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Figure 1: A: Left: property selection panel for row and column annotations. Right: stratification matrix – showing here neurons of different
cell types (rows) stratified by the cortical depth of their somata (columns). B: Neurons in the human temporal cortex [SCJB∗21].

Abstract
The analysis of brain networks is central to neurobiological research. In this context the following tasks often arise: (1) under-
stand the cellular composition of a reconstructed neural tissue volume to determine the nodes of the brain network; (2) quantify
connectivity features statistically; and (3) compare these to predictions of mathematical models. We present a framework for
interactive, visually supported accomplishment of these tasks. Its central component, the stratification matrix viewer, allows
users to visualize the distribution of cellular and/or connectional properties of neurons at different levels of aggregation. We
demonstrate its use in four case studies analyzing neural network data from the rat barrel cortex and human temporal cortex.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Model verification and validation; •
Applied computing → Biological networks;

1. Introduction

Brain networks or connectomes [STK05] are graphs whose nodes
represent functional units (individual neurons, neuron assemblies,
brain regions) and whose links represent structural or functional
connections between these units [FZB16]. We focus on neu-
roanatomy and structural connectivity on the micro- to mesoscale.
Previously, we have created a detailed anatomical model of the rat
barrel cortex [UHM∗22]. A key motivation for the tool presented
here, is to make these data easily accessible online [cis] for other
neuroscientists. This requires support for quick and systematic
exploration and for identification of specific subsets of the data.
Concurrently, we are working on mathematical models for predict-
ing synaptic connectivity with the aim of elucidating principles
of neural network architecture. These models are also applied
to neural network datasets shared by other researchers. In this

context, we needed a tool that supports us in filtering neurons of
interest and comparing model-predicted with empirically observed
connectivity at different levels of aggregation. We meet these
requirements with a versatile tool that enables the grouping or
stratification of neurons and synaptic connections in a matrix
layout according to user-selected properties that define its (nested)
rows and columns. The stratification matrix viewer combines as-
pects of hierarchical connectivity matrices, nested tables, and heat
maps into a single tool to support the analysis of both connectional
and non-connectional features in neural network data.

2. Related work

Visualization techniques in connectomics have been reviewed by
Pfister et al. [PKB∗14], by Margulies et al. [MBWG13], and re-
cently by Beyer et al. [BTB∗22] for high resolution connectomics,
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which is most relevant to our application. We also point to the sur-
vey by Behrisch et al. [BBH∗16] on matrix reordering techniques
and the work by Alper et al. [ABH∗13] on weighted graph com-
parison techniques for brain networks. Early works on zoomable
matrix views include Matrix Zoom [AV04] and ZAME [EDG∗08].

Matrix views in connectomics. Several tools used in the con-
nectomics community integrate matrix views to display connec-
tivity information. Examples are NeuroVIISAS [SE12], Neuro-
MAP [SBS∗13], and neuPrint [PCD∗22]. Yang et al. [YSD∗17]
propose a hybrid visualization of matrices and node-link diagrams
for brain network analysis. BrainCove [VMVB12] uses raycasting
to render fMRI correlation matrices. The Graffinity tool addresses
the analysis of connectivity in very large networks [KLS∗17]. A
tool specifically designed for the rat barrel cortex features a semi-
abstract representation of the barrel field in combination with a
heatmap showing synapse counts [DEHO12].

Complex heatmaps and tabular layouts. Complex heatmaps ex-
tend regular heatmaps by providing complex row and column an-
notations [GES16]. They gained increased attention in the bioin-
formatics community and are used in tools like Clustergram-
mer [FGR∗17], which offers zoom, pan, and reordering with an-
imated transitions. Responsive matrix cells [HBS∗21] feature in-
teractive charts that are embedded into a heatmap to support fo-
cus+context exploration of multivariate graphs. Neo [GHM∗22]
presents a flexible nested tabular layout for the visualization of
confusion matrices, which are used to evaluate machine learning
models. Blocks [WKS∗22] allows generating rich tables via drag-
and-drop, supporting data aggregation at user-specified levels of
detail.

Our contribution. Unlike matrix views presented in previous
works in connectomics, the stratification matrix is not a connec-
tivity matrix but represents a more generic tabular layout that can
encode both connectional and non-connectional information. This
is illustrated in Fig. 1, where rows correspond to cell types and
the columns to cortical depths, encoding the spatial distribution of
neurons. In contrast, the stratification matrix shown in Fig. 2E rep-
resents a hierarchical connectivity matrix showing synapse counts.

3. Analysis tasks and requirements

Initial requirements for the tool arose from a request of a neuro-
scientist seeking detailed information about connectivity between
various subpopulations of neurons in the rat barrel cortex [Kle]. We
agreed that a flexible tabular interface was needed to provide access
to such connectivity parameters at user-defined levels of aggrega-
tion. The interface should also support queries of non-connectional
parameters, such as the spatial distribution of cells. Additional re-
quirements arose from our own ongoing research, testing math-
ematical models for synaptic connectivity on datasets shared by
other researchers. These requirements are reflected in the following
analysis tasks: T1: Query the cellular composition of reconstructed
neural networks. This involves getting an overview of which types
of cells are located where in the neural tissue volume. T2: Group
neurons based on morphological features (e.g., axon length) and
get an overview of the distribution of such features in the neuron
population. T3: Examine connectivity features between pre- and

postsynaptic neuron populations, such as the distribution of synap-
tic contacts between different cell types. T4: Compare connectivity
features observed in the reconstructed neural network with those of
mathematical models that aim to predict synaptic connectivity.

4. Design of visual components

The user interface of the application is shown in Fig. 1. After spec-
ifying a dataset in the Project panel, the Selection panel displays
all available properties in two juxtaposed trees that control the row
and column annotations of the matrix. The user selects property
types and values of interest by toggling the respective check boxes
in the tree. Currently, only categorical properties are supported and
numeric features are mapped to a fixed number of bins in a prepro-
cessing step. The hierarchical order of properties can be changed
via drag-and-drop. If more than one property is selected per row
or column, the Stratification matrix is hierarchical. When zoom-
ing out, lower level properties are collapsed and the correspond-
ing values in the matrix are aggregated. Rows and columns can be
zoomed simultaneously or separately. Matrix cells display the num-
ber of neurons, synapses, or other entities, depending on the dataset
(see Supplementary Information). The visual encoding of matrix
cells is controlled in the Data channels panel. A predefined set of
color scales is provided, which can be normalized by the follow-
ing maximal values: (1) global, (2) per row, and (3) per column. If
the dataset provides more than one value per matrix cell (as in com-
parison tasks [ABH∗13]), a second channel can be activated. In this
case the matrix cells are split diagonally. The Toolbox provides util-
ity functions to interact with the matrix and allows the inspection
of neuron morphologies in an external anatomical viewer. Selected
matrix cells are displayed in a bar chart, enabling direct compari-
son of values that do not belong to adjacent tiles. We support au-
tomatic matrix reordering [BBH∗16] with an optimal leaf ordering
algorithm from the reorder.js library [reo]. In two-channel mode,
the user specifies which channel to use for reordering, including a
mode in which the unsigned difference between both channels is
used.

5. Implementation

The front-end is based on Meteor, a full-stack web development
framework. The property selection panel uses the react-complex-
tree. The stratification matrix viewer is based on the vector graph-
ics library Paper.js and we use reorder.js for matrix reordering. All
back-end routines were implemented in Python using Flask as web
server. The neural network datasets were preprocessed to create
precomputed NumPy arrays and boolean masks for indexing and
intersecting property values, enabling fast query execution and re-
trieval of matrix data. The code is available at Github: https:
//github.com/zibneuro/stratification-matrix

6. Evaluation

Our evaluation is based on four case studies (Sect. 6.1) and a user
survey (Sect. 6.2). The case studies use two recent neural network
datasets to illustrate how the outlined analysis tasks T1-T4 can
be solved with the tool. The first dataset is a detailed anatom-
ical model of the rat barrel cortex (RBC) containing 550,000
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Figure 2: A Neurons in RBC stratified by cell type and cortical column (case study 1). B: Neurons in HTC stratified by cortical layer and
morphological properties (case study 2). C: Neuron pairs in RBC stratified by number of synaptic connections and intersomatic distance
(case study 3). D,E: Comparing empirically observed and model-predicted synapse counts in HTC at different aggregation levels (case study
4). F: COVID-19 infections (red) and deaths (grey) stratified by age group, gender, and week of year (data courtesy: [RKI22]).

neurons and 5 billion synapses in a volume of 6.5mm3 covering
24 cortical columns [UHM∗22]. The second dataset is an electron
microscopy-based reconstruction of 1mm3 of the human temporal
cortex (HTC) (Fig. 1B); it contains 57,000 cells of which 16,000
are neurons and 133 million synapses [SCJB∗21].

6.1. Case studies

The case studies summarized here can be reproduced in the online
version of the tool [cis]; timestamps for the accompanying video
are provided at the end of each paragraph.

Case Study 1. The goal of the user is to understand the distribution
of different cell types across different regions in the RBC (T1). The
matrix cells encode the number of neurons (non-connectional infor-
mation). The matrix in Fig. 2A shows a 12×24 grid, with rows cor-
responding to the 12 cell types and columns corresponding to the
24 cortical columns in the barrel cortex. The visual pattern shows
that most neurons per cell type reside in the D and E columns. Ac-
tivating the subregion property, which subdivides cortical columns
into inside and septum, yields a 12×(24|2) or 12×(2|24) grid, de-
pending on the property order. The resulting view shows that L4sp
and L4ss neurons do not reside in the septum. Applying column-
independent zoom collapses the matrix into a 12×2 grid (cell type
× subregion) that gives an aggregated view, which quickly reveals
that for all cell types except L3PY and L4PY, more neurons reside
inside the cortical column than in the septum. Stratifying cell type
by cortical depth of the soma produces the matrix shown in Fig. 1A.
It shows that cell types occupy different depth ranges and overlap
with each other to various degrees. For example, L4PY cells reside
in a narrow depth range of 500-800µm, whereas L6CT cells reside
in a broad depth range of 1000-2200µm. [video 0:55]

Case Study 2. The goal of the user is to obtain a breakdown of the
cellular composition in the HTC and to identify individual neurons
with long axon segments for further analysis (T1, T2). Matrix cells

encode the number of neurons and glial cells in the human tempo-
ral cortex (non-connectional information). Stratifying the cells by
cell type and layer shows that most of the cells are glial cells re-
siding in the white matter. Adding misc. annotations as property,
reveals that most of these glial cells are olygodendrocytes and that
this type outnumbers all other types, excluding astrocytes in the
upper layers. Stratifying neuronal cells in a similar way shows that
layer 1 is populated exclusively by inhibitory interneurons and that
in all other layers excitatory pyramidal neurons outnumber the in-
terneurons. Neurons classified as bipolar mainly reside in layers 5
and 6. Stratifying neurons by their morphological properties axon
length (NAx) and dendrite length (NDe) shows that these quanti-
ties are correlated but also reveals that axons are much shorter than
dendrites or completely missing. This is likely an artefact of the
automated segmentation. To filter out neurons with large axons and
a high number of outgoing synapses, the user selects all neurons
grouped by layer for the rows of the matrix and the four highest bins
of NAx (1745, 2171, 2664, 13177) combined with the number of
outgoing synapses NSO ≥ 100 as columns in the matrix (Fig. 2B).
Selecting matrix cells yields the corresponding neurons, which can
then be displayed in an external anatomical viewer. [video 2:05]

Case Study 3. The goal of the user is to understand the characteris-
tics of neuronal connections in the RBC (T3). Matrix cells encode
the number of connected/unconnected neuron pairs in the rat bar-
rel cortex (connectional information). Stratifying the neuron pairs
by presynaptic cell type (rows) and postsynaptic cell type, con-
nected/unconnected (columns) shows that most neuron pairs are
in fact unconnected and that this is the case for all combinations of
pre- and postsynaptic cell types. A known determinant for synap-
tic connectivity is the intersomatic distance of pre- and postsynap-
tic neurons. Stratifying the neuron pairs by synapse count and in-
tersomatic distance results in the visual pattern shown in Fig. 2C.
The first row shows that the number of unconnected neuron pairs
(synapse count 0) increases with intersomatic distance. Conversely,
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Figure 3: Responses of the survey participants (n=13) on the mul-
tiple choice questions. Q1 and Q2 were only answered by partici-
pants who explored the tool online (n=8).

the number of connected pairs (one or more synapses) decreases
with intersomatic distance. [video 5:26]

Case Study 4. The goal of the user is to inspect synaptic con-
nectivity patterns in the HTC and compare them to connectivity
patterns predicted by a mathematical model (T3, T4). The matrix
cells encode the number of synapses (channel 1: empirically ob-
served, channel 2: model-predicted). The user selects pre layer for
the rows in the matrix and post layer for the columns. Most em-
pirically observed synapses connect neurons residing in the same
layer or in neighboring layers, which can be seen as a diagonal
structure in the matrix (Fig. 2D). At this high level of aggrega-
tion, the model-predicted synapse counts are in good agreement
with the empirically observed counts. Activating the cell type and
compartment properties gives a hierarchical matrix that allows a
more fine-grained comparison of empirical and model-predicted
synapse counts (Fig. 2E). The compartment property describes at
which specific location a synapse is formed at a postsynaptic neu-
ron. At this subcellular resolution, limitations of the model become
apparent, as recognizable by the many matrix cells with deviating
values (Fig. 2E). To understand where the model fails, the ma-
trix reordering functionality is applied, using the unsigned differ-
ence between channel 1 and 2 as target value. The resulting block
structure of matrix cells provides a compact view of the synap-
tic connections with high deviations between empirical data and
the model (Fig. 2E). Visual inspection reveals that the model sys-
tematically underestimates synaptic inputs from interneurons onto
the axon initial segment and the soma of pyramidal neurons. Con-
versely, connections from pyramidal neurons onto these compart-
ments are overestimated by the model. [video 6:45]

6.2. User survey

To evaluate and further improve the tool, we carried out a user
survey. Of the 25 people invited, which include collaborators in
the field of computational neuroscience (including data science &
machine learning) and members of our own visualization research
group, 14 participated in the survey. We excluded one neuroscien-
tist from the respondents due to his later co-authorship. The break-
down of the remaining participants by their self-ascribed field of
work is: neuroscience (4), visualization (5), data science/machine

learning (3), computer science (1). Eight participants were male,
four female, and one preferred not to say.

We first asked the participants to watch a 6:17 minutes video ex-
plaining the intended usage of the tool (see additional material) and
invited them to explore it online. Participants then had to rate the
following statements on a 5-item Likert scale [Lik32]: Q1: Overall,
I thought the tool was easy to use. Q2: I thought the matrix interac-
tion functions (e.g., zoom) were easy to use and I found the utility
functions provided in the toolbox were appropriate. Q3: The tool
would make it easier to explore and download structural parame-
ters of neural networks (e.g., the cellular composition of the barrel
cortex). Q4: The tool would make it easier to communicate quan-
titative insights about neural networks. Q5: The tool itself and/or
the concept of a stratification matrix could be of interest in my own
ongoing research (including fields other than neuroscience), if the
necessary adaptions were made.

Q1, Q2 were only answered by those who explored the tool on-
line; participants could give optional free text comments. The re-
sults of the numeric survey items are shown in Fig. 3. The usability
and feature scope of the tool (Q1, Q2) as well as its expected util-
ity for the intended application (Q3, Q4) were rated positively. The
potential utility of the tool for their own ongoing research, includ-
ing fields other than neuroscience, received mixed responses by the
participants (Q5). One neuroscientist wrote: “The tool is already
applicable to my own research as I am working on the rat barrel
cortex connectivity data and the tool makes it very easy to get con-
nectivity information.” One computer scientist reasoned about the
potential of stratification matrices to communicate research find-
ings in a standardized form: “... when I see the tool I think that
it – more precisely, specific well-expressive selections with well-
accepted colour maps – could become some kind of standard for
communicating what was researched in a paper, ...“

7. Conclusion

We have presented a matrix viewer that supports the analysis of
both connectional (e.g., synaptic contacts) and non-connectional
(e.g., cellular composition) information in neural network data. De-
pending on the nature of the data and the visual encoding chosen
by the user, the stratification matrix takes the form of a hierarchical
connectivity matrix, a nested table, or a heatmap. This flexibility
will render the tool versatile for quite different applications, not
only in the context of neurobiological research. The stratification
matrix viewer was positively received by participants of a survey,
which encouraged us to make the tool available through BarrelCor-
texInSilico [cis], where it now facilitates access to structural param-
eters of the rat barrel cortex [UHM∗22]. The tool helped us to iden-
tify neurons of interest in a dense reconstruction of the human tem-
poral cortex [SCJB∗21], revealed interesting spatial distributions of
neuronal and glial cells, and allowed us to compare a mathemati-
cal model of synaptic connectivity with empirical observations. We
believe that the tool could be of use also in other domains, as il-
lustrated in Fig. 2F, were we apply it to an epidemiological dataset
(see Supplementary Information). Future work will include auto-
matic zoom-dependent binning of numerical properties, a tighter
integration with external anatomical viewers, and various usabil-
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ity and design improvements suggested by survey participants and
reviewers.

Acknowledgements

Deutsche Forschungsgemeinschaft (SPP 2041 Computational Con-
nectomics) under award number 347210657 and National Institute
of Neurological Disorders and Stroke (NINDS) of the National In-
stitutes of Health under award number 1U19NS104653.

References
[ABH∗13] ALPER B., BACH B., HENRY RICHE N., ISENBERG T.,

FEKETE J. D.: Weighted graph comparison techniques for brain connec-
tivity analysis. In Conference on Human Factors in Computing Systems -
Proceedings (2013), ACM, pp. 483–492. doi:10.1145/2470654.
2470724. 2

[AV04] ABELLO J., VAN HAM F.: Matrix zoom: A visual interface to
semi-external graphs. In Proceedings - IEEE Symposium on Informa-
tion Visualization, INFO VIS (2004), pp. 183–190. doi:10.1109/
INFVIS.2004.46. 2

[BBH∗16] BEHRISCH M., BACH B., HENRY RICHE N., SCHRECK T.,
FEKETE J. D.: Matrix Reordering Methods for Table and Network
Visualization. Comput. Graph. Forum 35, 3 (2016), 693–716. doi:
10.1111/cgf.12935. 2

[BTB∗22] BEYER J., TROIDL J., BOORBOOR S., HADWIGER M.,
KAUFMAN A., PFISTER H.: A survey of visualization and analy-
sis in high-resolution connectomics. Comput. Graph. Forum (2022).
doi:10.1111/cgf.14574. 1

[cis] BarrelCortexInSilico. URL: https://cortexinsilico.
zib.de/matrix. 1, 3, 4

[DEHO12] DERCKSEN V. J., EGGER R., HEGE H. C., OBERLAENDER
M.: Synaptic connectivity in anatomically realistic neural networks:
Modeling and visual analysis. In EG VCBM 2012 - Eurographics Work-
shop on Visual Computing for Biology and Medicine (2012), Eurograph-
ics, pp. 17–24. doi:10.2312/VCBM/VCBM12/017-024. 2

[EDG∗08] ELMQVIST N., DO T.-N., GOODELL H., HENRY RICHE N.,
FEKETE J.-D.: Zame: Interactive large-scale graph visualization. In
IEEE Pac. Vis. Symp. (2008). 2

[FGR∗17] FERNANDEZ N. F., GUNDERSEN G. W., RAHMAN A.,
GRIMES M. L., RIKOVA K., HORNBECK P., MA’AYAN A.: Clus-
tergrammer, a web-based heatmap visualization and analysis tool for
high-dimensional biological data. Scientific Data 4 (2017), 170151.
doi:10.1038/sdata.2017.151. 2

[FZB16] FORNITO A., ZALESKY A., BULLMORE E. T.: Fundamentals
of brain network analysis. Elsevier Academic Press, 2016. doi:10.
1016/C2012-0-06036-X. 1

[GES16] GU Z., EILS R., SCHLESNER M.: Complex heatmaps reveal
patterns and correlations in multidimensional genomic data. Bioinfor-
matics 32 (2016), 2847–2849. doi:10.1093/bioinformatics/
btw313. 2

[GHM∗22] GÖRTLER J., HOHMAN F., MORITZ D., WONGSUPHA-
SAWAT K., REN D., NAIR R., KIRCHNER M., PATEL K.: Neo: Gener-
alizing confusion matrix visualization to hierarchical and multi-output
labels. In Proceedings of the 2022 CHI Conference on Human Fac-
tors in Computing Systems (2022), ACM. doi:10.1145/3491102.
3501823. 2

[HBS∗21] HORAK T., BERGER P., SCHUMANN H., DACHSELT R.,
TOMINSKI C.: Responsive matrix cells: A focus+context approach
for exploring and editing multivariate graphs. IEEE Trans. Vis. Com-
put. Graph. 27, 2 (2021), 1644–1654. doi:10.1109/TVCG.2020.
3030371. 2

[Kle] KLEINFELD D.: personal correspondence (Nov. 2021). 2

[KLS∗17] KERZNER E., LEX A., SIGULINSKY C. L., URNESS T.,
JONES B. W., MARC R. E., MEYER M.: Graffinity: Visualizing Con-
nectivity in Large Graphs. Comput. Graph. Forum 36, 3 (2017), 251–
260. doi:10.1111/cgf.13184. 2

[Lik32] LIKERT R.: A technique for the measurement of attitudes. Arch.
Psychol. 22 (1932), 5–55. 4

[MBWG13] MARGULIES D. S., BÖTTGER J., WATANABE A., GOR-
GOLEWSKI K. J.: Visualizing the human connectome. NeuroImage
80 (2013), 445–461. doi:10.1016/j.neuroimage.2013.04.
111. 1

[PCD∗22] PLAZA S. M., CLEMENTS J., DOLAFI T., UMAYAM L.,
NEUBARTH N. N., SCHEFFER L. K., BERG S.: neuprint: An open
access tool for em connectomics. Frontiers in Neuroinformatics 16 (7
2022). doi:10.3389/fninf.2022.896292. 2

[PKB∗14] PFISTER H., KAYNIG V., BOTHA C. P., BRUCKNER S.,
DERCKSEN V. J., HEGE H.-C., ROERDINK J. B. T. M.: Visualization
in Connectomics. In Scientific Visualization – Uncertainty, Multifield,
Biomedical, and Scalable Visualization. Springer, 2014, pp. 221–245.
doi:10.1007/978-1-4471-6497-5_21. 1

[reo] reorder.js. URL: https://github.com/jdfekete/
reorder.js. 2

[RKI22] ROBERT-KOCH-INSTITUT: SARS-CoV-2 Infektionen in
Deutschland, June 2022. doi:10.5281/zenodo.6672879. 3

[SBS∗13] SORGER J., BUHLER K., SCHULZE F., LIU T., DICKSON B.:
NeuroMAP - Interactive graph-visualization of the fruit fly’s neural cir-
cuit. In BioVis 2013 - IEEE Symposium on Biological Data Visualiza-
tion 2013, Proceedings (2013), pp. 73–80. doi:10.1109/BioVis.
2013.6664349. 2

[SCJB∗21] SHAPSON-COE A., JANUSZEWSKI M., BERGER D. R.,
POPE A., WU Y., BLAKELY T., SCHALEK R. L., LI P. H., WANG
S., MAITIN-SHEPARD J., KARLUPIA N., DORKENWALD S., SJOST-
EDT E., LEAVITT L., LEE D., BAILEY L., FITZMAURICE A., KAR R.,
FIELD B., WU H., WAGNER-CARENA J., ALEY D., LAU J., LIN Z.,
WEI D., PFISTER H., PELEG A., JAIN V., LICHTMAN J. W.: A connec-
tomic study of a petascale fragment of human cerebral cortex. bioRxiv
(2021). doi:10.1101/2021.05.29.446289. 1, 3, 4

[SE12] SCHMITT O., EIPERT P.: neuroVIISAS: Approaching multiscale
simulation of the rat connectome. Neuroinformatics 10, 3 (2012), 243–
267. doi:10.1007/s12021-012-9141-6. 2

[STK05] SPORNS O., TONONI G., KÖTTER R.: The human connec-
tome: A structural description of the human brain. PLOS Comput. Biol.
1, 4 (2005), e42. doi:10.1371/journal.pcbi.0010042. 1

[UHM∗22] UDVARY D., HARTH P., MACKE J. H., HEGE H.-C.,
DE KOCK C. P. J., SAKMANN B., OBERLAENDER M.: The impact
of neuron morphology on cortical network architecture. Cell Reports 39,
2 (2022). doi:10.1016/j.celrep.2022.110677. 1, 3, 4

[VMVB12] VAN DIXHOORN A. F., MILLES J., VAN LEW B., BOTHA
C. P.: BrainCove: A tool for voxel-wise fMRI brain connectivity visu-
alization. In EG VCBM 2012 - Eurographics Workshop on Visual Com-
puting for Biology and Medicine (2012), pp. 99–106. doi:10.2312/
VCBM/VCBM12/099-106. 2

[WKS∗22] WHILDEN A., KARIS D., SETLUR V., DEGTYAR R., QUE
J., LYMPEROPOULOS F.: Blocks: Creating Rich Tables with Drag-and-
Drop Interaction. In EuroVis 2022 - Short Papers (2022), The Euro-
graphics Association. doi:10.2312/evs.20221094. 2

[YSD∗17] YANG X., SHI L., DAIANU M., TONG H., LIU Q., THOMP-
SON P.: Blockwise Human Brain Network Visual Comparison Us-
ing NodeTrix Representation. IEEE Trans. Vis. Comput. Graph. 23, 1
(2017), 181–190. doi:10.1109/TVCG.2016.2598472. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

121

https://doi.org/10.1145/2470654.2470724
https://doi.org/10.1145/2470654.2470724
https://doi.org/10.1109/INFVIS.2004.46
https://doi.org/10.1109/INFVIS.2004.46
https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.14574
https://cortexinsilico.zib.de/matrix
https://cortexinsilico.zib.de/matrix
https://doi.org/10.2312/VCBM/VCBM12/017-024
https://doi.org/10.1038/sdata.2017.151
https://doi.org/10.1016/C2012-0-06036-X
https://doi.org/10.1016/C2012-0-06036-X
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1145/3491102.3501823
https://doi.org/10.1145/3491102.3501823
https://doi.org/10.1109/TVCG.2020.3030371
https://doi.org/10.1109/TVCG.2020.3030371
https://doi.org/10.1111/cgf.13184
https://doi.org/10.1016/j.neuroimage.2013.04.111
https://doi.org/10.1016/j.neuroimage.2013.04.111
https://doi.org/10.3389/fninf.2022.896292
https://doi.org/10.1007/978-1-4471-6497-5_21
https://github.com/jdfekete/reorder.js
https://github.com/jdfekete/reorder.js
https://doi.org/10.5281/zenodo.6672879
https://doi.org/10.1109/BioVis.2013.6664349
https://doi.org/10.1109/BioVis.2013.6664349
https://doi.org/10.1101/2021.05.29.446289
https://doi.org/10.1007/s12021-012-9141-6
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1016/j.celrep.2022.110677
https://doi.org/10.2312/VCBM/VCBM12/099-106
https://doi.org/10.2312/VCBM/VCBM12/099-106
https://doi.org/10.2312/evs.20221094
https://doi.org/10.1109/TVCG.2016.2598472

