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Figure 1: Results of the presented methods. The presented visualization was applied to a) a non-contrast CT and several parameter maps
resulting from perfusion CT from b) to e). b) shows the applied visualization applied to cerebral blood volume, c) to cerebral blood flow, d)

to mean transit time and e) to time to peak.

Abstract

Brain lesions derived from stroke episodes can result in disabilities for a patient. Therefore, the segmentation of brain lesions is
an important task in neurology. Recently this task has been mainly tackled by machine learning approaches that demonstrated
to be very successful. One of these approaches is Graph Convolutional Networks (GCN), where the input image is interpreted
as a graph structure. As usual for neural networks, the interpretability is hard due to their black-box nature. We provide
an interactive visualization of the activation inherent in the GCN, which is map from the original dataset. We visualize the
activation values of the underlying graph network on top of the input image. We show the usability of our approach by applying

it to a GCN that was trained on a real-world dataset.

1. Introduction

Stroke is the second leading cause of disability worldwide
[SMS*20]. It cause by a reduction or blockage of blood supply
to brain tissue, which leads to cell death and thus cognitive impair-
ment. This scenario is referenced as an ischaemic stroke lesion. In
order to provide suitable therapy for patients, the detection of the
location of these lesions is crucial, which is usually accomplished
by medical imaging.

Graph Convolutional Networks (GCN) are a special form of
neural networks, that process graph inputs with specific convolu-
tional operations. In image segmentation, GCNs are an interesting
approach, and it has been shown that they can outperform other
machine learning methods, such as convolutional neural networks
[LCZC19,LCZ*21]. Brain imaging processing requires encoding
the information of long range connections without loosing the pixel
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locations [DGP15], this motivates the idea of using graph convolu-
tion, as graphs allow features to be placed in between pixels. Graph
convolution requires the input to be transformed into a graph.

Despite of the benefits of using GCNs for segmentation, the
GCNs have the same problem of explainability as neural network
approaches, and they behave as black boxes [GSG*21]. As a result,
it is difficult to understand the reasoning behind the processing of
the outputs, for example: what is the neural network learns? and
what features are relevant in the feed-forward process [GSWS21].
Particularly in the segmentation of brain lesions, a deeper under-
standing of the internal processes in the neural networks could pro-
vide new insights about brain lesion itself. As shown in Section 2,
there is no visualization approach in the literature that assists in the
visual inspection of a GCN for brain lesions.

This work presents a visualization approach for understanding of
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(a) Non-constrast CT.

(b) CBV.

(c) CBF.

(d) MTT. (e) Tmax.

Figure 2: Input modalities in the presented case. a) original CT scan. The remaining modalities are computed based on the b) cerebral blood
volume (CBV), c) cerebral blood flow (CBF), d) mean transition time (MTT) and e) time to peak (Tmax).

the relevance of features in deeper layers in a GCN architecture (see
Section 3). We provide a visualization of the coarser graph topology
processed by the GCN in the so-called latent space [VLBMO8]. In
the visualization, the graph is displayed overlaying the original im-
age with a color-coding indicating average activation values in the
latent space. These activation values show what parts of the input
image are most important to the network. In addition, we provide
an interactive filtering of interesting activation values.

The contributions of this work are:

e An interactive visualization of activation in GCN
e A case study on the use of our proposed visualization

The effectiveness of the presented approach is shown with an
real-world example of brain lesion detection resulting from stroke
(see Section 4) . This work is discussed (see Section 5), concluded
and future directions will be given in Section 6.

2. Related Work

The role of visual analytics when examining machine learning
models was highlighted by Liu et al. [LWLZ17] as most machine
learning approaches form a black-box. Here, the idea is to use vi-
sualization or visual analytics approaches to look inside the model
and understand what features are relevant.

Explainable artificial intelligence approaches are available for
standard convolutional neural network approaches that tackle
Alzheimer’s [ER], brain tumors [STK* 18] autism [ERS20] or gen-
eral anatomical changes [BCT*19]. Although this shows the im-
portance of a transparent machine learning approach, brain lesions
from stroke have a different morphology and need therefore be
treated differently. In this work, we aim for a specialized visualiza-
tion that provides insight into a GCN detecting brain lesions from
stroke.

Gillmann et al. [GPS*21] presented an activation and occlusion
map-based visualization approach to understand what part of the
brain has the most effect on the neural network. Although this is
a suitable technique to understand what features will be learned in
convolutional neural networks, this technique cannot be applied to
GCNs.

Baldassarre and Azizpour [BA19] categorized potential ap-
proaches for explainable GCN in three categories: sensitivity anal-
ysis [GDLO3], guided backpropagation [SDBR14], and layer-wise

relevance propagation [MLB*17]. Our visualization approach is
closer to the Taylor expansion presented in [MLB*17], where each
node is granted the same contribution weight in the brain lesion
probability. This paper is also related to the [PKR*19] and serves
as a starting point for the explainability of GCNs in the segmenta-
tion of brain lesions.

3. Methods

As shown in Section 2, a suitable visualization approach for acti-
vation maps in GCNs is missing in the literature, hence the moti-
vation of this work is to propose a method of visualization for this
problem. In the following sections, we provide a quick overview of
the GCN model and how the visualization of the activation maps
is generated. Furthermore, we provide detailed information on our
visualization design.

3.1. Dataset and Model

The dataset used to train the network was the ISLES-2018 Chal-
lenge dataset [MMvdG™*17, KBP*13], as shown in Figure 2. The
dataset consists of a non-contrast CT and CT-perfusion (CTP) pa-
rameters maps, which we denoted as:

Non-contrast Computed Tomography (CT)
Cerebral Blood Flow (CBF)

Cerebral Blood Volume (CBV)

Mean Transit Time (MTT)

Time to peak (Tmax)

The CTP parameters maps are obtained by modeling the flow of
contrast agent in a series of CT scans denominated CTP. The maps
yield different information about the flow of the contrast agent
through the brain tissue. As the interpretation of the original CTP
is a hard task, computing parameter maps is a state-of-the-art ap-
proach in clinics. The ground truth is obtained from a Diffusion
Weighted Image (DWI) obtained a few hours after the CTP took
place. The DWI is a gold standard method to detect the core lesion,
i.e. the dead tissue, from where the lesion mask is delimited. The
original dataset consists of 94 samples with mask information and
63 without mask information. We used only samples with mask so
we can fully assess the results.

The model used is based on the architecture of a Fully-
Convolutional-Network [LSD15]. We employ spline convolutions
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Layer Output Topology | N’ features | N° nodes
conv 1a Vo 32 65536
conv 1 b Vo 32 65536

pool 1 Vi 32 34697
conv 2 a Vi 64 34697
conv2b Vi 64 34697

pool 2 V, 32 18254
conv 3 a V) 128 18254
conv3b Vo 128 18254

pool 3 Vs 32 9605
conv 4a V3 256 9605
conv4b Vs 256 9605

pool 4 Vs 256 5048
score fr Vi 32 5048
unpool 4 V3 32 9605
Gcore 3 / W3 32 9605

X Vs 32 9605
unpool 3 1% 32 18254
Gcore 2/ WV 32 18254

X Vs 32 18254
unpool 2 Vi 32 34697
unpool 1 Vo 32 65536

spline conv out Vo 1 65536

Table 1: GCN architecture. Notations for the spline convolutional
layers is Conv {block number} {index in block}, for pooling layers
is pool {index}. Scores are spline convolutional layers with nota-
tion: score fr for the latent space; and score {index} for the corre-
sponding graph topology Vindex- The column N° features describes
the dimensionality of the feature vector at each node. The column
N° nodes describes the number of nodes for the corresponding
graph topology.

[FLWM18], graph pooling [DGK07,DBV16] and unpooling layers
to modify the position and value of the node features. The input
considered is transformed into a grid graph with nodes connected
to eight neighbor nodes. Each node has five channel values corre-
sponding to a pixel value from the CT, CBV, CBF, MTT, and TMax
inputs. Therefore, the input is a 8-neighbor interconnected graph
from a 256 x 256 image with five channels.

As shown in Table 1, the architecture of the GCN model is di-
vided into two paths: the downsampling path, and the upsampling
path. The downsampling path of the model is constructed with four
coarsened graph topologies {V;} ic[1,4)> Where nodes are relocated
by the max pooling operations of clustered sub-graphs. Pooling lay-
ers are termed pool i, with i € [1,4] for each new graph topology.

The upsampling path recovers the initial grid topology matching
with the ground truth mask. The upsampling path consists of a com-
bination of unpooling layers and convolutional blocks, denoted as
unpool i and score i with i € [1,4], respectively. Skip connections
are accompanied by a convolution block denoted score that nor-
malizes previous outputs to the same number of features to make
the sum feature in each node consistent. The non-linear activation
function used is a exponential linear unit [CUH15].

The model was trained over 200 epochs using 65 training sam-
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Groundtruth Silhouette
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Figure 3: Visualization design of the presented approach. The
underlying image modality is overlayed by the silhouette of the
ground-truth and the graph structure of the neural network. As it
can be seen, no thresholding is applied.

ples and 23 testing samples. We used 6 additional samples for val-
idation and model selection. The evaluation uses a 4-fold cross-
validation splits. We used a Adam optimizer [KB15] and learning
rate of 1E — 5. The training was done using a GEFORCE RTX
2080 TI of 11Gb of memory, an Intel(R) Xeon(R) CPU E5-2665 0
@ 2.40GHz, and 124Gb of RAM

3.2. Activation Maps for GCN

The activation maps are computed as the average of activation on
each node. Each node u € V has an feature vector x(u) € R? of
dimension d, therefore the activation map is simply the average
value of the vector components x' (1) € R:

1 &
x(u) = 3 ;xl(u) (D

The final calculation is normalized as min-max to have linear range
of values and visualize the activation maps as heat-maps with a
diverging blue to red color scale.

3.3. Visualization Approach

In order to understand what parts of the input image have higher ac-
tivation values in the latent space of the GCN, we aimed for an in-
teractive visualization approach. Our visualization consists of three
parts, as shown in Figure 3: the input images, a silhouette of the
lesion ground-truth, and the graph extracted from the GCN.

The input images are required to provide anatomical context. For
the perfusion maps, the color scheme is also changed to greyscale
for consistency, and avoid cluttering the color-scale. Here, lighter
areas mean higher values in the parameter map and are usually sub-
ject to further investigation in clinics. Users are enabled to enable
and disable certain image modalities in the visualization.

To highlight the area that should have been detected by the neural
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network in a bright yellow. We solely show the silhouette to allow
an unoccluded view of the original image.

On top of that, we render the graph network that is inherent in the
GCN. Nodes and edges are both visualized. The nodes are color-
coded according to the activation value that has been computed.
The color-scheme ranges from blue (0 activation) over white (0.5
activation) to red (1.0 activation). As the graph network contains
many nodes, we allow interactive thresholding of nodes and con-
nections. The threshold can be set between 0 and 1 and removes all
nodes that have an activation value below the threshold as well as
all connecting edges to this node.

4. Case Study

In the following, we aim to use our proposed visualization in a real-
world scenario to show its effectiveness. Figure 1 shows our visu-
alization applied to one patient selected from the ISLES challenge.
The figure includes all image modalities while using a threshold
of 0.5 to remove nodes in the graph with less activation. Here, we
are looking at the output of the last downsampling layer pool4, as
highlighted in Table 1. This layer is of particular interest, as the
detected features have removed most of the redundant information
which results in the most compressed representation.

Figure 1a shows our visualization applied to the input CT scan.
When reviewing the original CT scan, it is hard to recognize what
parts of the brain are affected by the stroke. There exist minor clus-
ters in the right lobe of the brain that indicate the stroke. When
comparing this to the labeled ground-truth we can see, that these
parts do not reflect the entire stroke lesion. When comparing these
areas to activated areas in the neural network, we can identify a
large overlap. This indicates, that the network was able to classify
these areas as stroke lesions. Interestingly, larger parts of the result-
ing lesion do not create activation in the network.

Figure 1b and 1c show very similar results. This is due to the
nature of these parameter maps. While CBV aims to capture the
amount of blood that flows through the vascular system of the brain,
CBF aims to capture the strength of this flow. Naturally, these acti-
vation maps are highly interconnected. When reviewing the origi-
nal images, we identify a dark spot in the area of the stroke lesion.
This means, that there is almost no or no blood flow detected. When
reviewing the graph network, we can identify that the network gets
activated by these areas, which shows that the network successfully
identified these features.

Regarding the mean transit time (MTT), Figure 1d provides a
very distinct activation of light areas. The mean transit time de-
scribed the average time, in seconds, that red blood cells spend
within a determinate volume of capillary circulation. High values
mean that the blood is not transported properly, which is the direct
result of the stroke. In contrast to other image modalities, the net-
work makes a clear separation between these areas and surrounding
pixels. This means, that the network successfully learns to use these
features to detect a stroke.

Figure le shows the activation map regarding the Tmax param-
eter map. This image modality encodes the time to the maximal
contrast concentration to each voxel. For interpretation, high val-
ues indicate a slow blood flow and therefore poor oxygenation. In

a similar way, the graph network apparently follows this pattern, as
shown in the higher activation values.

Interestingly, the network also reacts to two small spots located
outside the actual lesion. Here, our visualization indicated that
these spots cause false attention in the neural network.

In summary, we can see that our visualization approach is able to
reason the decision-making process of the GCN that we considered.

5. Discussion

In the discussion of the presented visualization approach, we
consider the tasks in medical practice and research [EMML22],
namely: overview, contextualization, quantification, navigation and
comparison.

Our visualization approach provides Overview over the data and
the activations in the GCN, as it combines the original image, the
ground-truth, and the activation of the graph network. As shown
in Section 4, we are able to identify the features that are detected
by the neural network and also outliers. The latter are identified as
activation regions in the neural network outside the targeted lesion.
Contextualization is provided as we show the activation graphs on
all image modalities. Quantification is provided by using and visu-
alizing activation map values. The interactive thresholding of nodes
values in the graph network allows users to navigate to interesting
areas in the network. For comparison, the presented visualization
is provided for each of the used modalities. As shown, the side-by-
side views allow understanding of the differences in activation of
modalities.

Our approach is limited to two-dimensional data. Further, each
imaging modality is considered individually. The activation maps
in this visualization approach can be used to debug the network and
get an insight what features are relevant. For example, a successful
segmentation should have high activation values within the ground
truth, and this information can be used to refine the dataset or to
identify labeling problems.

6. Conclusion

In this work, we provide an interactive visualization that provides
an overview of activation in a GCN. Our visualization fusions the
input image, the targeted ground-truth, and the graph network that
is color-coded to indicate activation of each node with an intuitive
color-map. In addition, interaction is provided to filter nodes with
high activation values in the GCN. We show the effectiveness of
the presented approach by successfully applying it to a real-world
case study.

For future work, we aim to extend the presented approach
into the three-dimensional space and provide an open-source tool,
where users can upload their models and explore them.
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