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Abstract

During radiotherapy (RT) planning, an accurate description of the location and shape of the pelvic organs is a critical factor
for the successful treatment of the patient. Yet, during treatment, the pelvis anatomy may differ significantly from the planning
phase. A series of recent publications, such as PREVIS [FMCM*21], have examined alternative approaches to analyzing and
predicting pelvic organ variability of individual patients. These approaches are based on a combination of several statistical and
machine learning methods, which have not been thoroughly and quantitatively evaluated within the scope of pelvic anatomical
variability. Several of their design decisions could have an impact on the outcome of the predictive model. The goal of this work
is to assess the impact of alternative choices, focusing mainly on the two key-aspects of shape description and clustering, to
generate better predictions for new patients. The results of our assessment indicate that resolution-based descriptors provide
more accurate and reliable organ representations than state-of-the-art approaches, while different clustering settings (distance
metric and linkage) yield only slightly different clusters. Different clustering methods are able to provide comparable results,
although when more shape variability is considered their results start to deviate. These results are valuable for understanding
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the impact of statistical and machine learning choices on the outcomes of predictive models for anatomical variability.
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1. Introduction

In radiotherapy (RT) planning, an accurate description of the lo-
cation and shape of the pelvic organs is a critical factor for suc-
cessful tumor treatment [SRM* 19]. The use of sub-optimal settings
might overexpose healthy organs to radiation—thus, to reduce the
possibility of side effects, precise targeting of the cancerous area
is sought. To this end, the location of the pelvic organs is usually
determined using Computed Tomography (CT) scans that capture
their position and shape. However, CT scans provide only momen-
tary images, while regular RT takes place over the course of several
weeks. During this period, the position and shape of pelvic organs
may change significantly from the planning phase. Furthermore,
the extent of these changes tends to vary across patients.

A series of recent publications have examined alternative ap-
proaches for analyzing and predicting the pelvic organ variabil-
ity of individual patients [RCMA™18, FGM*20, FMCM*21]. One
of these approaches, PREVIS, proposed by Furmanova et al.
[FMCM*21] uses a set of cancer patients from a retrospective co-
hort with known variability to generate personalized predictions for
new patients (Figure 1). The approach is based on a combination of
several statistical and machine learning methods, which have not
yet been thoroughly and quantitatively evaluated within the scope
of pelvic anatomical variability. Several of the design decisions of
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PREVIS could have an impact on the outcome of the predictive
model and, thus, on RT decision making.

The contribution of this work is an assessment approach to
understand and improve the robustness of predictive models of
the anatomical variability of patients within the course of RT. In
essence, our work aims at answering: What is the impact of alter-
native choices, employed for the prediction of anatomical variabil-
ity, on the final outcome of the predictive workflow of PREVIS? We
focus specifically on the following two key-aspects (Figure 1):

Expression of organ shapes by descriptors: In order to work with
organs such as the bladder, rectum, and prostate that have been cap-
tured by the CT scans, each organ must be represented in a way that
adequately describes its shape. The organ segmentations in the CT
scans are converted into mathematical shape descriptors that cap-
ture the presence of an organ at specific positions. It is anticipated
that the choice of shape descriptor has a significant influence for the
rest of the workflow. Practically, we are interested in understanding
what the effects of using different shape descriptors are. The two
most important criteria for the quality and usefulness of a shape
description method in our case are how well it allows a reconstruc-
tion of the organ and how accurate predictions it enables.

Clustering of past patients: The prediction model is based on
identifying clusters of past patients with similar organ variability
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Figure 1: Schematic depiction of the workflow of PREVIS
[FMCM?*21]; in cyan, we highlight the focus of the current paper.

to the new incoming patient, based on incomplete data of the lat-
ter. For this, several clustering alternatives and different metrics are
available—also, influencing the remainder of the workflow. Practi-
cally, we are interested in understanding the following two aspects:
What are the effects of using a different clustering methods (e.g.,
fuzzy or robust methods)? and What are the effects of using dif-
ferent parametrizations in the clustering (e.g., different similarity
measures)? To this end, we will investigate the influence of differ-
ent settings on the clusters and predictions, as well as several other
algorithms that could provide robust alternative solutions.

2. Related Work

To analyze and visualize the variability of organs, a number of
research studies have proposed possible frameworks. Busking et
al. [BBP10] was one of the first to develop an interactive visual
analytics application for exploring shape variations. Other pub-
lications focused specifically on the relationship between organ
shape variability and segmentation errors yielded by different al-
gorithms [RBGR18]. Klemm et al. [KLR*13] focused on human
spines and developed a tool to visually examine different spine
shapes and search for clusters of patients with similarly shaped
spines. To describe the variability of pelvic organs specifically, re-
cent research studies proposed a series of approaches. Raidou et
al. [RCMA* 18] focused exclusively on the bladder and Furmanové
et al. [FGM*20] included a more detailed analysis of the correla-
tion between shape variations and possible toxicities in the entire
pelvis. Finally, in PREVIS by Furmanov4 et al. [FMCM*21], a pre-
diction workflow was proposed, where retrospective patients were
grouped based on their overall pelvic organ shape variability and
their information was used to make predictions for new incoming
patients. Although all these approaches make specific, informed
choices, e.g., for shape descriptors and for clustering methods to
use, none of them explicitly investigates all possible alternatives,
nor provides a thorough assessment thereof. Yet, if approaches such
as PREVIS are to be integrated into clinical decision-making pro-
cesses, a thorough analysis of the entire choice space is required.

Regarding clustering analysis, several previous works have fo-
cused on exploration of various methods specifically for medical
data, since clustering plays a crucial role in cohort analysis. Gotz et
al. [GSCEL11] presented DICON, a tree-map based interactive vi-
sualization tool to analyze patient clusters based on their electronic
health records. Klemm et al. [KLR™*13] evaluated different proxim-
ity measures for clustering of spinal canals. GlaBer et al. [GNPS13]
applied various clustering methods to medical data to classify tu-
mors. Meuschke et al. [MLK"16] investigated the performance of
different clustering algorithms on aortic blood flow. These works
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Figure 2: Bladder centering comparison for three patients.

present diverging results, demonstrating that a thorough evaluation
is necessary for each application scenario.

3. Method

Expression of organ shapes by descriptors: In order to describe
the variability of the organs in a mathematical way, a quantitative
representation is required. Shape description methods are applied
to generate one-dimensional vectors, capturing the shape of the or-
gans. We are looking for a shape description method that should be
fully reversible to the initial shape, extensible to new patients, con-
trollable in terms of size, and enabling easy comparison of organ
shapes. We start the construction of the descriptors by calculating
the bounding box that covers the organ space in an entire cohort.
The bounding box is then sampled with target points distributed in
aregular grid which forms the basis of the descriptor. This approach
ensures that the shape descriptors of different patients rely on the
same target points and have the same dimensions, which makes
them directly comparable for their similarity. Next, a value repre-
senting the probability of presence of the organ is assigned to each
of the target points. PREVIS relied on a kernel density estimation-
based approach proposed by Akgiil et al. [ASYS06]. Alternatively,
we divide the organ space into grid of cells, where each target point
forms the center of one cell. Next, the probability at the target point
is computed as the percentage of overlap between the cell and the
original organ. We call this a resolution-based descriptor as it es-
sentially reduces the resolution of the input shape. Finally, the tar-
get points are ordered into a one-dimensional vector, which is prac-
tical for further calculations. When we need to reconstruct the origi-
nal shape, we employ upsampling of the descriptor vector. First, we
reconstruct the 3D grid of probability values from the vector. Then,
we add new rows and columns between the existing ones and use
linear interpolation to impute the new values. This process can be
repeated iteratively to reach a desired resolution. The upsampled
values are smoothed, and finally, a cut-off value is set, above which
a target point is considered part of the output shape.

To ensure that CT scans from different patients and time steps are
comparable, each CT scan is centered with respect to the prostate.
Thus, the bladder and rectum are analyzed in terms of their rela-
tive position to the prostate. However, this relative location might
differ across patients. For the analysis and prediction of individ-
ual organs, improvements might be gained by centering each organ
type separately. In this way, each organ would be analyzed inde-
pendently from the position of other organs. A comparison of the
two approaches, using a slice of the bladder CT scan from three
radiotherapy patients, can be seen in Figure 2.

Figure 3 (a) highlights the changes throughout a number of
timesteps during treatment for a sample patient’s bladder. To de-
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Figure 3: Bladder shape descriptor computation for one patient.

scribe the overall patterns of each patient, an aggregation of their
timestep descriptors is performed, using the mean and standard de-
viation of the probability at each target point for each individual
organ (Figure 3 (b,c)). Finally, the mean and standard deviation de-
scriptors of all organs are concatenated into one single patient de-
scriptor. Since all patients have the same descriptor length, ensured
by the use of same target point base, they can be easily compared
and used as an input for the patient clustering.

Clustering of past patients: In our workflow, the predictions for
new patients are constrained by the information coming from a
group of past patients with the highest similarity. To facilitate this,
clustering techniques are used to divide the patient cohort accord-
ing to their similarity. One option for a clustering algorithm is an
agglomerative hierarchical clustering (AHC), which was also used
in PREVIS. Other clustering alternatives that we include in our ap-
proach are k-means, k-medoids, model-based clustering, and fuzzy
c-means, being the most common methods. In addition to the al-
gorithm choice, we also need to decide on a distance measure and
a linkage criterion for the AHC. The distance measure specifies a
mathematical measure to describe the distance between two obser-
vations and the linkage method determines which observations are
used to compare different clusters. PREVIS relied on Euclidean dis-
tance and complete linkage, and we additionally include Manhat-
tan, Minkowski, Canberra, Binary and Maximum distance, as well
as single, average, McQuitty, median, centroid, and Ward linkage.

Prediction workflow: The information of the new patient and of
the most similar cluster of patients is then used to generate a large
sample set of possible shape variations. For this, the probability
change across different timesteps is calculated as a deviation from
the mean shape of each patient. Subsequently, the main patterns
from the shape variations are extracted by calculating the domi-
nant eigenmodes of the data using principal component analysis
(Figure 4 (a)). This information is applied to generate further sam-
ples of the shape changes. A user-selected quantile of the changes
at each specific target point is then calculated. The resulting val-
ues represent a deformation that is added to the mean shape of the
new patient, thereby forming the final prediction. Quantiles below
0.5 consist of negative changes in the probability and result in a
shrinkage of the mean shape. Quantiles above 0.5 represent a shape
variation that increases the mean shape in size. An example of a
bladder shape prediction including the probability change for dif-
ferent quantiles and a cut-off of 0.5 is shown in Figure 4 (b).
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Figure 4: Prediction workflow: Shape deformation samples gener-
ated from the past patient data using PCA (a) are applied to the
new patient (b, left) to predict shape variations (b, right).

4. Results

Expression of organ shapes by descriptors: To evaluate the abil-
ity of different descriptors to reconstruct the original input shape,
we first focus on the probabilistic shape description method used
in PREVIS. Figure 5 (a) presents a comparison of the upsampled
shape descriptors using various cut-off values and their respective
reconstruction accuracy measured by the Dice coefficient. Each line
in this visualization represents a single patient, with the results cal-
culated as an average accuracy of the available timesteps for a given
organ. In this case, different patients require significantly different
cut-off settings to obtain the best reconstruction of their shape de-
scriptor. Also, the reconstruction overlap barely reaches 80%, even
at the best possible settings. The rectum in particular tends to pro-
vide the worst results, as it can be seen by several patients peaking
below an overlap of 50% in Figure 5 (a). However, this was ex-
pected, due to the more irregular and non-spherical shape of the
rectum, compared to the other two organs.

Performing the same analysis for our resolution-based descrip-
tors, we get much better results, as shown in Figure 5 (b). Apart
from more consistent patterns, this method also achieves an overall
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better reconstruction accuracy. The peak accuracy across all three
organ types is achieved by a cut-off value of 50%. This aligns with
our expectations, as this threshold describes the limit above which
the majority of a given target region is part of the underlying organ.
The rectum tends to yield the worst reconstruction accuracy, due to
its irregular shape. Therefore, opting for smaller grid dimensions
and increasing the overall number of target points might improve
the quality of the descriptors and their reconstructions. Figure 5 (c)
shows this by decreasing the dimensions of the grid from 15 to
10 mm. Compared to Figure 5 (b), the reconstruction accuracy has
increased for all organs. In addition, the rectum now shows more
consistent patterns across patients.

B Overall, our analysis has highlighted that our resolution-based
descriptors provide an alternative solution with more accurate
and reliable organ representations than PREVIS—especially with
a fine grid resolution (e.g., 10 mm grid resolution).

Clustering of past patients: For the topic of clustering, we first fo-
cus on hierarchical clustering, which was also the method of choice
in the original implementation of PREVIS. This approach requires
two further decisions. First, a distance method is required to com-
pute a distance matrix between each pair of observations in the co-
hort. Second, a linkage method determines the way different clus-
ters are compared and subsequently merged into larger clusters.

Focusing on the calculation of distance, the goal of this step is
to compare different observations for their similarity using a spe-
cific distance method. The patient descriptors used as input data
for this step capture the mean shape and standard deviation of the
shape descriptors for each individual patient. The overlap between
the mean shape of two different patients is directly measurable by
the Dice coefficient, which allows us to evaluate how well different
distance measures correspond to the physical overlap of the organs.
Optimally, a decrease in the overlap between two patient’s organs
should be accompanied by an increase in their distance. Thus, if
we rank the patients in the cohort based on their similarity to a sin-
gle patient of interest, the ranking should present a steady decrease
in the Dice coefficient. Figure 6 illustrates the mean overlap for
the bladder using different distance measures. It also compares the
prostate- and individually-centered descriptors of Figure 2. Overall,
the individually-centered descriptors perform better and the desired
ranking patterns are best achieved by the Euclidean distance.

The linkage method determines how the observations captured
in the distance metric are organized into a hierarchy of clusters. To
explore this topic in isolation, we restrict the input distance metric
to the individually-centered descriptors and the euclidean distance
as the distance measure, as this combination has been shown to be
optimal. The key question for this problem is how many clusters
should be chosen. To address this, we compared the elbow plots for
different linkage methods. Our results showed, that depending on
the linkage method used, the use of 3 or 4 clusters may be a good
choice. The only exception to these patterns is the average linkage,
which tends to produce irregular results.

To examine the underlying cluster assignments under different
linkage methods, Figure 7 visualizes the patient cohort using mul-
tidimensional scaling and compares the cluster assignment of in-
dividual patients using 3 clusters. For the centroid, median, and
single linkage methods, it is noticeable that only one large cluster

is present, while all other clusters isolate individual patients in the
cohort. Although this can be useful for identifying potential outliers
in the cohort, it is not an optimal setting for our prediction work-
flow. For all other linkage methods, the clusters are divided into
more equal groups of patients, especially for the complete, Mc-
Quitty, and Ward methods. AHC provides a way to cluster patients,
but other clustering methods can be used. Among all alternatives
we investigated (k-means, k-medoids, model-based, fuzzy c-means,
and AHC), the clustering results did not differ significantly.

B Overall, our analysis has highlighted that different settings (dis-
tance metric and linkage) yield only slightly different clusters.

Prediction worfklow: To evaluate the outcomes of the prediction
workflow under different settings, we employ a leave-one-out ap-
proach by simulating each patient as a new patient with incomplete
data—similarly to the evaluation presented in PREVIS. One gen-
eral finding is that when more variation is considered for the pre-
dictions, larger deviations can be observed across different patients
and clustering settings. However, even for the most extreme cases
of added variation, there is little evidence that different clustering
settings influence the outcomes of the prediction. Figure 8 shows
the prediction results achieved with AHC with Euclidean distance
for the different linkage methods shown in Figure 7. We can see
that the linkage methods of centroid, median, and single perform
slightly worse than the other methods. However, the difference is
not large enough to draw general conclusions about the superiority
of the other settings.

B Overall, our analysis has highlighted that different clustering
methods provide comparable results, although when more shape
variability is considered the outcomes start to deviate.

5. Conclusions and Future Work

In this work, we analyze the impact of statistical and machine learn-
ing choices on generative models that predict pelvic organ variabil-
ity for RT. We particularly focused on the organ shape descriptors
and clustering methods (and their parametrizations). Our results in-
dicate that the most significant choice is the shape descriptor. In the
future, we would like to investigate the influence of missingness
and/or noise on the input data, as well as the propagation of uncer-
tainty throughout the predictive workflow.
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binary canberra euclidean

DescType
Individually Centered
Prostate Centered
08
06
04
°
2
3 o 10 20 0 0 10 20 0 0 10 20 30
8 manhattan maximum minkowski (p=3)
B0
=
5
3
=
08-
06
04
0 10 20 q 0 0 10 20 30

10 2
Similarity Ranking

Figure 6: Mean overlap of bladders w.r.t. distance metric ranking.
The Euclidean distance exhibits the most stable linear relationship
between organ similarity and overlap.

[GNPS13] GLASSER S., NIEMANN U., PREIM B., SPILIOPOULOU M.:
Can we distinguish between benign and malignant breast tumors in DCE-
MRI by studying a tumor’s most suspect region only? In Proceedings
of the 26th IEEE International Symposium on Computer-Based Medical
Systems (2013), IEEE, pp. 77-82. 2

[GSCE11] Gotz D., SUN J., CAO N., EBADOLLAHI S.: Visual clus-
ter analysis in support of clinical decision intelligence. In AMIA Annual
Symposium Proceedings (2011), American Medical Informatics Associ-
ation, p. 481. 2

[KLR*13] KLEMM P., LAWONN K., RAK M., PREIM B., TONNIES
K. D., HEGENSCHEID K., VOLZKE H., OELTZE S.: Visualization and
analysis of lumbar spine canal variability in cohort study data. In Vi-
sion, Modeling & Visualization (2013), The Eurographics Association,
pp. 121-128. 2

[MLK*16] MEUSCHKE M., LAWONN K., KOHLER B., PREIM U.,
PREIM B.: Clustering of aortic vortex flow in cardiac 4D PC-MRI data.
In Bildverarbeitung fiir die Medizin 2016 (2016), Springer Berlin Hei-
delberg, pp. 182-187. 2

[RBGR18] REITER O., BREEUWER M., GROLLER M. E., RAIDOU
R. G.: Comparative Visual Analysis of Pelvic Organ Segmentations.
In EuroVis 2018 - Short Papers (2018), The Eurographics Association,
pp- 3741. 2

[RCMA*18] RAIDOUR. G., CASARES-MAGAZ O., AMIRKHANOV A.,
MOISEENKO V., MUREN L. P., EINCK J. P., VILANOVA A., GROLLER
M. E.: Bladder Runner: Visual Analytics for the Exploration of RT-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

average centroid complete
4 . .
2
o-
2-
mequitty median single
4 .
o~
c 2
°
2o
o
£
a-2
ward.D ward.D2 50 25 00 25
4 . .
2- . . Cluster
N . N . 1
o1 .t .t R
. . . . .3
2
5.0 25 0.0 25 5.0 25 0.0 25
Dimension 1
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