. The or-
ganization of cell types within these neighborhoods is based on the
cluster hierarchy (DT2), provided by our collaborators. The same
holds for the order within the neighborhoods, which we can use
directly to order the cell types on the heatmap axes.

The cell type hierarchy also contains the organization of in-
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Figure 3: Heatmap view with the in-species cluster of the two
species on the two axes (a), cross-species clusters indicated by
larger block (b), cell counts per in-species cluster (c), hovering (d)
reveals detail information in the detail view (Figure 4).
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Figure 4: Heatmap detail view consisting of three main sections,
cluster affiliation (a), cluster distance (b), and layer information
(c).

species clusters (Figure 3a) into cross-species cluster groups. We
highlight these in the heatmap as large blocks (Figure 3b) with a
colored outline, using their respective cross-species cluster colors.
The axis labels are also marked with the provided colors according
to domain conventions (DM1) and should not be changed. To en-
sure minimal interference caused by the predefined cluster colors,
we opted for a monochrome grayscale color map to depict the dis-
tance values between cluster centroids. Our collaborators are inter-
ested in identifying low-distance values in the heatmap. Therefore,
we map the minimal distance to black, and maximum to white, such
that low values are highlighted on the white background.

Besides the similarity between species, clusters of interest are
also identified based on other attached data (T1) in the tackled
workflow. Therefore, we augment the heatmap with two integrated
views. The first is a bar chart on each axis representing the size
(i.e., the number of cells within) of each cluster (Figure 3c). Hov-
ering over or clicking a cell in the heatmap (Figure 3d) shows or
sticks an extended detail view (Figure 4) to the side of the heatmap.
The tooltip is split into three main sections, the topmost rows (Fig-
ure 4a) show information on the cluster hierarchy, i.e., the class,
subclass, and cross-species label for the selected cluster combi-
nation, as well as the cell count. Below that we show the clus-
ter distance between the two species as a dot plot including the
minimum and maximum distances within the corresponding cross-
species cluster and the two selected species (Figure 4b). In case the
cross-species cluster only contains a single in-species cluster, we
show the distance value as a number without the dot plot. Finally,
the bottom-most block (Figure 4c) shows information on the layer
distribution of the cells in the selected cluster. The layer dissection
count is shown by the corresponding numbers. The distribution of
cells across the six layers is shown as two juxtaposed bar charts to
allow easy comparison of the differences between the two species.

5.2. Scatterplot View

To further support task T1, we provide two scatterplot views show-
ing the UMAP embeddings (DM1) of the selected cell neighbor-
hood of the two selected species (Figure 1b, Figure 1c). Each point
in the scatterplot embedding represents a cell and cells are laid out
according to their similarity and colored using the provided cross-
species cluster colors. The UMAP embeddings are further calcu-
lated using a cross-species layout, meaning clusters are positioned
at the same location for the different species. In summary, this al-
lows to identify cell similarities within species, and also to find
cross-species differences, such as the varying size of clusters, or
differences in structure, such as a cluster being split in two for one
species, but only one for another species.

5.3. Differential Gene Expression View

The Differential Gene Expression View (Figure 1d) provides in-
sight into gene expression for a selected pair of clusters (DT1) and
differences between gene expression between species, supporting
tasks T2 and T3. The view is a standard table view, listing the
mean expression for the two selected species and the differential
expression for all genes. Depending on the current task, the user
can sort by any of the columns. Sorting by mean expression tar-
gets T2, while T3 is supported by sorting by differential expres-
sion. The differential expression values are here calculated on the
fly for the selected pair of clusters. Further, the table view includes
columns for HARs, hCONDELs, and HAQERs (DT3) when one of
the selected species is human (T2).

a

b

c
d

Figure 5: Analysis of the FOXP2 gene using the different gene
expression comparison view modes: (a) Multi-species mean and
(b) Differential expression with human
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Figure 6: Analysis of laminar cell distribution: hovering over different cells in the heatmap (a) reveals the detail view. The OPC_1 cluster (b)
shows strong differences in the layer distribution for human vs. chimpanzee (c). Switching the heatmap to human vs. gorilla (d) and selecting
the same cluster reveals similar differences in human compared to gorilla (e). Comparing the OPC_2 cross-species clusters reveals a much
more even distribution in human, chimpanzee, and gorilla (f, g). The small number of cells (h) indicates results need to be taken with care.

5.4. Gene Expression Comparison View

Similar to the Differential Gene Expression View, the Gene Expres-
sion Comparison View (Figure 5) supports tasks T2 and T3. Here
the focus is shifted from the cluster of interest to a gene of interest.
Instead of showing all genes for a cluster, we show the gene expres-
sion of all clusters (of a selected neighborhood). In the default set-
ting (Figure 5a), the view displays the mean expression data (DT1)
for a selected gene of interest as multiple bar charts. The items in
the bar charts are the different cell clusters in the selected neigh-
borhood. Going beyond the pairwise comparison of the previous
views. Here, we show bar charts for each of the five species jux-
taposed. This allows a quick overview of all species and provides
pointers for further investigation of other species, i.e., the iterative
back and forth between tasks, laid out in Section 4.3.

Given the focus on comparison to human, we also provide a set-
ting with an explicit comparison of any species to human. Here, we
calculate the difference between human and the other four species
and show four bar charts, one for each human-other species pair.
Just as before, we then show these difference values directly in a
set of bar charts as shown in Figure 5b. The explicit encoding now
highlights outlying clusters, e.g., in Figure 5c where the FOXP2
gene is similar between human and chimpanzee in most clusters,
except for Pax6_2, or even completely different species such as
in Figure 5d, showing the rhesus having much higher expression
across all clusters for the same gene.

6. Use Cases

We developed Cytosplore Simian Viewer to accompany the study
by Jorstad et al. on the transcriptomic analysis of the human MTG
compared to other big apes [JSE*22]. To demonstrate the effective-
ness of our system we present two real-world use cases, recreating
findings described in that study.

6.1. Analysis of Laminar Cell Distribution

Jorstad et al. investigated the layer structure of the MTG and
found that "laminar distributions of types were remarkably con-
served across the great apes" [JSE*22, Consensus cell type con-
servation and divergence] with the exception of two cell clusters,
Sst Chodl_1, a subset of GABAergic neurons, and OPC_1 a set of
oligodendrocyte precursor cells. The latter "was present in layer 1
of chimpanzee and gorilla but not human MTG".

Finding differences in the layer distribution between different
species is part of task T1 in our system. Initially, an analyst focuses
on pairwise comparisons, usually involving human. We start by se-
lecting two species, here human and chimpanzee, along with a spe-
cific cell neighborhood (non-neuronal cells). The system then dis-
plays corresponding comparisons. We mainly utilize the heatmap
with the attached detail view for this use case and exclude the gene
expression. Notable clusters like OPC_1 and OPC_2, which share a
one-to-one correspondence between human and chimpanzee, show
extremely low cross-species distance. We hover over dark cells to
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Figure 7: Analysis of gene expression patterns: The cell count chart indicates the large abundance of oligodendrocytes in the non-neuronal
cell neighborhood comparing human and chimpanzee (a). Selecting the cross-species cluster (b) highlights the data in the UMAP scatter-
plots (c) and calculates the differential expression. Selecting genes in the differential expression table (d) sets the gene for comparison in the
gene comparison view, indicating higher expression in human compared to any other compared species (e). Human accelerated regions are
also indicated in the differential expression table (f).

explore these clusters using the detail view (Figure 6a). The linked
views allow quick glances at several clusters in succession. Once
we identify a cluster of interest we pin the detail view by click-
ing the hovered cell. In the example, when exploring the OPC_1
cross-species cluster (Figure 6b), a strong difference in the layer
distribution between human and chimpanzee becomes evident in
the detail view (Figure 6c).

Extending the analysis by replacing chimpanzee with gorilla in
the main interface, the system adjusts accordingly, showing cross-
species cell cluster distances between human and gorilla (Fig-
ure 6d). It is necessary to re-select the OPC_1 cluster in the
heatmap, as the corresponding in-species cluster in gorilla changed
compared to chimpanzee. Here, cross-species OPC_1 corresponds
to OPC_1 in human but OPC_2 in gorilla. Clicking on the OPC_1
cluster pins the corresponding detail view. The pinned detail view
now compares human vs. gorilla, revealing that both share cells in
layers 5 and 6, along with layer 1, which was also observed with
chimpanzee (Figure 6e).

To validate the results, we examine the related OPC_2 cross-
species cluster. In gorilla, this splits into two in-species clusters,
OPC_1 and OPC_3. Both show a wide distribution across all layers
for human and OPC_3 in gorilla. However, OPC_1 in gorilla only
appears in a single layer (Figure 6f). Going back to chimpanzee, a
similarly wide distribution is observed for OPC_2, confirming the
different nature of OPC_1 (Figure 6g). Finally, considering the sig-
nificance of this finding based on the cell counts, the bar chart and
the detail view indicate a small number of cells (Figure 6h), indicat-
ing the need for further verification, as also stated by Jorstad et al.;
"although more sampling of these rare types is needed for valida-
tion" [JSE*22, Consensus cell type conservation and divergence].

6.2. Analysis of Gene Expression Patterns

In this second use case, we want to explore genes and compare
them between species in order to identify genes that are related
to accelerated cell changes in humans. As an example, we follow
Jorstad et al., who found that the expression of LAMA2 in human
oligodendrocytes differs from its expression in chimpanzee oligo-
dendrocytes indicating accelerated changes of glial cell gene ex-
pression in humans [JSE*22, Human specializations of glial cells].
Our framework supports the exploration of gene expression pat-
terns, such as the identification of genes with strong differential
expression between humans and other species, primarily through
tasks T2 and T3.

We begin by comparing human with chimpanzee in the non-
neuronal cells neighborhood. The Oligo_1 cross-species cluster
contains the most cells in this neighborhood (Figure 7a). Select-
ing the cross-species cluster (blue box, Figure 7b) highlights it
in the other views, and differential expressions for all genes be-
tween human and chimpanzee is automatically calculated on the
fly. The cross-species cluster is split into four in-species clusters in
human and two in chimpanzee. However, all cells in the heatmap
in the cross-species block (blue box, Figure 7b) are dark, indicat-
ing low pairwise distances between any combination of in-species
clusters. We, therefore, expect rather strong similarities in gene ex-
pression across the in-species clusters. Inspecting the single-cell
embeddings in the scatterplots (Figure 7c) reveals rather compact
clusters (blue highlights) that are of comparable shape and structure
between human and chimpanzee confirming the impression gained
from the heatmap.

Next, we further analyze the gene expression patterns for the
selected cluster. Upon selecting the cluster, differential gene ex-
pression is calculated and displayed in the differential expression
view (Figure 7d). This view allows sorting genes by mean or signed
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differential expression. While sorting with absolute differential ex-
pression values would be possible, we use the sign to indicate
species with higher expression. We sort from large to small dif-
ferential expression, such that genes with a significantly higher ex-
pression in human than chimpanzee will show up on the top of
the list. By selecting genes from the top and checking the gene
comparison view, we identify the LAMA2 gene as strongly differ-
entially expressed in oligodendrocytes between humans and chim-
panzees. The gene expression view not only displays expression in
other clusters but also across all five species, helping us assess if
this finding extends to other primates. Notably, LAMA2 is seen to
have high expression only in humans for the Oligo_1 cluster (Fig-
ure 7e). Finally, we also note that LAMA2 is associated with two
types of genomic regions that underwent human-specific changes
(hCONDEL and HAQER) (Figure 7f).

The highlighted findings demonstrate how species and cell-type-
specific gene expression can be linked to species-specific changes
in the genome. Such insights contribute to a better understanding of
evolutionary biology and can be visually explored within our sys-
tem. They emphasize the significance of cross-species comparative
studies in unraveling the complex nature of biological systems and
advancing our knowledge in the field.

7. Discussion and Conclusion

In this paper, we introduced Cytosplore Simian Viewer, an interac-
tive system designed for the exploration and comparison of multi-
species transcriptomic datasets. Cytosplore Simian Viewer is used
to communicate and recreate findings from a large biological study
and allows free exploration of the corresponding data to support
the discovery of new findings. The system empowers researchers
to gain insights into gene expression patterns, identify differentially
expressed genes, and uncover potential biological relationships and
pathways for cross-species comparative exploration.

The presented use cases are a first step to show that our sys-
tem effectively facilitates the exploration and comparison of the
given multi-species transcriptomic datasets. A comprehensive user
study, with participants and data from different institutions, would
be a logical next step to strengthen these findings. While the sys-
tem was designed and implemented based on a provided dataset,
new data that adhere to the same format can be added. For both,
species and clusters, we used color hue as a visual encoding. We
acknowledge that some of the chosen colors pose issues (e.g., read-
ability for people with color vision deficiencies), they were chosen
following established domain conventions to minimize adjustment
for the users. Further, we encode all variables encoded with these
colors with a second channel, i.e., position, in most views. In the
future, we want to expand the tool’s capabilities beyond pairwise
analyses as well as scaling to a larger number of species.
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