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Abstract
Training a deep neural network is computationally expensive, but achieving the same network performance with less compu-
tation is possible if the training data is carefully chosen. However, selecting input samples during training is challenging as
their true importance for the optimization is unknown. Furthermore, evaluation of the importance of individual samples must
be computationally efficient and unbiased. In this paper, we present a new input data importance sampling strategy for reducing
the training time of deep neural networks. We investigate different importance metrics that can be efficiently retrieved as they
are available during training, i.e., the training loss and gradient norm. We found that choosing only samples with large loss or
gradient norm, which are hard for the network to learn, is not optimal for the network performance. Instead, we introduce an
importance sampling strategy that selects samples based on the cumulative distribution function of the loss and gradient norm,
thereby making it more likely to choose hard samples while still including easy ones. The behavior of the proposed strategy
is first analyzed on a synthetic dataset, and then evaluated in the application of classification of malignant cancer in digital
pathology image patches. As pathology images contain many repetitive patterns, there could be significant gains in focusing
on features that contribute stronger to the optimization. Finally, we show how the importance sampling process can be used to
gain insights about the input data through visualization of samples that are found most or least useful for the training.

CCS Concepts
• Computing methodologies → Neural networks; • Human-centered computing → Visualization techniques;

1. Introduction

Deep neural networks (DNNs) are trained to learn complex patterns
and relationships from large amounts of data. Deep learning has
been shown to achieve high accuracy on a wide range of tasks, from
detecting cancer metastases in digital pathology whole slide im-
ages [BVvDea17, KGG20] to segmenting objects for autonomous
driving [GTCM20]. However, the training process involves solving
an optimization problem that is computationally expensive, espe-
cially when dealing with large volumes of data and large models. At
the same time, training samples contribute differently to the model
performance, so that choosing samples that improve the model per-
formance the most in each training iteration can allow for obtaining
an as good or better model with less training [KF18]. However, it is
not possible to know beforehand exactly which samples will con-
tribute the most. Furthermore, the strategy for determining which
samples to use must be computationally efficient to be beneficial.
Previous work has applied input data importance sampling with the
gradient norm of the loss function [KF18] as a measure of impor-
tance. While this metric is directly associated with the optimization
in training, it is also expensive to compute.

† Authors contributed equally to this work

We propose an importance sampling strategy which focuses on
difficult samples while still incorporating some of the easy sam-
ples. By doing so, we prevent the model from “forgetting” how
to solve the easy problems – similar to the phenomena of catas-
trophic forgetting [TSC∗18] – while gradually focusing more on
the hard problems. In practice, we compute the cumulative distri-
bution function (CDF) of the importance metric and sample inputs
from this distribution. This results in obtaining more samples with
high importance while still maintaining a few samples with lower
importance. It also means that we can use the number of times a
sample has been picked during the optimization as a measure of
overall importance. Using this information, we can visualize input
samples with low and high contribution to the training.

An issue not addressed in previous work is that the network
weights are most often randomly initialized. This means that met-
rics such as loss or gradient norm are more or less random and can
be detrimental when used for importance sampling. Before using
such metrics, it is necessary to first train the network. We present
an empirical study on the number of training iterations required be-
fore importance metrics provide meaningful information.

We perform experiments on both synthetic data and on a digital
pathology dataset. The synthetic dataset is used to analyze the be-
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havior of the importance sampling, while digital pathology is our
application of interest. In digital pathology, the images present a
large degree of repetitions, and differences between classes can be
subtle. We are interested in exploring if importance sampling can
aid in speeding up the training process and gain insight into what
features are most relevant for learning to separate between healthy
and tumorous tissue. The main contributions of this work are:

• A novel importance sampling strategy that incorporates both
easy and hard samples in the training process.

• An empirical study of when to start using loss/gradient norm-
based importance sampling for randomly initialized weights.

• A method for visualizing which input samples are considered
important/unimportant during training.

• An analysis of using importance sampling for the purpose of de-
tecting malignant tumors in digital pathology data.

2. Related Work

Loshchilov and Hutter [LH15] present a scheme for batch selec-
tion based on the history of already evaluated loss values. How-
ever, this runs the risk of using values that are not representative of
the current stage of training. Katharopoulos et al. [KF18] present
multiple techniques for finding important samples using the gradi-
ent norm of the loss function. They conclude that the upper bound
of the gradient norm of any neural network can be computed in a
single forward pass. This, in turn, means that it gives a net posi-
tive to training performance. Liu et al. [LWM20] implement im-
portance sampling using a multi-armed bandit algorithm, balancing
the computational cost of exploring samples to include in training
and the reward of adding their contribution to optimization. John-
son and Guestrin [JG18] propose a robust, approximate, importance
sampling procedure (RAIS) using stochastic gradient descent. The
method is used to find min-points and prevent overshoot. This can
be applied when looking for samples where the loss function is
reduced as much as possible. Using their implementation of impor-
tance sampling the training phase is sped up by 20%.

A related area of research is active learning, where samples
are selected from a pool of unlabeled data and then labeled by a
user/oracle [Set09, RXC∗21]. Although techniques based on, e.g.,
gradient norm can be used for this purpose as well, there is a fun-
damental difference compared to importance sampling, where sam-
pling is performed over the already labeled data points.

Although previous work on importance sampling in deep learn-
ing has demonstrated great potential to speed up training, it is not
clear if selecting only the most important samples is the best strat-
egy. There could be potential benefits in also including samples of
less importance to stabilize the training, which we explore in this
work using a CDF-based formulation. Furthermore, we apply the
techniques in digital pathology, where to our knowledge the bene-
fits of importance sampling has not yet been explored.

3. Primer on Neural Network Input Importance Sampling

The core idea of importance sampling for DNN training is to pick
samples that improve the model the most. The only way to get a
specific sample’s true importance is to train the network on that par-
ticular sample and measure the improvement. However, doing so

would not improve the efficiency of the training process due to the
computational overhead. Therefore, we have to rely on more cost-
efficient approximations of importance. Here, we provide a quick
overview of the basic loss and gradient norm sampling techniques
described in more detail in [KF18].

Loss Sampling: In theory, samples with high loss have a large im-
pact on the network. Thus, these samples should increase the model
accuracy more than samples with lower loss, and the loss is there-
fore used as a measurement of how important a sample is. The ben-
efit of this method is that it does not require a backward pass as the
loss is returned from the forward pass making this sampling method
cost-efficient. However, the per-sample loss needs to be calculated
as opposed to a batch loss.

Gradient Norm Sampling: The gradient of a single-layer neural
network is straightforward to compute since the error can be di-
rectly computed as a function of the weights. However, with more
complex networks, the loss becomes a complicated composition
function of the weights in earlier layers, requiring the backpropa-
gation algorithm [Agg18]. In the backward pass, the loss function
is used to update the weights, from which the gradient norm of the
updated model parameters can be computed. To get a per-sample
gradient norm, the backward pass has to be computed on a per-
sample basis. Otherwise, there is no way to distinguish the impor-
tance of individual samples but rather the importance of the batch.
A gradient with a small magnitude means that the loss function is
relatively flat in that region and updates to the parameters will not
have a significant effect on the loss. Conversely, a large gradient
magnitude indicates that the loss function is steep in that region
and that the parameters will be updated more significantly.

4. CDF-based Importance Sampling

Choosing samples solely based on highest loss or gradient norm
can be problematic as they are only approximations of the true im-
portance. Such sample selection consequently risks excluding sam-
ples actually important for the training. It would therefore be ben-
eficial to choose many samples that are believed to improve the
performance the most while still including other samples. For this
purpose, we choose samples according to the cumulative distribu-
tion function of the loss and the gradient norm.

4.1. CDF Sampling

For a continuous variable x, the cumulative distribution function
(CDF) is defined as the integral of the probability density function
(PDF) of the distribution f (t) from negative infinity to x:

F(x) =
∫ x

−∞
f (t)dt. (1)

In the context of importance sampling, we use the CDF to de-
termine the probability of selecting a particular sample from the
dataset. More specifically, we compute the importance of each sam-
ple K in a large batch. Then, we draw N samples following the CDF
to form a mini batch for optimization, where N < K. This CDF-
based sampling strategy makes it more likely to include samples
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with high importance while still including samples with low im-
portance, although with lower probability. Figure 1 demonstrates
how our CDF sampling strategy compares to only choosing sam-
ples with the highest importance for an inside/outside circles clas-
sification problem. In the 1st and 3rd rows, only samples close to
the boundary are chosen, which means that the model might for-
get how to deal with samples from other parts of the input space.
The CDF sampling strategy, 2nd and 4th rows, instead feeds the
optimization with a wider spread of samples; still sampling more
in areas with higher importance around the edges of the circles.

Increasing K yields better importance sampling as there is a
higher likelihood of important samples appearing in the large batch
while simultaneously costing more computations and memory. Fur-
thermore, if the N is too close to K, there will be little difference
compared to uniform random sampling and the gain of the impor-
tant sampling will be foreshadowed by the computational overhead.
In this work, we use K = 1024 and N = 128 based both on the re-
sults in [KF18] as well as good performance in internal tests.

4.2. Importance Sampling Start Criterion

While most previous work consider importance sampling from
the initiation of the training process, we observe cases where this
causes unwanted behavior. If the network weights are randomly
initialized, the notion of importance based on the loss or gradi-
ent norm can lead the optimization to focus on random subgroups
of samples that hamper the learning. This can have a detrimental
impact on the optimization, counteracting the benefits of impor-
tance sampling. To overcome this problem, we start the optimiza-
tion using uniform sampling and introduce a criterion for switching
to importance-based sampling. This is defined by the fraction be-
tween the current loss and the initial loss. For instance, a threshold
of 0.5 would imply that the importance sampling is initiated once
the mini batch loss is smaller than half of the original loss. In our
experiments in Section 5, we use different selections of thresholds
to evaluate the impact of the initiation criteria on the optimization.

4.3. Sample Importance Visualization

As our importance is an approximation of how much the training
should improve if the sample is included, we can use it as a way to
visualize which samples that are most important to the training.

The importance of each sample in the dataset is constantly
changing during training. Some samples might be difficult early
in the training process, but not at a later stage. Therefore, there are
many different ways of analyzing the training process with respect
to importance of samples over time. For simplicity, we here focus
on having a single indicator over the entire training process. Aggre-
gates, such as the sum or average of the sample importances can be
used for this purpose. However, these can be dominated by single
instances of high importance throughout the training. Therefore,
to visualize how the model utilizes the samples during the training
process, we count the number of times a sample is included and use
this as a measure of overall impact. The counting approach treats
samples equally independent of if it is early or late in the training
phase and avoids emphasis on single high-importance peaks. Dis-
playing the most important and unimportant samples is simplistic

Figure 1: Examples of sampling patterns captured during the train-
ing progress for the Two Circles dataset. Blue and red dots corre-
spond to inside and outside predictions, respectively. Batch zero re-
flects the weight initialization. The gradient norm and highest loss
techniques only place samples along the difficult regions, which
prevents exploration of the whole search space. The CDF-based
techniques, on the other hand, choose a broader range of samples
across the whole space while still focusing on the edges.

but can nevertheless reveal interesting insights about what types of
input data could improve the model even more or what the model
has difficulties with.

5. Results

Results are demonstrated on one synthetic dataset in 2D and on
a digital pathology dataset. Additional results on the MNIST and
CIFAR-10 datasets are available in the supplementary material.

5.1. Datasets

Two Circles is a synthetically generated binary classification prob-
lem designed to facilitate visual comparison of different sampling
strategies. Two circles define the boundaries between two classes,
with one class being inside either of the two circles and the other
being the outer region. The area of the two classes is the same,
meaning that there is an equal probability of sampling from either
of the classes given a uniform sampling within the square.

Camelyon [BVvDea17] consists of whole slide images (WSIs)
of sentinel lymph node sections collected in the Netherlands. We
use the PatchCamelyon version of Camelyon [VLW∗18], with
262K training patches sampled in 96×96 pixels resolution from
the WSIs. Images are separated in two classes with equal number
of images, one with healthy tissue and one with cancer metastases.
Testing is performed on the test set comprised of 32K images.
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Figure 2: Test accuracy and training loss for different thresholds determining when to start importance sampling. Lower thresholds are
advantageous for the simple Two Circles problem, while higher thresholds yields superior performance on the more complex Camelyon data.

5.2. Training Setup

Experiments‡ were conducted using Pytorch on a MacBook Pro
M1 Max with 64GB unified memory, a 12 core CPU and 32 core
GPU. Performance is averaged across 5-10 successive runs to en-
sure consistent results. Note that the random nature of the training
still means that the baseline can vary between figures. We used the
Adam optimizer, whereas networks differ between datasets:

• The Two Circles network is trained with the negative log-
likelihood loss and learning rate 0.005. It consists of two linear
layers with ReLU activation. The input and output size is two
and the hidden layer uses 50 neurons, for at total of 252 weights.

• The Camelyon network is trained with the cross entropy loss and
learning rate 0.001. It consists of two convolutional layers, two
max-pooling layers, one dropout 2D layer, and two linear layers.
The total number of weights is 446,932.

5.3. Analysis of Importance Sampling Behavior

The Two Circles synthetic 2D dataset allows for easy inspection of
how the importance sampling schemes prioritize different regions
of the data distribution. In Figure 1, the selected samples for ev-
ery 100 batches can be compared with and without our CDF-based
sampling strategy. It can be seen that the gradient norm method
and most loss method both focus the sample area to the border of
the circles, implying that the highest-loss samples are in those ar-
eas. The CDF version of the methods expands the range of interest
and also includes samples further from the circle border. A uniform
sampling method would continuously sample points randomly over
the area instead, giving all areas of the frame equal importance.

5.4. When To Start Importance Sampling?

In Figure 2, we investigate the optimal sampling threshold, e.g.,
how much the loss needs to decrease before starting to apply im-

‡ Code available at: github.com/3DJakob/ai-importance-sampling

portance sampling. Uniform sampling is used as a baseline com-
parison, indicated by a blue dashed line in all figures.

For the Two Circles dataset it is not beneficial to wait long before
applying importance sampling. All tested thresholds outperform
uniform sampling at the end of the training with higher accuracy,
but the lower threshold of 0.26 takes the longest time to overtake
uniform sampling. The loss graph displays a distinct branching pat-
tern at the designated threshold point. The reason is that more sam-
ples with high loss are selected for training, consequently resulting
in increased loss. For the Camelyon dataset, the higher thresholds
(0.74 and 0.80) are beneficial early in training. The difference be-
tween the thresholds is less clear later during the training.

5.5. Importance Sampling Strategy Comparison

We used the best thresholds from the analysis of when to start im-
portance sampling. The result of this evaluation can be seen in Fig-
ure 3. For the Two Circles (top row), we can see that the highest
loss and highest loss CDF perform best. The gradient norm sam-
pling strategy is too slow to compute, and the additional computa-
tions needed for the CDF-based method is too costly to introduce
benefits for this small models and dataset.

For the significantly larger model trained on the Camelyon
dataset (bottom row), we can see that the CDF-based sampling
result in significantly higher accuracy compared to not using the
CDF-based sampling for the highest loss and gradient norm. The
gradient norm CDF is best at the beginning of the training but is
later overtaken by the highest loss CDF strategy.

5.6. Important Training Samples

Samples that are considered important and unimportant for training
on the Camelyon dataset are shown in Figure 4. The most impor-
tant samples tend to be more difficult and more unique compared to
the least important samples, which tend to be easy to classify. For
example, we can observe that the most important samples show-
case irregular and complex content, which are more challenging to
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Figure 3: Graphs depicting the test accuracy and training loss for different sampling methods. A higher accuracy than the dashed line,
representing uniform sampling, means better performance and efficiency. Highest loss and gradient norm correspond to [KF18].

Figure 4: The most and least important training samples from the
Camelyon dataset.

classify. On the other hand, the unimportant samples either contain
larger areas of fat tissue, background or experience more regular
cellular patterns that are easier to classify.

6. Conclusions

In this work, we presented a new importance sampling strategy for
training DNNs. This builds on previous work that compute the im-
portance based on the loss of each sample. However, instead of
choosing the samples with the highest loss for a training batch,
we sample from the CDF of the loss. We show how our sampling
strategy avoids overemphasis on a subspace of the input data, e.g.,
the edges in the Two Circles synthetic dataset. Furthermore, we
demonstrate that our technique outperforms previous importance
sampling schemes when used for tumor classification in digital
pathology data, and is significantly faster at reaching high accu-
racy compared to uniform sampling. However, determining when
to start importance sampling using a loss-based threshold is tricky
and still has a relatively large impact on performance at the begin-
ning of the training. Here, further research is needed to determine
better when to start importance sampling. Nevertheless, importance
sampling has a large potential to avoid excessive training on the re-
dundant features commonly seen in this type of data. Our work
can potentially also be used in strategies for dataset pruning or sub-
sampling for training using a smaller dataset with little or no reduc-
tion in performance. Finally, we also demonstrate how our method
can be used to visualize which samples that are most and least im-
portant to the training. Such visualization can aid in understanding
the training data and we show examples indicating that samples
with unique features are especially important to the training.
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