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Abstract
We present a visual analytics system to support treatment decisions in late-stage Melanoma patients. With the aim of improving
patient outcomes, personalized treatment decisions based on individual characteristics and medical histories are crucial. The
research focuses on the design and development of a visual analytics system tailored specifically for tumor boards, where
multidisciplinary teams collaborate to make informed decisions. By leveraging a comprehensive database containing treatment
and tumor stage progression information from over 1100 patients, the system provides healthcare professionals with a holistic
overview and facilitates the analysis of individual cases as well as comparisons between multiple patients. The distinction
between tumor board preparation systems and systems used during discussions is emphasized to ensure user-centric design and
usability. Through the use of visual analytics techniques, complex relationships between treatment outcomes, temporal features,
and patient-specific factors are explored, enabling clinicians to identify patterns and trends that may impact treatment decisions.
The findings of this research contribute to the growing field of visual analytics in healthcare and have the potential to enhance
treatment decision-making and patient care in late-stage cancer scenarios.

CCS Concepts
• Human-centered computing → Visualization; • Computing methodologies → Computer graphics;

1. Introduction

Late-stage cancers have advanced local tumors, local and often re-
mote metastasis. Due to rapid tumor therapy advances, even these
advanced diseases can be treated with immune therapy or new
chemotherapy. However, considering the patient’s entire history
makes treatment decisions at this stage difficult. As a specific ex-
ample, we deal with melanoma (skin cancer)—a medical condition
that affects about 150.000 persons worldwide†.

Late-stage melanoma patients face complex treatment decisions
requiring a thorough understanding of their long medical histories
and temporal features. To make informed decisions, physicians need
a good overview of patient databases with treatment regimens and
tumor stage progression. Visual analytics leverages interactive and
visual techniques to analyze and interpret complex patient data to
aid treatment decisions.

A crucial part of this research is the creation of a tumor board in-
terface, which acts as a collaborative platform for multidisciplinary
teams engaged in cancer treatment decision-making. The objective
is to design a personalized tumor board interface that considers

† https://www.wcrf.org/cancer-trends/skin-cancer-statistics/

patient-specific characteristics to provide tailored treatment recom-
mendations. By differentiating between tumor board preparation
systems and systems used during tumor board discussions, the em-
phasis is on a user-centric design catering to the preferences and
needs of physicians. The developed interface enables in-depth analy-
sis of individual patient cases while facilitating comparisons among
multiple patients. Utilizing visual analytics techniques, clinicians
can uncover intricate relationships between treatment outcomes,
tumor characteristics, and patient-specific factors. This capability
aids in identifying hidden patterns, trends, and potential treatment
options within large and heterogeneous datasets.

In this paper, we present a visual analytics system to support
treatment decisions in tumor board meetings on the example of late-
stage melanoma patients. We discuss the importance of long patient
histories and temporal features in understanding disease progression
and treatment response. Furthermore, we highlight the significance
of a comprehensive tumor board interface that supports personalized
treatment recommendations based on patient-individual characteris-
tics. Our research contributes to the growing field of visual analytics
in healthcare by bridging the gap between data analysis and clin-
ical decision-making, ultimately aiming to improve outcomes for
late-stage cancer patients.
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2. Related Work

Visual analytics provide clinicians with powerful tools to integrate
and analyze diverse patient data, such as clinical records, histopathol-
ogy images, genetic profiles, and treatment options. In this section,
we review existing literature on visual analytics applications to
analyze electronic health records (EHR), focusing on studies that
address decision support in tumor boards. Moreover, we summarize
approaches to compute the similarity between patient records.

Visualization of EHR. EHR contains longitudinal patient data, en-
compassing health status, concerns, therapies, and outcomes. Rind
et al. [RWA∗13] provide a comprehensive survey about advanced
temporal visualization techniques to provide valuable insights. Life-
Lines [PMR∗96] introduced horizontal bars representing event time
periods and locations on a time axis. The zooming feature accommo-
dates dense data. TimeLine [BAK07] consolidates, restructures, and
displays EHR from multiple medical databases in a LifeLines-like
manner. For supporting interactive exploration of EHR tools like
Lifelines2 [WWPS10], Temporal summaries [WPS∗09], and Out-
flow [WG12] were proposed. Temporal summaries use a histogram-
like chart to display the distributional trends of the occurrence rate of
events over time. Outflow [WG12] utilized a customized user chart
to examine disease progression trajectories with multiple events,
their order, and their effects.

Our tool was influenced by LifeLines [PMR∗96], which em-
ployed event and time glyphs. To enable comparisons, we adopted
vertically aligned visualizations similar to those found in Life-
Lines2 [WWPS10]. However, unlike LifeLines2, our tool does not
rely on known reference events for alignment. Defining events would
be too restrictive and contradictory to our tool’s goal of facilitating
comparisons across various aspects of patients’ clinical data. Static
patient features, such as age and gender, hold equal importance
alongside temporal data. Following visualization strategies of Oeser
et al. [OGD∗18] and Steinhauer et al. [SHB∗20], we incorporated
designated sections to accommodate static data.

Tumor board visual aid systems can be categorized into prepara-
tion systems and systems for information sharing during the tumor
board. The ’Oncoflow’ system [KNKMB12] manages data during
the tumor board preparation, while Roche’s ’NAVIFY’ app [KCG18]
streamlines administrative tasks for tumor board preparation. Sev-
eral applications [KCG18, TDR∗22, WKE∗22] generate automated
meeting presentations. Cypko et al. [CWS∗17] proposed a TNM
staging decision support system, and Macchia et al. [MFP∗22] de-
veloped a case prioritization system.

However, these systems are not designed to support the tumor
board itself, where easy access to information in a demanding envi-
ronment is crucial. Therefore, visual tools such as ’CareVis’ [AM06]
and ’CareCruiser’ [GAK∗11] were developed to show how prior
treatments affect patient health, displaying key parameters and ther-
apy progression over time. Oeser et al. [OGD∗18] created a head
and neck tumor board interface. A map of information (MOI), pre-
sented key patient characteristics, recent treatment, and diagnostics.
However, this system does not provide a view of disease progression
in relation to previous treatments.

Later, Steinhauer et al. [SHB∗20] introduced a dermatological
tumor board MOI. Inspired by LifeLines, patient characteristics,

Figure 1: Calculation of the progression rate based on the clinical
stage progression of a patient from IIA → IIIC → IV.

treatments, and status are depicted by timelines and glyphs. How-
ever, the use of multiple visual encodings, such as location, border,
shape, and color, results in a high cognitive load and complicates
interpretation. Changes in TNM staging for assessing cancer ma-
lignancy [AGE∗17], and ECOG performance status, measuring a
patient’s functional level [OCT∗82], are shown by horizontal bars.
Precise values are only available in the comparative view for two
points in time. The analysis lacks a comprehensive consideration of
TNM and ECOG, and stage durations must be deduced.

Based on the work by Steinhauer et al. [SHB∗20], we introduce a
tumor board visualization tool that effectively encodes patient data
essential for tumor board discussions. Our tool addresses previous
visual impediments through appropriate visualizations.

Patient similarity computation aids decision-making by identi-
fying disease subtypes or patient groups [LCG∗15, CZY∗07]. Fur-
thermore, patient similarity can be leveraged in clinical outcome
prediction models, e.g., to predict ICU patient mortality [LMD15]
or to compute patient survival probability [MMB∗19].

Maximizing the effectiveness of cancer treatment relies on consid-
ering the location and spread of the disease. Luciani et al. [LWE∗20]
introduced a method to incorporate spatial information when com-
paring patients within a cohort. Srabanti et al. [STA∗22] identi-
fied differences in demographic information, disease characteristics,
treatments, and outcomes among cohorts. Floricel et al. [FNB∗22]
proposed THALIS, a tool that utilizes association rule and factor
analysis to predict and explain the longitudinal development of
patient symptoms in a cohort.

Depending on the goal, the most similar patients or a patient
group with similar features are relevant. Clustering is used to create
patient groups [PMSB18], but similarity metrics are more suited
for finding the most similar patients. Our similarity computation
retrieves patients most similar to the patient of interest.

Euclidean distance [WS15], Minkowski distance [LEYK16],
Cosine distance [TWW18], and Mahalanobis distance [VMP∗18]
were used to measure patient similarity. Dynamic time wrapping
(DTW) [YJF98], longest common sequence (LCS), and Edit dis-
tance [CN04] are used to determine sequence similarity for temporal
event-sequence data.

There are several similarity metrics tailored to specific data
types [WS15, SLG∗16, LDC∗22]. These metrics calculate feature-
level similarities and combine them into a patient-level mea-
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sure. Moreover, feature weighting techniques have been em-
ployed [WHL∗19, LDC∗22]. Drawing inspiration from Wang et
al. [WHL∗19] and Liu et al. [LDC∗22], we create custom similarity
metrics that integrate feature-level metrics into a single measure.

3. Requirement Analysis

Our requirement-gathering process followed a three-stage approach,
inspired by Young [You02], to meet the needs of a tumor board
meeting, with dermatology serving as a representative use case.

In the first stage, extensive discussions were held with dermatol-
ogists to gain a deep understanding of the melanoma tumor board
meeting and to identify the core requirements for our system. Next,
storyboards were utilized as a visual tool to illustrate the system’s
capabilities and interfaces. These storyboards were presented to
dermatologists and other stakeholders to gather feedback and refine
the requirements. Finally, a prototype was developed to provide a
tangible demonstration of the system’s interactions. This prototype
underwent a thorough iterative process, incorporating feedback from
dermatologists and other stakeholders. By iterating on the prototype,
we ensured that the requirements were comprehensive.

While dermatology served as the specific use case for this paper,
the derived requirements likely hold broader relevance for tumor
board meetings across different medical specialties. In summary, the
following requirements were identified:

R1 General system requirements. Fundamental requirements for
the system to be used in the context of a tumor board:

• R1.1 Web-based application to avoid software or hardware depen-
dence in clinical settings.

• R1.2 Ability to incorporate access control.
• R1.3 Search with patient overview information to find the patient

of interest (POI).
• R1.4 Easy-to-use navigation methods.

R2 Visualization of patient history. The requirements regarding
the visualization of single patient history:

• R2.1 Information required for introducing the patient should be
easily accessible.

• R2.2 Effective visualization of temporal patient characteristics
and treatments.

• R2.3 Patient condition changes must be easily identifiable.
• R2.4 Frequently needed patient information, such as clinical stage

and treatments, should be easily accessible.
• R2.5 Additional supplementary information, like the exact dura-

tion of a stage, should be available on demand.

R3 Patient similarity computation. The requirements that the
calculation of patient similarity must meet:

• R3.1 Retrieve patients with characteristics similar to the POI.
• R3.2 Enable users to customize patient similarity definition by

changing the importance of characteristics.

R4 Patient similarity visualization. The requirements for visual-
ization of similar patients:

• R4.1 Easily interpretable visualization that facilitates identifica-
tion of patients most similar to the POI.

• R4.2 Effective visualization to facilitate characteristics of similar
patients with those of the POI.

• R4.3 Summarized characteristics of POI along with a selected
similar patient that can be extracted for import in other systems.

• R4.4 Easy-to-use similarity customization mechanism.
• R4.5 A visualization that allows comparison of the clinical course

of the POI with a similar patient.

4. Data Acquisition and Pre-Processing

Our dermatologists provided access to 2402 melanoma patient
records, ensuring their confidentiality and privacy. Patient data in-
cludes demographic information, clinical history, diagnostic proce-
dures, treatment modalities, and follow-up details. These variables
were carefully selected to capture relevant information related to
melanoma diagnosis, prognosis, and treatment outcomes. Moreover,
these variables align with the data commonly collected for cancer
patients , indicating their relevance beyond melanoma cases.

On diagnosis, the patient’s demographic data, specifically age,
and gender, were documented alongside the clinical and TNM stage.
The clinical stage indicates melanoma’s depth of infiltration into
the skin and its spread [AGE∗17]. For effective treatment, it is also
crucial to know the aggressiveness of the tumor. This variable is
derived from the clinical stages progression of the patient. The
clinical stages were assigned chronological numerical values. Based
on the clinical stage the patient passed through, dermatologists
calculated the progression rate as the aggregation of the difference
between successive stages. Fig. 1 illustrates the calculation for the
progression rate of a patient who advanced from stage IIA to stage
IIIC and then stage IV. The transition from stage IIA to stage IIIC
is assigned a value of 6, whereas the transition from stage IIIC to
stage IV is allocated a value of 2. The patient’s progression rate is 8.

The TNM staging from the AJCC is a standardized classification
system for assessing the malignancy of cancer, both during the initial
diagnosis and after surgical intervention [AGE∗17]. TNM staging
describes tumor thickness (T), the presence of cancerous cells near
the lymph nodes (N), and metastatic spread (M). The location of the
main and metastatic tumors, sentinel, and treatments administered
on diagnosis were also recorded. Subsequently, upon each visit of a
patient to the clinic, a new record was created, which documented
the patient’s clinical and TNM stages, prescribed therapies, sentinel,
and location of the metastasis at the particular time point. During the
metastatic stage, histological data from biopsies are also recorded.

While most variables apply to a wide range of cancer patients,
sun exposure specifically pertains to melanoma cases. Sun expo-
sure is a significant risk factor for melanoma development. It is
derived from the primary location of the tumor. The inclusion of
sun exposure allows for a focused investigation into the relationship
between sun exposure patterns and melanoma incidence, aiding in
the understanding of this particular cancer type. In summary, the
following information is recorded for each patient:

• General details: admittance number, diagnosis date, death date
• Demographic information: sex, age at diagnosis
• Clinical stages: NA, IA, IB, IIA, IIB, IIC, III, IIIA, IIIB, IIIC,

IIID, IV
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Figure 2: Architecture of our melanoma tumor board system.

• TNM stages: TNM stage’s value is a combination of T, N, and M.
T: Tis, T0, T1, T2, T3, T4; N: N0, N1, N2, N3; M: M0, M1

• Location information: primary tumor, secondary Tumor
• Metastasis data: date, organs of metastasis
• Histological data: Location, BRAF (an oncogene whose mutation

is indicative of melanoma metastasis [LMN∗05]), Clark (level
of skin invasion of the melanoma [CFBM69]), thickness, actinic
(indicative of sun damage and precursors to skin carcinomas
[GSC∗05]), ulceration, sentinel, availability of excision at the
clinic.

• Therapy information: excision, targeted therapy, immunotherapy,
chemotherapy, others

• Derived variables: sun exposure, rate of progression

Data pre-processing. 1177 of the 2402 anonymized patients had
visited the clinic more than once; they constitute the final dataset.
Tumor board deliberations only take recurring patients into account,
so single-occurrence patients were excluded from the dataset. In
order to maintain consistency, diverse representations of null values,
including ’k.A’, ’null’, and ’NA’, were standardized to null. Leading
and trailing white spaces from textual data were trimmed.

5. Interactive Tumor Board Visualization

This section describes our system in detail, starting with an overview
of its architecture and general user interface (Sec. 5.1). Then, the
two major components are introduced, the visualization of the tumor
information of the POI (Sec. 5.2), followed by the computation and
visualization of similar patient records (Sec. 5.3 and Sec. 5.4).

5.1. System Architecture and General User Interface

The melanoma tumor board system architecture is shown in Fig. 2.
The user accesses the system via the front end, which utilizes HTML
and CSS to organize and style the web pages. JavaScript libraries,
namely Plot.js [Inc15] and D3.js [BOH11], are used to create inter-
active visualizations. The web application was built using Flask, a
lightweight and easy-to-use web framework in Python, making inte-
gration of other Python libraries easier (meet R1.1). The anonymized
melanoma patient data is stored in an SQLite database.

The system contains sensitive patient data. Thus, user registra-
tion and authentication pages were incorporated (meet R1.2). After
authentication, the user is redirected to the Patient Overview page,

Figure 3: The MOI is split into Overview: directly accessible infor-
mation upon loading, and Interaction: on-demand information.

which displays patients and their characteristics in a tabular format.
This view enables users to search for the POI (meet R1.3). A search
bar can be used to retrieve patients with a particular feature value.
Moreover, records can be sorted according to their feature values.
The upper right corner of the page contains links to pages that can
be navigated from the current page (meet R1.4). When the POI is
selected, the Tumor Board page for that patient is displayed.

5.2. Tumor Board Visualization for the POI

This section introduces the information architecture, structured as a
map, for the development of the tumor board visualization specifi-
cally designed for the POI. Furthermore, it offers a comprehensive
explanation of the visualization techniques employed in this view.

Map of Information (MOI). To present the patient’s medical his-
tory, we created a dermatologist-informed MOI based on the infor-
mation architecture model from Oeser et al. [OGD∗18], see Fig. 3.
The MOI is divided into two parts: the Overview and the Interaction.
The overview provides essential patient information that is always
accessible upon loading. The interaction part contains additional
information that can be displayed on demand.

POI-centered visualization. The tumor board view for a patient is
organized based on the MOI. For an effective clinical overview, the
system integrates visualizations and textual content, see Fig. 4.

The information needed to introduce a patient is textually rep-
resented and organized into three categories (meet R2.1). The first
category ’General Patient Details’ lists the patient’s admission num-
ber, diagnosis date, gender, age at diagnosis, last visit date, and
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Figure 4: Visualization of the tumor information for the POI based on the MOI. Information required for patient introduction is displayed in
the textual format. Interactive visualization is used to depict the patient’s clinical trajectory.

death date. The patient’s primary and metastatic locations, clinical
and TNM stages, and last treatment are summarized under ’Latest
Clinical Details’. The third category, ’Histology Details’, lists histo-
logical characteristics such as Location, BRAF, Clark, Thickness,
Actinic, Ulceration, Sentinel, and Excision available.

The patient’s clinical trajectory is depicted by a timeline visual-
ization. The temporal dimension spans from the date of diagnosis to
the last visit. The range slider enables the selection of time periods
of interest (meet R2.2). The administered therapies are along the
y-axis, demarcated by horizontal dashed lines. The rectangles depict
stages and stage transitions. A new rectangle is created each time
there is an alteration in either the TNM or clinical stage (meet R2.3).
Leveraging the cognitive linkage for green and red colors [MS20],
a chromatic scale diverging from green to red, created using color
brewer palettes [HB03], encodes the clinical stages (meet R2.4). On
hover, the clinical and TNM stage, the start and end dates of that
stage, and the stage duration are shown (meet R2.5).

A circular glyph denotes a therapy administered to a patient on a
single day. Rectangular glyphs are used for therapies administered
over a period of time. The glyphs are saturated in blue to make them
prominent in the visualization (meet R2.4). On hovering glyphs,
the therapy group and name, along with the start date, end date,
and therapy duration, are displayed (meet R2.5). All occurrences of
metastasis are depicted as triangles pointing downward. On hover,
the date of metastasis, along with their locations, are shown. Sup-
plementary functionalities, such as zoom, pan, and autoscale, have
been incorporated to support data analysis.

5.3. Patient Similarity Computation

The definition of patient similarity is contingent upon specific cri-
teria, necessitating the inclusion of domain knowledge of derma-
tologists [Hah14]. The features of sex, age at diagnosis, primary
location, sun exposure, sentinel, clinical stages, TNM stages, or-
gans of metastasis, and administered therapies were considered
relevant for defining the similarity between melanoma patients. Sim-
ilar to [WHL∗19] and [LDC∗22], we employed custom similarity
metrics by computing feature-level similarity and combined them to
get a patient-level similarity measure. We incorporated a weighting
mechanism to assign significance to the features. Additionally, the
Heterogeneous Euclidean Overlap Metric (HEOM) is considered
as it is capable of accommodating both numerical and categorical
values [WM97].

Custom similarity metrics. The feature-level metrics were chosen
based on the data type of the feature. Let P1 and P2 be the patients
under consideration, fi be the feature for which the similarity is to
be computed and v1

fi
and v2

fi
be the feature values of patient P1 and

P2 for feature fi, respectively.

For the numerical features, namely age at diagnosis and rate of
progression, the similarity between P1 and P2 is calculated by a
normalized difference (ND) (Eq. 1). Feature values are normalized
between 0 and 1 to avoid the impact of magnitude.

S fi(P1,P2) = 1−|v1
fi
− v2

fi
| (1)

For the static categorical features, namely primary location, sun
exposure, and sentinel, an equality check (EC) is used for the simi-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

5



C. Pereira, U. Niemann, A. Braun, M. Mengoni, T. Tüting, B. Preim, M. Meuschke / Tumor Boards in Dermatology

larity computation. If fi has the same value for both patients, they
are similar; otherwise, they are dissimilar (Eq. 2).

S fi(P1,P2) =

{
1 if v1

fi
= v2

fi

0 otherwise
(2)

The values of temporal categorical features are comma-separated
sequences in the order of their occurrence. Temporal categorical
features are clinical stage, TNM stage, treatments, and metastasis.
LCS and the Jaccard index are utilized as alternatives to compute
the similarity between patients for these features. The LCS between
P1 and P2 for fi is given by Eq. 3, where the resulting value is
normalized between 0 and 1 for similarity computation.

S fi(P1,P2) =
LCS(v1

fi
,v2

fi
)

max(len(v1
fi
), len(v1

fi
))

(3)

With the Jaccard index, the value of fi is treated as a quantity.
Here, the similarity between P1 and P2 for fi is calculated as the size
of the intersection of v1

fi
and v2

fi
divided by their union (Eq. 4).

S fi(P1,P2) =

∣∣∣v1
fi
∩ v2

fi

∣∣∣∣∣∣v1
fi
∪ v2

fi

∣∣∣ (4)

These feature-level metrics were combined to create unified
patient-level similarity metrics. The inclusion of weights allowed
for the assignment of significance to features. The unified patient
level similarity between P1 and P2 is computed as the weighted sum
of the feature level similarities as in Eq. 5.

US(P1,P2) =
n

∑
i=1

wi ·S fi(P1,P2) (5)

Finally, we define two custom similarity metrics (CM1 & CM2).
Both metrics used Equality check and Numerical difference for static
categorical and numerical features, respectively. For the temporal
categorical features, CM1 & CM2 employed LCS and Jaccard,
respectively.

Heterogenous Euclidean Overlap Metric (HEOM). The HEOM is
considered since it handles mixed data types. By default, all features
are assigned equal importance. The HEOM is updated to incorporate
feature weighting as in Eq. 6 to customize similarity by providing
feature importance.

HEOM(P1,P2) =

√
n

∑
i=1

(wi ·δ (v1
fi
,v2

fi
))2 (6)

where

Metric HEOM CM 1 CM 2
Default weights 0.48 0.64 0.68

Modified weights 0.42 0.56 0.56

Table 1: For default weights, CM2 returned the most patients sim-
ilar to the POI, present in the expected results. CM1 and CM2
performed comparably in the modified weights scenario. HEOM
had low precision with default weights and weighted features. Based
on these findings, CM2 was implemented in the tumor board system.

δ (v1
fi
,v2

fi
) =


1 if v1

fi
or v2

fi
is missing

olap(v1
fi
,v2

fi
) if fi is nominal

diff(v1
fi
,v2

fi
) if fi is continuous

(7)

with

olap(v1
fi
,v2

fi
) =

{
0 if v1

fi
= v2

fi

1 otherwise
(8)

and

diff(v1
fi
,v2

fi
) = v1

fi
- v2

fi
(9)

Evaluation of similarity metrics. Obtaining ground truth data to
evaluate the results of similarity metrics, with and without feature
weightings, proved to be impractical. To address this limitation,
we conducted an evaluation of our similarity computation using a
limited set of manually curated ground truth data for five patients.
We compared the results obtained with default feature weights to
those obtained with altered feature weights, taking into account the
concept of similarity discussed with dermatologists. Precision was
used to assess the effectiveness of the similarity metrics. Precision
measures the extent to which the expected patients are present in
the returned results. Ideally, evaluating the similarity metrics based
on the order of the results would be preferred. However, objectively
ranking the expected results is challenging. Therefore, the similarity
metric focuses on evaluating the presence of the expected results
in the returned results rather than their specific position within the
results. Table 1 summarizes default and modified feature weight sim-
ilarity metrics. For default weights, CM2 returned the most patients
similar to the POI, present in the expected results. CM1 and CM2
performed comparably in the modified weights scenario. HEOM
had low precision with default weights and weighted features. Based
on these results, the melanoma tumor board system implemented
the CM 2 to identify patients similar to the POI (meet R3.1 & R3.2).

5.4. Patient Similarity Visualization

Our system visualizes the similarity computation results for the ten
most similar patients to the POI. It comprises two tabs, the Patient
Similarity Overview and the Patient Similarity Comparison.

Patient Similarity Overview. This tab compares characteristics of
similar patients to the POI and allows customization of similarity
by assigning feature weights. The tab is partitioned into four parts.
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Figure 5: Patient Similarity Overview that enables comparison of the POI to similar patients with respect to their features. The view comprises
four parts. A) Similar patient overview and feature comparison, B) Comparison of the Clinical and TNM Stages, C) Data Table for overview
and data export, and D) Feature weighting for customization of similarity definition.

Part A illustrates the patients similar to the POI by means of a
graph (see Fig. 5), as they provide a natural representation of pair-
wise similarities between patients (meet R4.1). Nodes are utilized to
represent patients, while the equiangular radial edges differ in length,
encoding the extent of similarity. By default, five patients with the
highest degree of similarity are displayed; however, up to ten most
similar patients can be viewed. The node of the POI is colored
salmon pink, while the nodes of similar patients are uncolored.

Bar charts are the most effective and accurate way to display
categorical data [SED19]. They are also preferred due to their high

familiarity, which aids interpretation [QR22]. Hence, bar charts are
utilized for the features of sex, location, sun exposure, metastasis,
and sentinel. Box plots represent distributions and hence were used
to depict the age distribution. Consistent with the color scheme in the
graph, the features of the POI were colored salmon pink. Thus, each
categorical feature’s value for the POI can be quickly assessed. A
highlight function was incorporated to determine the feature values
of similar patients by clicking on the node as seen in Fig. 5 (meet
R4.2).
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Figure 6: Patient Similarity Comparison view to enable comparison of the clinical trajectory of the POI with a similar patient. It comprises
two parts A) Clinical trajectory of the POI and B) Clinical trajectory of the selected similar patient.

Part B enables to a comparison of clinical and TNM stages
between similar patients and the POI. Howorko et al. [HBD∗18]
showed the effectiveness of stacked bar charts for comparing single
attributes. Thus, horizontally stacked bar graphs are used to depict
the duration of clinical stages, with hovering providing stage dura-
tions. A matrix visualization is employed to comparatively display
TNM stages, effectively illustrating relationships along both hori-
zontal and vertical axes. By placing these comparative visualizations
adjacent to each other, it facilitates the examination of clinical stage
durations alongside changes in TNM stages across different patients.

Part C features a summary data table for the POIs and similar
patients’ features. Tables are valuable for organizing information,
fostering trust, and promoting understanding [BCT22]. To facilitate
further analysis or integration with other systems (meet R4.3), the
data can be downloaded in CSV format.

By default, the similarity calculation weights all features equally.
The user can adjust these weights using the sliders for each feature
in part D (meet R4.4). By clicking on Submit, the similarity is
recomputed and the Patient Similarity Overview and the Patient
Similarity Comparison tab are updated.

Patient Similarity Comparison. This tab allows us to compare
the clinical trajectory of a patient similar to the POI (meet R4.5),
see Fig. 6. On load, the clinical trajectory for the POI, as described
in Sec. 5.2 is displayed. A drop-down menu showcasing similar
patients, sorted by their similarity, is also provided. Upon selecting
a similar patient from the menu, their clinical trajectory is shown
below that of the POI. The vertical layout of the tab is designed to
facilitate the comparison. The visualizations are initially generated
along the temporal axis, representing the duration of each patient’s

treatment by default. Automated alignment of the patient’s clinical
trajectories would restrict the exploration and comparison to only
limited aspects of the patient’s clinical trajectories. There is a need
for flexibility to enable the alignment of multiple aspects to make
inferences. To support this, the system facilitates manual alignment
of the clinical trajectories. The temporal parameters of the visual-
ization can be adjusted to focus on specific time frames, such as
considering only the initial year of treatment for both patients.

To facilitate the alignment of elements for comparison, a visual
alignment aid has been incorporated. It can be activated by selecting
the "Alignment Aid" checkbox. It displays a vertical line that spans
both visual representations. The user can click and drag the line to
any desired position to align the visualizations accordingly.

6. Evaluation

We performed a qualitative user study with five dermatologists (three
females and two males) who regularly join tumor board meetings to
evaluate our system’s usefulness, usability, and acceptance by the
physicians. Three participants had five or more years of experience,
while two had less than three. One participant led tumor board
discussions. Four participants had experience introducing patients
to tumor boards. Two of the participants are co-authors of this work.

To address data privacy and security concerns associated with
patient data, the system was not hosted externally. Instead, it was lo-
cally launched on the development machine for evaluation purposes.
To gather user feedback, individual surveys were conducted using
Google Forms. This approach ensured the protection of patient data
while allowing for user input and assessment of the system.

Study design. The user study was conducted in four stages.
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1. Our tumor board system was explained to each participant.
2. Participants were allowed to interact with the system in order to

familiarize themselves with it and address any questions.
3. The melanoma tumor board system’s usability and comprehen-

sion were assessed through user tasks and closed-ended questions
on a five-point Likert scale (strongly disagree, disagree, neutral,
agree, strongly agree) based on a selected patient case.

4. In an informal interview participants were asked about the sys-
tem’s pros, cons, and potential uses. Inquiries were also made
about system enhancements.

The usability of the POI-centered tumor board visualization was
assessed using the seven usability principles: Information coding,
spatial organization, minimal actions, flexibility, recognition rather
than recall, removal of the extraneous, and data set reduction from
Forsell et al. [FJ10]. The proposed visualization aims to facilitate
collaborative decision-making within the tumor board setting. In
order to evaluate its effectiveness in this regard, the assessment
includes queries derived from Lam et al.’s information visual scenar-
ios [LBI∗12]. These scenarios encompass various aspects such as
understanding environments and work practices, visual data analysis
and reasoning, collaborative data analysis, communication through
visualization, and user experience. Similar questions were used by
Steinhauer et al. [SHB∗20] to evaluate their oncological tumor board.
So we can compare both systems.

Concerning the usability of the patient similarity tabs, the em-
phasis is on the ease of information access and learning, so we take
into account the usability principles of minimal actions, information
coding, and spatial organization [FJ10]. The purpose of patient sim-
ilarity tabs is to enable users to investigate similar patients’ data and
gain insights; thus, queries pertinent to the visual data analysis and
reasoning scenario [LBI∗12] are emphasized. Additionally, ques-
tions to validate the clinical usefulness of our system are included.

Results and Discussion. In the following, we discuss the most
interesting results from the user study. The detailed results including
diagrams can be found in the additional material (AM).

POI-centered visualization. In terms of the POI-centered tumor
board visualization, all participants correctly answered six out of the
nine task-based questions (Sec. 2.1 of the AM). For the remaining
tasks, the majority of participants provided correct responses. How-
ever, their answers deviated from the expected response, but they
were partially correct for two specific questions (Sec. 2.1, Quest.
10 & 13 of AM). This discrepancy may be attributed to differences
in interpretation. Furthermore, there were two instances where par-
ticipants inaccurately determined the duration of the clinical stage
(Sec. 2.1 Quest. 12 of the AM). This could be attributed to the man-
ual requirement for users to calculate the duration when the TNM
stage changes while the clinical stage remains constant. As this
increases cognitive load, the tooltip information should be improved
to incorporate the TNM and clinical stages duration separately.

The majority of the participants agreed that the POI-centered
tumor board visualization abides by the usability principles and
meets the goals of the scenario-based questions regarding the tumor
board visualization (Sec. 2.2 of the AM). The tumor board visual-
ization for the POI meets also the R2 requirements. All participants
unanimously agreed that the POI-centered tumor board visualization
has clinical relevance that is better than the current setup of verbal

patient case introduction (Sec. 2.4 Quest. 38 & 40 of the AM). It has
the potential to be used in a tumor board meeting and aid in tumor
board preparation (Sec. 2.4 Quest. 39 of the AM) The POI-centered
tumor board visualization outperforms the tumor board system by
Steinhauer et al. [SHB∗20] in usability, suitability for the tumor
board context, and in clinical relevance (Sec. 2.4 of the AM).

Patient similarity overview tab. Three of the seven task-based
questions regarding this tab were answered correctly by all partici-
pants (Sec. 3.1 of the AM). Of the questions answered incorrectly,
three of them are related to the interactions between the graph and
the similar patient’s feature part (Sec. 3.1 Quest. 35, 36 & 37 of the
AM). In the similar patient’s feature part, salmon pink denotes the
POI; thus, the viewer may perceive the other bar as the value of the
patient dissimilar to the POI overall, while in reality, it is dissimilar
only with respect to the specific feature.

All participants agreed that the patient similarity overview tab
complied with the usability principles of ’minimal actions’ and
’information coding’ (Sec. 3.2 Quest. 41, 42 & 43 of the AM).
The qualitative survey results show that the system’s similarity
computation returns patients similar to the POI (Sec. 3.2 Quest.
45 of the AM) and allows intuitive adjustment of feature weighting
that provides results that meet user expectations (Sec. 3.2 Quest. 43
& 47 of the AM), fulfilling requirements R3 and R4. Even though
select users responded to tasks pertaining to the comprehension of
the comparative visualization incorrectly, qualitative data shows that
users generally consider the system as having a shallow learning
curve (Sec. 3.2 Quest. 42 of the AM). Users unanimously agreed on
the clinical relevance of the patient similarity overview tab for the
exploration of patients similar to POI with respect to characteristics
(Sec. 3.3 of the AM).

Patient similarity comparison tab. Of the four task-based ques-
tions pertaining to this tab, one was answered correctly by all partic-
ipants (Sec. 4.1 Quest. 48 of the AM). The remaining tasks received
correct responses from the majority of the participants (Sec. 4.1
Quest. 49-51 of the AM). Two of these tasks that received an in-
correct response involved a change of the temporal axis (Sec. 4.1
Quest. 49 & 51 of the AM). This could be because the use of the
temporal axis scroll and date modifications might require time for
familiarization. However, this feature should be improved to enable
changing and alignment of the temporal dimension with ease.

The usability evaluation showed that the patient similarity com-
parison tab requires minimum interaction for information retrieval
(Sec. 4.2 Quest. 52 of the AM) and has a short learning curve (Sec.
4.2 Quest. 53 of the AM). Except for one indifferent respondent,
most participants felt that the structure of the patient similarity com-
parison tab made it simple to find the required information (Sec.
4.2 Quest. 54 of the AM). All participants agreed that the patient
similarity comparison tab allows clinical trajectory comparison of
comparable patients to the POI (Sec. 4.2 Quest. 55 of the AM).
Except for one participant, they agreed that the patient similarity
comparison tab could help decision-making by comparing different
aspects of the patient’s clinical trajectory (Sec. 4.2 Quest. 56 of the
AM). The one critical assessment arose from the current limitations
of the system, as it lacks important information for decision-making
due to limited data availability, such as molecular characteristics,
blood indicators, genes, and more.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

9



C. Pereira, U. Niemann, A. Braun, M. Mengoni, T. Tüting, B. Preim, M. Meuschke / Tumor Boards in Dermatology

Generalizability of the System. Basically, our proposed system vi-
sualizes numerous patient information acquired for numerous tumor
diseases. Variables specifically related to melanoma include sun ex-
posure and progression rate. Therefore, our system could be adapted
to other tumor diseases, such as breast cancer or prostate cancer,
with little effort. Especially for the tumor board visualizations of
POI, the participating dermatologists agreed that the proposed visu-
alization is transferable to other tumor boards (Sec 2.2 Quest.21 of
the AM). Patient similarity computation and comparative visualiza-
tions to explore characteristics of interest and support tumor boards
in treatment recommendations can be incorporated.

7. Conclusion & Future Work

We proposed a visual analytics system to aid the decision-making
process in tumor board meetings by presenting an overview of cru-
cial clinical data and the progression of the patient. This addresses
the main issue of tumor board meetings, where participants have
to memorize the clinical information presented verbally during pa-
tient introductions. Our system is based on the dermatologist’s MOI
and customized for the tumor board meeting. In addition, to enable
leveraging insights from existing data, a patient similarity view was
incorporated that identifies patients most similar to the POI and pro-
vides appropriate visualizations for exploring and comparing their
features. The qualitative study conducted with five dermatologists
confirmed the clinical relevance of the proposed system and also
gave insights into aspects of the system that can be enhanced.

The approach shows the value of patient similarity in tumor board
decision-making, but the unavailability of ground truth data limits
generalizability. The curation of ground truth data would facilitate
the enhancement of the patient similarity computation. The present
evaluation was lengthy, thus only key aspects of the similarity com-
ponent were considered. We plan to conduct a comprehensive as-
sessment of the patient similarity component in the future to further
evaluate its impact and usability.

Therapy depends on the patient’s lifestyle, physical condition,
comorbidity, and other factors. Hematological markers like S100
and LDH help make decisions about tumors. Integrating all rele-
vant data for decision-making into a unified system would improve
its comprehensiveness and optimize workflow for physicians who
would otherwise need to navigate multiple systems to obtain all rele-
vant data. The addition of a worklist feature would allow physicians
to curate a list of patients for tumor board discussion. Moreover,
we are planning a comparative analysis of tumor board meetings
and outcomes with and without our system to assess the impact of
our system on clinical routine. Finally, we want to integrate more
guidance and narrative techniques [GMF∗21, MGS∗22] to further
support the data exploration by clinicians as well as to communicate
risk factors and treatment outcomes to patients.
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