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Figure 1: We analyze a multivariate data ensemble obtained during an experiment with pig subjects attached to multiple medical devices in
an intensive care unit. The overall state progression over the set of time series per animal is shown as a time-curve-inspired plot. A line plot
showing a selected measurement and small multiples composed of selection-dependent line plots allow for state comparison and in-depth
analysis. For an ensemble of multiple subjects, a time curve boxplot allows to compare subjects. Photograph courtesy of Peter et al. [Pet18].

Abstract
We present an approach for visual analysis of high-dimensional measurement data with varying sampling rates in the context
of an experimental post-surgery study performed on a porcine surrogate model. The study aimed at identifying parameters
suitable for diagnosing and prognosticating the volume state—a crucial and difficult task in intensive care medicine. In intensive
care, most assessments not only depend on a single measurement but a plethora of mixed measurements over time. Even for
trained experts, efficient and accurate analysis of such multivariate time-dependent data remains a challenging task. We present
a linked-view post hoc visual analysis application that reduces data complexity by combining projection-based time curves for
overview with small multiples for details on demand. Our approach supports not only the analysis of individual patients but also
the analysis of ensembles by adapting existing techniques using non-parametric statistics. We evaluated the effectiveness and
acceptance of our application through expert feedback with domain scientists from the surgical department using real-world
data: the results show that our approach allows for detailed analysis of changes in patient state while also summarizing the
temporal development of the overall condition. Furthermore, the medical experts believe that our method can be transferred from
medical research to the clinical context, for example, to identify the early onset of a sepsis.

CCS Concepts
• Applied computing → Health care information systems; • Mathematics of computing → Time series analysis; Dimension-
ality reduction; • Human-centered computing → Information visualization;
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1. Introduction

In a modern clinical setting, patients in an intensive care unit (ICU)
are closely monitored by multiple medical devices. In such a sce-
nario, this multitude of measurements has to be communicated for
interpretation, either to medical personnel for progressive analysis
(monitoring), or—as in our context—to medical researchers for
post-hoc analysis (experiments). However, humans have difficul-
ties aggregating more than three quantities, especially under the
presence of uncertainty [GASM17]. On the other hand, multiple
parameters are often needed to provide an overall impression of the
condition of a patient. Only considering a combination of specific
changes in multiple parameters will hint toward important transi-
tions of the whole homeostatic system. For instance, individual
parameters might seem uncritical if considered independently, but
in conjunction, can indicate an imminent circulatory shock.

Ideally, an illustration of patient state would be based on the en-
tirety of time-varying interacting variables, without having to rely
on a set of specific, pre-defined parameters. Moreover, such an ap-
proach would reveal high-dimensional processes clearly without be-
ing overly specific and still provide fine-grained details on demand.
In practice, one of the primary problems with multivariate time-
varying data is the conceptual and physical limitation of straightfor-
ward visualization techniques: most established approaches, such
as scatterplot matrices, do not scale well enough to support the
assessment of more than a few variables due to visual clutter and
required mental effort to draw the right conclusions. In response to
this observation, many expert users resort to univariate visualization
techniques and (over-)simplifying derived characteristic quantities
that take little advantage of the human visual system. An example of
this approach is the commonly used circulatory shock index, which
is derived from a set of relevant parameters [CBK*09; BGT*05;
RSB*94] but does not provide further information about the under-
lying condition of the patient.

In this work, we propose a visualization approach that facilitates
the exploration and analysis of multi dimensional, time-dependent
ICU data based on time curves [BSH*16; vdEHBvW16], small mul-
tiples [Tuf92], and comparative views for an ensembles subjects. To
this end, we studied various design choices in close collaboration
over several months with three medical researchers from the surgi-
cal department, who are also co-authors of this work. We showcase
our approach using real-world data obtained from an experimental
surgery study performed on a porcine surrogate model (cf. Figure 1).
To compute our time curves, we have analyzed various projection
techniques regarding their suitability for our application. Using a
generative data model, we were able to identify varying frequency
and oscillation in general as a projection-quality-determining factor.
In order to allow the user to explore different subsets of the complete
data set, the user can select and deselect data sources and single
variables stemming from these sources. To compare patient states
and drill down into details, our application allows the user to select
multiple data points in time that are then shown using small multi-
ples. The small multiples view is composed of line plots that allow
for the assessment of differences within a user-defined temporal
context. The contributions within our web-based visualization appli-
cation can be summarized as follows: the visual analysis approach
to high-dimensional and time-varying ICU data, the adaption of

various visualization techniques using z-score and data-depth-based
statistics to ease outlier analysis, a domain-driven generative data
model to evaluate the applicability of various dimensionality reduc-
tion algorithms to ICU measurements, and a discussion containing
expert feedback as well as an outlook for clinical surveillance.

2. Related Work

Although the visualization of high-dimensional and time-varying
data has been investigated for more than a decade and has been
reviewed in many extensive surveys [AMST11; KH13; HW13;
LMW*17], it is still an active area of research. Classical multi-
variate visualizations such as parallel coordinate plots and scatter
plot matrices are either a poor fit for visualizing multivariate time
series, or only suitable for specific tasks like finding correlations
between single variables. Thus, tailored task-driven visualization
methods are needed [Mun15] to facilitate an effective visual analysis
of complex multivariate time-varying data. Since we are dealing
with a number of time-varying input dimensions exceeding the ca-
pabilities of classical multivariate visualization, we subsequently
briefly review suitable approaches and techniques.

Dimensionality Reduction A trend for the visualization of multi-
variate data is to use dimensionality reduction. The basic idea of
dimension reduction with regards to multivariate data is the reduc-
tion of the total dimension amount while maintaining some or ide-
ally most of the information content of the original data set. This is
achieved by deriving new variables summarizing specific parameters
of the data. In the most simple form, this derivation is performed by
basic calculations generating context-dependent new variables like
indices (e.g., the abovementioned shock index [CBK*09; BGT*05;
RSB*94]). Since this way of deriving new variables depends on
the context of the used variables, it is not particularly useful in a
general context. Thus, more general ways of deriving new variables
are needed. A typical example of such a generalized way is Princi-
pal Component Analysis (PCA) [Hot33; Pea01], which computes a
linear projection based on variance. Another widespread technique
is Multi-Dimensional Scaling (MDS) [Tor52; BG05], which op-
timizes for globally representing high-dimensional distances in a
low-dimensional space. In all generality, there is neither a perfect
solution nor a uniquely defined global optimum to this problem.
Thus, a wide range of dimension reduction techniques has been
developed. A popular choice is the computationally rather expensive
t-Distributed Stochastic Neighbor Embedding (t-SNE) [vdMH08],
which focuses on clustering similar data points by optimizing for
adjacency and entropy instead of distance, generally leading to a
misrepresentation of global distances in the embedding. A more
recent approach is Uniform Manifold Approximation and Projection
(UMAP) [MHM18], which aims at reducing this misrepresenta-
tion of distant data points. Since it is not clear in advance which
of these approaches is suitable, our application offers the choice
between PCA and MDS. After some initial experiments using t-
SNE and UMAP, it quickly became apparent that their performance
characteristics do not fit our requirements. This is primarily due to
their reduced ability in preserving global distances, as mentioned
by McInnes et al. [MHM18]. Moreover, our application guides
the data-driven choice of dimension reduction technique, based on
approaches from research on quantification and visualization of
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projection error [SSK10; HAF13; WSA*16]. To gain a better un-
derstanding of the overall suitability of the dimension reduction
techniques for our application, we use a domain-specific generative
data model for evaluation purposes [SBK*16] (see Subsection 5.2).

Visualization of Multivariate Time Series Our medical visual
analysis application was inspired by several techniques to visualize
multivariate time series that leverage dimension reduction: Jaeckle
et al. [JFSK16] use a technique called temporal-MDS to project
non-temporal dimensions into a single dimension while retaining
one display dimension for the mapping of the time component. This
approach results in an optimal depiction of the progressing time
but impedes the distinction of different states since they are dis-
tinguished though position on a single axis. However, we want to
provide an intuitive overview of differences in patient states. Thus,
the utilization of the two major axes dimension for non-temporal
components seems like a better choice. Bach et al. [BSH*16] con-
curred with this assessment and developed the time curve concept.
They used MDS to project the high-dimensional data in two dimen-
sions while keeping the temporal succession obvious to the spectator
by connecting consecutive points using a Bézier curve. A similar
approach was previously presented by Bernard et al. [BWS*12],
who used PCA instead of MDS. Concurrently to Bach et al., van
den Elzen et al. [vdEHBvW16] developed a similar technique to
visualize temporal evolution of graphs. We stick to the term time
curve due to its intuitiveness. These two techniques can be classified
as connected scatterplots, which follow the same idea of connecting
temporally consecutive data points, but do not use dimensionality
reduction and date back to 1790 [HKF16]. An example is the work
of Grottel at al. [GHWG14], who map time to line density in tradi-
tional scatter plots and parallel coordinates. Recently the concept of
time curves has been used by Hinterreiter et al. [HSS*20] to analyze
solutions in problem solving tasks. We adopt the concept of time
curves and integrate it into our exploratory data analysis application.
Due to the oscillating nature of the ICU data, we extend the original
concept of time curves with filtering. We use this filtering step to
declutter the data—and, consequently, the resulting visualization—
and to remove outliers. Our application can handle not only single
data sets but also multiple ones in order to compare the ensemble
members (i.e., pigs). For the analysis of multiple data sets, we ex-
tend the time curve visualization with the notion of data depth and
curve boxplots [MWK14]. Data depth acts as a measurement to
describe how central a single data point is the entirety of a larger
data set: the higher a data depth, the more central a given data point
is [CN08]. While data depth was already applied to time series in the
past [LR09; LSLG14], we explore the application of this concept to
high-dimensional time series projected to two dimensions.

Medical Visualization Ordonez et al. [OdL*10] explored the usage
of star charts for visualizing ICU data. While this works reasonably
well for a small number of variables, visual scalability is limited.
In the course of the increasing digitalization, the visualization of
electronic health records (EHR) has gained much attention. Zhang
et al. [ZMG*10] proposed a visual analytics framework that unifies
EHR information for use in emergency rooms. While it also shows
time-varying multidimensional data, their approach is not scalable
and assumes discrete patient states and transitions, not numerical
measurements. Similarly, Rind et al. [RAM*11] presented VisuEx-

plore, a tool for the visual analysis of long-term medical records
of patients with chronic diseases. Their application case is differ-
ent from ours since their data is more sparsely sampled over much
longer periods of time. Ten Caat et al. [CMR05] introduced the con-
cept of tiled parallel coordinates for multichannel EEG data. While
their data is more similar to ours, they just have multiple sensors of
the same type that all measure at the same frequency. They also use
aggregation over the whole measurement time, which is not suitable
in our case.

3. Medical Background

In this section, we provide a summary of the experiment and required
clinical background knowledge—details about the framework and
experimental setup can be found in works by Peter et al. [PKK*14;
Pet18; KPT*18]. Preliminary research showed insufficient knowl-
edge regarding the assessment of the volume state (i.e., the state of
an organism with regards to the amount of fluids inside the body) in
clinical practice for hospitalized patients. Our research was guided
by observations in volume state changes of individual pigs during
the previously conducted auto pilot study (AP). The subsequent
volume-need-analysis study (VNA) was conducted to answer re-
search questions regarding the reliable assessment of volume states
in a clinical context. For example, in clinical practice, one indicator
for a general lack of fluid is poor elasticity of the skin. While testing
through pinching is easy and cost-efficient, it requires the patient to
be in a hazardous state for the test to work. Thus, one interesting
questions is whether it is possible to predict states and potential
problems by observing measurable quantities of the organism so
that doctors can proactively intervene, instead of being forced to
react. To this end, a set of ICU devices commonly found in a clinical
context was used to obtain the measurements. However, the setup
was far more comprehensive than a regular setup in a hospital.

The VNA study was conducted using 10 fully anesthetized pig
surrogates in accordance with ethical guidelines. In total, the ex-
perimental setup measured roughly 250 parameters (omitting non-
relevant parameters for error logging) over 96 hours, with two ex-
periments being ended prematurely. Recorded parameters include
a variety of cardiovascular parameters such as blood pressure and
heart rate, blood gas analysis results such as ion and carbohydrate
concentrations, as well as general parameters like weight and di-
uresis volume. All measurements were collected from a set of nine
devices via manufacturer interfaces and wiretapping, depending on
the device. Each sample was stored as a tuple consisting of the mea-
surand, time, and value. While some devices sample adaptively, the
average sampling rate varies between 1/3600 Hz (blood gas analysis)
and 500 Hz (electrocardiogram). All devices are synchronized to
an accuracy of approximately one second. The subset of the data
that we used consisted of 1.6 GB of CSV files per subject, with each
CSV file containing one time series with a size 1 kB to 12 MB.

Our domain scientists want to identify yet unknown relations
between the volume state and other physiological parameters to
guide further clinical research and development. The experimental
setup continuously monitors infusion rates (in-flow), diuresis (out-
flow), and the bodyweight of the pigs to obtain almost complete
knowledge about the volume state of subjects. Moreover, the setup
automatically manages homeostasis (internal steady-state) to en-
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sure reproducible conditions. During the study, usage of forced-air
warming blankets was implemented and suspect to data collection
to measure and control the influence of temperature from the fifth
subject onward.

Initially, the animals were given defined amounts of fluid using
intravenous infusions to reach an increased fluid state. Then, fluid
supply was stopped and the body fluid was reduced through diuret-
ics. The fluid state was assessed at defined states by performing a
variety of tests, including a Trendelenburg maneuver (movement
compensation test), a respiratory hold test, laboratory analysis, and
ultrasound measurements of the diameter of the vena cava (large
veins that return deoxygenated blood from the body into the heart).

4. Requirements

The measurement data already defined the quantity structure (see
Section 3); therefore, we can focus the requirement analysis on the
functionality. The high-level goal of our collaboration is to provide
an orthogonal approach to visual analysis of individual measure-
ments. In line with our experts, we argue that a loss of information
to gain insights into high-dimensional processes is justifiable: as
our primary use case is the post-hoc analysis of ICU data, our sys-
tem cannot cause harm to the animal subjects. Although this is out
of scope for the post-hoc analysis use case, our application would
be backed up by validated alarm systems in a real-time hospital
setting, minimizing potential hazards caused by misinterpretation
and loss of information. Thus, the following goals and requirements
were defined iteratively during multiple design sessions and on-site
meetings together with our medical domain experts:

R1 The main objective is to be able to tell whether the patient is in
a stable state or not. Since a patient does not necessarily have to be
within the ideal parameter ranges, communication of change rates
and state comparison is more important than absolute values.
R2 Both the aggregate of change as well as individual changes can
be of interest. Therefore, the visualization application should allow
for both a top-down as well as a bottom-up exploration of the data.
R3 Robust statistical methods should be used to guide the search
for interesting patterns and relevant behavior—some parameters are
heavy-tailed distributed and oscillating.
R4 Medical researchers have high expectations regarding sanity-
checking and explanation of phenomena due to the nature of the
medical domain—easy interpretation without a strong mathematical
background is of major interest.
R5 Lastly, it should be possible to put individual patients in the
context of the entire ensemble to assess whether a patient is repre-
sentative or exceptional.

5. Visualization of ICU Data

Our goal was to combine several visualization approaches in one
application tailored to medical experts. In this section, we describe
the techniques we use as components and their adaption to our
specific application domain. In accordance with the visualization
pipeline [Mor13], this includes data cleansing, an evaluation of
dimensionality reduction algorithms, and a description the the visual
mappings, which consist of filtered time curves and small multiples
composed of line plots for in-depth analysis and comparison of

patient states, as well as time curve boxplots for ensemble analysis
(Figure 1).

5.1. Data Cleansing and Preprocessing

We cleanse our data beforehand since our users are not interested
in raw data and unambiguous measurement errors. Given a set of
raw time series, we drop categorical data and time series that have a
constant value, since these are not of interest. Moreover, we remove
erroneous, as defined by a list of user defined error codes, and filter
inaccurate samples. To identify and remove such outliers, we have
explored various techniques, such as the Savizky-Golay filter [SG64]
that approximates a variable using a polynomial. While this filter
removes severe outliers, it also introduces artificial values and thus
conflicts with R4. Ultimately, we opted for a z-score-based filter that
classifies values as outliers that are not contained in the hull spanned
by the moving average and standard deviation. In particular, we use
z-score filtered data to make non-robust visualization techniques
more resilient regarding outliers and oscillating data values.

Apart from the abovementioned robustness, all considered dimen-
sionality reduction techniques require a uniform sampling, i.e., all
components of a high-dimensional point have to be defined. Due
to the high variance in sampling rates (ranging from 1/3600 Hz for
the blood gas analysis to 3 Hz for the heart rate in our data subset),
a simple downsampling approach would lead to massive loss of
data. Note that we do not use linear interpolation to fill in missing
values since this would introduce an invalid assumption about the
measured quantities. Therefore, we decided on a more data-driven,
assumption-free strategy to unify sampling rates across all time
series by forward-filling missing values (i.e. the last valid value will
be used until the next valid value is reached). Our medical experts
also approved of this strategy. Thus, we effectively down-sample
time series with a higher sampling rate than a chosen reference
sampling rate and up-sample time series with a lower sampling rate,
respectively (i.e., database left join). As a result, our entire data
processing pipeline is also in line with R4, as it does not modify
historical samples.
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Figure 2: Synthetic sample data set, consisting of six curves which
each corresponding to a single synthetic subject, of our generative
data model projected using PCA (left) and MDS (right). For two
subjects a constant value was added to the function, while for an-
other two subjects, a constant value was subtracted. Different colors
are used for easier visual separation. Note the visually prominent
loops as well as the increased distortion at beginning and end of
the MDS time curves. The filled circles (●) correspond to the time
curves starting point and the dotted circles (⊙) to their endpoint.
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Figure 3: Extract from the measurements of our dimension reduction evaluation. (a) The plot shows the influence of variation of model
parameters with increasing amounts of standard deviation (SD) on the x-axis for MDS and PCA. Visually speaking, SD is the degree of
deviation around an ensemble of randomly chosen centroids. The y-axis shows the percentage of maximum remaining variance not embodied
by PC1 and PC2 for PCA, and the percentage of maximum stress induced by MDS. As observable, varying frequency is the decisive factor for
projection quality with both methods. The frequency histograms at SD 0.1 (b) and SD 0.9 (c) over t/2 are shown for reference.

5.2. Dimensionality Reduction

Time curves project a time-varying high-dimensional space into a
two-dimensional space, where time is not part of the dimensionality
reduction, i.e., (t,Rn)↦ (t,R2). Time is added again after the di-
mensionality reduction by connecting the points in chronological
order using a line. Therefore, we had to choose a suitable dimension
reduction technique. However, the VNA data set is an experimental
data set, containing unknown events, trends, and patterns. Thus, we
use a generative data model [SBK*16] to evaluate the chosen dimen-
sionality reduction. Our data generator emulates the properties of
the expected real-world multivariate time series using a combination
of sinusoidal functions and piecewise linear ones. To justify the
validity of our generator, we refer to the parameter range of the de-
vices used during the experiment, as well as expert feedback. Thus,
the resulting time series are representative regarding experimental
measurements, as they contain variables with repeating patterns of
varying frequency and amplitude (e.g., pulse, respiratory monitor-
ing) in conjunction with aperiodic, linearly changing quantities (e.g.,
temperature, weight). This approach allows us to establish a link
between the parameters of the generative model and the output of the
dimensionality reduction algorithm. This link is established through
an evaluation metric: for PCA, it is the length of the first two compo-
nents; for MDS, it is stress. This form of sensitivity analysis would
not be possible using only a few data sets with unknown properties.
Moreover, the generative data model helps us to do sanity checking
and allows users to familiarize themselves with the application using
easy-to-understand data (R4).

The example shown in Figure 2 uses six synthetic time series to
illustrate differences between PCA and MDS. In order to model
physiological processes, which often exhibit oscillating behavior,
the synthetic data sets are sinusoidal curve ensembles with vary-
ing frequency, amplitude and phase. In general, MDS represents
long distances better than short ones, causing the beginning and
end to be slightly deformed. Moreover, MDS tends to introduce
loops that are not present in the data, which might be caused by
non-optimal flipping and rotation while iterating (unfavorable local
optima). PCA, on the other hand, shows the oscillating behavior of
the data while separating dissimilar clusters of time series. Figure 3
shows the relative robustness of PCA and MDS regarding variation
of the model parameters: frequency, amplitude, and phase. While

amplitude and phase have little impact on projection quality, varying
frequencies quickly degrades projection quality. Considering both
aspects, we rate PCA as the suitable default and more defensive
choice for dimensionality reduction in our application (R3).

Our recommendation to use PCA is motivated by caution and not
in line with the time curve implementations of Bach et al. [BSH*16]
and Van Elzen et al. [vdEHBvW16], who use MDS for their time
curves. MDS minimizes stress σ =∑i< j wi j(d̂i j−di j)2, where wi j
is a weight (usually set to 1.0), di j is the high-dimensional Euclidean
distance, and d̂i j is the two-dimensional Euclidean distance. Min-
imizing σ has several drawbacks: First, small distances are less
well represented than large distances. Second, distance is optimized
globally, which is undesirable in higher-dimensional spaces since
all distances tend to become equally near and far apart—this is
also known as the curse of dimensionality [HAK00]. Third, most
algorithms that minimize stress do so in a point-centric manner, e.g.,
SMACOF [LM09]. The last issue often leads to suboptimal local
optima without proper and expensive initialization of the optimiza-
tion process. In contrast, PCA avoids the first and last issue entirely
while being linear, which is favorable regarding R4. We assume that
issues regarding MDS are less prominent in the use cases of Bach et
al. and Van Elzen et al., since there is less oscillation in their data
than in our use case.

The ensemble analysis (R5) requires a collective dimensionality
reduction of multiple subjects. Here, we apply Z-transform individ-
ually to each subject prior to the PCA. The PCA is then performed
for all subjects at once, ensuring identical loadings and, in turn, prin-
cipal components, allowing for comparisons between the subjects
(see Figure 4). Consequently, and for a meaningful comparison, the
same set of dimensions must be used for each subject.

5.3. Time Curve Boxplots and Scarf Boxplots

When plotting multiple time curves in a single visualization, the re-
sult is often a spaghetti plot dominated by visual clutter even for rel-
atively low numbers of curves. Especially the overlapping curves are
challenging to assess, rendering it difficult to see which one of the
curves is representative. Therefore, we extract a representative hull
that encloses a centrally-outward ordered share of curves. To estab-
lish this order, we resort to a class of order-statistical metrics called
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Figure 4: Schematic depiction of the normalization and PCA pro-
jection for multiple subjects. Subjects are normalized individually
using a z-transformation. The resulting data frames are then con-
catenated and PCA is subsequently performed on this concatenated
data frame ensuring identical loadings allowing comparison of
individual subjects.
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Figure 5: Schematic depiction of functional band depth. The band
(gray), indicating the most representative functions (bounding func-
tions, black). The blue function is included, i.e., belonging to the
group of most representative function, whereas the red one is not in-
cluded, and thus is less representative for the ensemble of functions.

data depth [CN08] that describe how central an element is within
an ensemble. In this context, centrality can be understood as repre-
sentativeness. We use a metric called functional band depth [LR09],
which builds on functional bands. A functional band Bk consist of
k ≥ 2 functions fir(t ∈ I) with restriction interval I:

Bk(
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi1
⋮
fik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
) = {(t,y)∶ t ∈ I, min

r∈[1,k]
fir(t) ≤ y ≤ max

r∈[1,k]
fir(t)} (1)

A function lies between other functional bands if it is enclosed by
the respective minimum and maximum values, as shown in Figure 5.
Formally, we can count this condition using an indicator function χ

with true↦ 1 and f alse↦ 0 to define band depth BDn,k.

BDn,k( fi) =
k
∑
j=2

( n
j )
−1 j

∑
l=1

χ({(t, fi(t)) ∣ t ∈ I} ⊂ Bl(
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi1
⋮
fil

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
)) (2)

This formula first counts how often a function fi is contained in
bands of length l. The number of actual inclusions is then put in
relation to the possible ones. The process is repeated from bands of
length 2 to up to bands of length k. A smaller k is more sensitive to
variation, whereas a larger k is the more resilient to small fluctuation.
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curves) without time curve boxplot

PC
2

PC1

(b) time curve ensemble (twelve
curves) with time curve boxplot

Figure 6: Illustration of decluttering and outlier analysis using sum-
marization via functional data depth boxplots. Left: twelve cluttered
time curves. Right: the same curves with the upper 50% quantile
merged into a boxplot area. The box indicates the set of most repre-
sentative curves, while the outliers remain individual curves.

Note that Equation 1 can also be expressed as a convex combination,
which emphasizes the enclosing nature of the isosurfaces that can be
defined on this metric, i.e., our enclosing hull. While data depth has
been used to reduce visual clutter and design boxplots for quite some
time [SG11; MWK14], it has not been applied to dimension-reduced
curves yet to our knowledge. In this application the calculation of
the functional band depth is performed on the high dimensional,
z-transformed, data. The enclosing hulls are then generated, accord-
ing to the order established by data depth, from unsmoothed time
curves after dimensionality reduction. Thus, included curves do not
have to lie entirely in the convex shape of the enclosing hull and
the convex hull does not perfectly describe the smoothed curves.
Figure 6 shows our time curve boxplot that covers the 50% quantile
of most representative time curves, allowing the omission of all
time curves included in this quantile. Consequently, recognizing
which curves are outliers and which ones are representative for the
whole ensemble is easily possible. We additionally can use a second
boxplot area covering a wider quantile range, thus decluttering the
visualization even further. Figure 7 shows this concept applied to an
ensemble of eight curves. By showing the two quantiles (50% and
80%) and the most representative curve (which corresponds to the
median), we follow the well-known design of a standard boxplot.

As the containment of a curve in the box area is not only depen-
dent on being at the correct position, but on being at the correct
position at a specific point in time, it becomes difficult to judge when
a given curve is not included in the curve box area in comparison
to another curve at that time. Hence, we provide an accompanying
scarf boxplot (see Figure 8) that depicts box inclusion over time.
Since the scarfs are temporally aligned, it is easy to judge when a
curve is representative and or not in comparison to other curves.

5.4. Filtered Time Curves

Since all dimensionality reduction algorithms emit rather cluttered
time curves for real-world as well as generated data, it became clear
that we had to reduce the complexity of the curves to cope with
visual clutter.

Therefore, we smoothed the emitted data using a Bartlett-window
moving average. The width of the moving window determines the
degree of smoothing, which can be adjusted by the user. A wider
window results in stronger smoothing, with higher deviations from
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Filtered time curves

Traditional
boxplot

Convex hulls of     unfiltered time curves and 
filtered   median time curve

Figure 7: Visual metaphor of the boxplot as applied to time curves.
The cluttered view of eight time curves is simplified by represent-
ing curves as areas corresponding to different quantiles: The 50%
quantile (dark gray) corresponds to the box of the boxplot, while
the 80% quantile (light gray) corresponds to the whiskers. The red
time curve is the most representative one (by functional data depth),
and thus corresponds to the median line in the boxplot.

Figure 8: Scarf boxplot illustrating representativeness over time
from left to right for each subject that is not included in the lesser
quantile box plot area. Colors and labels correspond to the ones in
the main time curve boxplot, while the dark gray and gray markers
indicate inclusion in the respective boxplot area.

the original data, whereas a smaller window in less smoothing and
stronger adherence to the data emitted from the dimension reduction
algorithm. Smoothing results in a cleaner curve and that is overall
visually more appealing. Obviously, filtering introduces a loss of
information (R4). Hence, we devised different ways to compensate
for this loss of information.

One option is a heat map that shows the density of data for a given
region before smoothing (Figure 9 left). We use a Gaussian kernel
in conjunction with kernel density estimation to generate a smooth
heat map. This map allows assessing how many time points lie in
the proximity of a time curve segment and, thus, enables the viewer
to draw conclusions about the velocity of changes in the system.

The other option is a mapping of variables onto the time curve
itself (Figure 9 right). Since line color was already used to display
the elapsed time since the start of the experiment, we chose line
width as a secondary channel for information. To ensure compara-
bility with the heat map approach, the density of measurements in
the vicinity of a time curve segment can used as line width. That is,
a thicker time curve indicates less change in the patient state (i.e.,
many projected points that are close together) and vice versa.

5.5. Details Using Small Multiples

The purpose of the time curve visualization described above is to
give an overview of the progression of patient state (R1). While

Figure 9: Time curve with constant width and heat map (left) and
time curve with data point density in proximity encoded as width
(right) of subject VNA004. The curves are color-coded according
to the time in hours since the start of the measurement using the
viridis color map shown to the right. Both curves are filtered using
the average of a moving triangular window. The heat map uses the
black body color map ( ) [Mor16]. To match the white
background, we apply to color mapping inversely, i.e., high values
correspond to dark colors, low ones to light colors. When using
width encoding a higher width corresponds to a higher density of
data points in the proximity

it allows for identifying potentially interesting points in time, it is
not intended for a detailed analysis of individual parameters (R2).
Given the unavoidable projection error, loss of information, and
the sanity checking requirements (R4), we have added a details-on-
demand approach that shows small multiples of unprojected data
dimensions. For this purpose, there is an auxiliary line plot that
depicts values over time and several small line plots that allow for
easy superimposition of small timespans. A user may select between
1 to N points in the time curve or auxiliary plot. For each small line
plot, the user can select different data dimensions. Each line plot
has one polyline per selected point, with the respective time series
being centered to the origin (highlighted by a dashed vertical line
in the auxiliary plot) based on the selected point (cf. Figure 10).
The user can also select the time delta, as multiples of the sampling
interval, that is used for the abscissa, which shows the relative
time. That is, each polyline shows the temporal development of
one data dimension forward and backward in time, starting from
the selected point. To allow an easier perception of this temporal
interval, it is also drawn as a semi-transparent window extending
from the vertical indicators in the auxiliary line plot (cf. Figure 10).
The line plots allow the user to get an impression of projection
error and temporal change in individual dimensions by comparing
the values at different points in time. It also allows comparing the
progression of different data dimensions and, consequently, to infer
interdependency and correlation. The line plots relate to requirement
R2, since they facilitate the individual inspection of each line plot
while the small multiples view also allows for investigating localized
trends and patterns.

6. Description of the Visualization System

We implemented our visualizations described in Section 5 as a web-
based application. The resulting client-server-based approach offers
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Figure 10: Overview of the single-subject mode (right) and expandable menu (left). The time curve shows patient state progression (top left).
An auxiliary line plot shows a single time series (top right). Three samples are selected (brown, blue, and green) to showcase linking. With a
dark-grey line and marker indicating linking with custom labels (in this case a local maximum in heart rate was marked and labeled), useful
for event highlighting (e.g. peaks in specific measurement variables) Small line plots (bottom) show superimposed time intervals (in seconds)
based on selected points; the width of the bar in the auxilliary line plot corresponds to the, identically colored, time segement in the small line
plots .The shown variables are, blood K- concentration (as given by the blood gas analysis), arterial diastolic blood pressure and arterial
systolic blood pressure (as recorded by the "PulsionReader" device) shown as examples).

several benefits for our use case: First, costly calculation can be per-
formed on the server, removing the need for potent client hardware
and enabling the use of relatively thin clients like tablet PCs for
viewing and interaction with the visualization system. Second, this
approach allows multiple users to access the visualization from dif-
ferent devices simultaneously, which is for example convenient for
collaborating medical researchers that are working off-site. Third,
data from multiple experiments—recorded at different sites—can be
easily observed remotely, potentially saving time and, thus, increas-
ing efficiency. Furthermore, the web-based approach also allows
analyzing data from any computer in the hospital, regardless of user
permissions, which is convenient in everday use.

The decision to implement our system as a web application influ-
enced the selection of the programming languages and associated
packages. The server was implemented using Python and the Flask
framework [MRLU] along with several other packages for data wran-
gling. Flask was used as a means to serve and communicate with a
thin HTML5 single-page client, effectively hiding data management
and computationally expensive calculations on the server-side. The
data was stored using Pandas [McK*10] data frames for filtering
and sampling. The client-side visualization and UI was done using
HTML5, JavaScript and the D3 package [BOH11].

The system features two distinct, but similarly structured views:
the first view is meant for analyzing a single subject and offers fea-
tures for an in-depth post-hoc analysis. The second view is tailored
to the analysis of an ensemble and, thus, provides features for the
comparison of multiple subjects.

Figure 10 shows the single-subject mode. The collapsible menu

on the left is used to select a data set and configure most of the
visualization pipeline. This includes settings that influence data
processing and selection, such as the data source, restriction to
specific variables, and the filtering. Moreover, the user can choose
between PCA and MDS for dimensionality reduction; however, in
line with our evaluation presented in Subsection 5.2, PCA is the
default setting. Furthermore, the interval of the time curve used for
dimensionality reduction can be shortened using a slider element.

The single-subject mode features a patient state progression vi-
sualized as a filtered time curve, a large auxiliary line plot, and
several small selection-relative line plots. A drop-down menu above
the time curve visualization allows for the selection of a variable
contained in the data set that is encoded onto the width of the time
curve. Alternatively, constant width and spatial point density can
be chosen. To scrutinize the progression of individual variables, a
large auxiliary line plot is shown next to the filtered time curve. The
visualized variable can be chosen in the drop-down menu above
the plot. Below, small selection-centric line plots are shown. The
time curve and the auxiliary line plot are linked views that support
hover and click events to maximize the ability to pinpoint specific
events in the patient state progression. To support this drill-down
process, we provide interactions to annotate time points with high-
lights and labels. Selecting points on either the time curve or in the
auxiliary line plot will determine the point in time that is shown in
the small selection-relative line plots. These plots show the temporal
surroundings of the selected time points over the chosen variables.

The multi-subject mode has an analogous menu for data loading
and selection and also shows a time curve plot as the main view.
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Figure 11: An ensemble of time curves. To prevent biasing the
projection, all parameters were normalized per subject using the
z-transform. Top: eight superimposed animal subjects shown as
filtered time curves. Bottom: a de-cluttered representation of the
same data as time curve boxplot. The most representative subject
is shown as red filtered time curve. To provide additional context,
the unfiltered 50% and 80% quantiles are shown as dark-gray and
light-gray areas. Additionally, a scarf plot as shown in Figure 8 is
generated for the timecurve boxplot

This plot can visualize an ensemble of (filtered) time curves as well
as the time curve boxplot. It also supports toggling the visibility
of individual ensemble members and the enclosing curve boxplots
(cf. Subsection 5.3). Since the superimposed time curves depict the
similarity of the samples instead of a temporal alignment, we show
an accompanying scarf plot to illustrate box inclusion over time. The
scarf plot located below the time curve plot only visualizes curves
that are not included in the inner quantile range (cf. Figure 11). Thus,
representativeness can easily be analyzed both in terms of values
and time. Additional controls in the menu allow the user to adjust
the quantiles for the time curve boxplot computation.

7. Results and Discussion

In this section, we detail several examples and investigations that
showcase that our presented visual analysis approach is a promis-
ing tool for medical research concerned with ICU data. We also

Figure 12: Juxtaposition of the time curve and the net-weight of the
subject over the whole 96-hours duration (top) and a shortened time
frame of 65 hours (bottom).

highlight how these use cases relate to the user requirements. We
evaluated our approach using the data described in Section 3. For
the single-subject mode, a set of 82 parameters was used. For the
multi-subject mode, we present the results for nine animal subjects
using a set of nine relevant parameters each (i.e., 81 parameters in
total). This subset of nine out of ten subjects from the VNA study
was chosen since one subject had a shorter study duration and was
not part of the temperature control experiment (cf. Section 3). Fur-
thermore, we also wanted to investigate the potential of our visual
analysis approach together with our domain experts, who are senior
researchers in the field of experimental surgery. Feedback for our
application was gathered during in-person demonstration meetings
with these domain experts, where the computer scientists acted as
the drivers and the domain experts as the navigators [AKGF11].

Single-Subject Mode Several observations were made while inves-
tigating the VNA data using our application. With respect to the
single subject visualizations, some key aspects of the data can be
seen: Figure 12 shows the filtered time curve of subject VNA004.
With respect to insights gained about the data, the most prominent
feature is the significant and rapid change in status during the first
20 hours, indicated by the comparatively small temporal change
as visible by the small change in color and the large difference in
state, as visible by the large distance between the points (Patient
Stability: R1). While it is difficult to pinpoint the exact reason for
this activity, our medical experts have identified this segment of the
curve as the onset of anesthetics and the implantation of measuring
devices that put a strain on the homeostatic system of the animal.
The following seven parameters that might explain this rapid change
in the time curve have been identified using auxiliary plot and the
small multiples in our application (R2): a peak in heart rate and a
relaxation to lower levels during this period; a drop in blood glucose
levels accompanied by the start of intravenous glucose administra-
tion; an increase in intravenous volume, measured by weight and
liquid infusions; low blood pressure, as well as a low blood pH level.

During the VNA study, all subjects were infused with high
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(a) all subjects (b) temperature adjustment
experiment group

(c) no temp. adjustment:
VNA001 , VNA002

(d) manual temp. adj.:
VNA003 , VNA004

(e) automated temp. adj.:
VNA007 , VNA008

Figure 13: (a) An ensemble of nine animal subjects shown as filtered time curves projected to one space. (b) The six subjects that were part of
the temperature control experiment. (c) Subjects VNA001 and VNA002 , which did not receive temperature control. (d) Subjects VNA003
and VNA004 , which received manual temperature control. (e) Subjects VNA007 and VNA008 , which received automated temperature
control. Each time curve results from projecting the same nine parameters of each subject.

amounts of liquids over an interval to be then depraved of these
liquids. As mentioned above, this change in liquids can be seen in
the continuous weight monitoring of the subject. The points at which
the administration of liquids is either started or stopped leads to no-
ticeable bends in the time curve. As shown in Figure 12, three of
the five administration changes are in a hairball-like region, roughly
between hour 32 and 96. In these 64 hours, the observed subject
reaches a stable state, indicating that the variables do not change
considerably. This stabilization can also be seen when individually
observing the heart rate steadied at a lower level, a return to higher
levels of glucose in the blood, as well as more physiological blood
pressure and pH levels. However, the state of the subject during
this period differs significantly from the initial state—illustrated
by the large distance between the start of the time curve and this
region—which was to be expected.

To disambiguate the hairball, the time curve was restricted to this
temporal window of 64 hours (see Figure 12, bottom). The time
range can be set by the user via a slider in the menu (see Figure 10).
Note that this results in a reapplication of the dimensionality reduc-
tion to the original data. This is a deliberate choice as the omission
of data will affect the the result of the dimensionality reduction. The
aforementioned bends in the time curve can be narrowed down to
the fact that the amount of liquids excreted from or added to the
organism are substantial. The smaller difference amounts to 2.7 kilo-
grams, while the large drop amounts to 8.3 kilograms. Such a drastic
change in liquid volume will place a strain on the organism. Thus, it
is to be expected that the state as a whole—represented by the time
curve—will show a noticeable reaction (cf. R2).

Multi-Subject Mode As shown in Figure 11, the time curve box
plot allows the user to assess the representativeness of the sub-
jects (R5). While the red curve shows the central—i.e., the most
representative—subject, the scarf plot shows the centrality of the
subjects that are not included in the user-adjustable inner quantile
range (dark gray area). For an comparison of the patient state pro-
gression and similarities between the patients, the user can also
choose to display individual curves. Figure 13(a) shows the multi-
subject view, where each time curve represents one of the nine
animal subjects. Six of these nine subjects were part of a temper-

ature control experiment [Pet18]: VNA001 and VNA002 had
no additional temperature control management, VNA003 and
VNA004 had their temperature adjusted manually by ICU staff,
and VNA007 and VNA008 were subject to automated temper-
ature control using a hot air blanket. As subject VNA002 had
a reduced experiment duration of 57 hours [Pet18]—compared to
69 hours for the remaining subjects—the analysis is also restricted
to this 57-hours window.

When hiding the four subjects that were not part of the tem-
perature control experiments, the resulting picture is already less
cluttered (Figure 13b). The starting point of three of the six subjects
(VNA003 , VNA007 , VNA008 ) are grouped notably in the left
of the figure, whereas two others are close (VNA001 , VNA004 ),
indicating the similarity of the initial conditions for these subjects.
The last one (VNA002 ) starts more to the right of the figure, closer
to the end points of the other curves.

When turning the focus to the experiment groups as mentioned
above, an even clearer trend is visible. The group for which the tem-
perature was not adjusted (VNA001 and VNA002 ) exhibit rather
different progressions of their respective time curves (Figure 13c).
The time curves of the manually adjusted group (VNA003 and
VNA004 ) show a more similar trend (Figure 13d). Finally, the
progression of the subjects with automatically adjusted temperature
(VNA007 and VNA008 ) is the most similar (Figure 13e). It is
worth mentioning that the time curves of the manually and automat-
ically temperature-adjusted subjects resemble each other, while the
unadjusted subjects exhibit a vastly different progression.

Although temperature is only one of the nine included parameters,
it seems that it is possible to group the subjects by the applied
temperature adjustment. This might be due to the fact that body
temperature plays a pivotal role in the homeostasis of an organism
and, thus, has an impact on a wide variety of other parameters
(e.g., blood pressure or heart rate). Failing to adequately adjust the
temperature might lead to an imbalance in the homeostasis, which
is in turn visible in the time curve representing the organism state.

Expert Feedback Overall, the time curves were intuitively inter-
preted as a state in a two-dimensional plane showing the similarity
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and progression of the patient. This interpretation relates to require-
ment R1, due to the nature of the medical domain. Thinking in terms
of relative change and progression is a common and natural concept
for medical experts (e.g., patient health is declining or improving).
Therefore, a suggestion for a future improvement of our application
was that it would be useful to automatically annotate the time curve
with landmarks that provide a reference for interpretation (e.g., the
automatic administration of drugs). The choice of the underlying
mathematical structure of the projection was not considered crucial
for the interpretation. The possibility to investigate and compare the
values of individual parameters at salient points in the time curve
using the small multiples view was also rated as beneficial. This is in
line with the sanity checking requirement (R4) and the need for ag-
gregated as well as detailed information (R2). An earlier suggestion
by the medical experts has already been implemented: the smoothing
of time curve segments via averaging (see Subsection 5.4).

Although our current application is tailored to the post-hoc anal-
ysis of ICU data, the experts rated the potential of our application
for patient surveillance using live data streaming as very high. In
particular, they proposed to build a sepsis radar based on our ap-
plication that allows inferring a life-threatening medical condition
from the time curves. Sepsis is one of the leading causes of death in
hospitals. Therefore, the early detection of the onset of sepsis is of
prime interest.

Time Curve Perception While there is a clear benefit of utilizing
two dimensions for the differentiation of non-temporal variables, the
recognition of time intervals becomes more difficult compared to
visualizations that map the time to one of the major axes. Therefore,
we color-coded the curve by the elapsed time. Additionally, a tooltip
with the exact time is shown when hovering the curve.

We used an averaged progression in lieu of the Bézier curves
utilized by Bach et al. to connect the data points and indicate a
flow of time. For our application, this approach is viable since we
have a high number of sample points, requiring us to rather filter
points instead of adding new ones via interpolation. Furthermore, the
averaged progression is not required to pass through each data point,
which increases projection quality for highly varying frequencies.
As discussed in Subsection 5.2, we compared our dimensionality
reduction results using PCA to the ones of Bach et al. and Van Elzen
et al., who used MDS. This comparison to previous approaches led
to the conclusion that the characteristics of the input data need to be
considered when choosing a suitable projection methods.

Applicability and Transfer to Other Domains Although our pre-
sented visualization application is tailored to the medical use case
of ICU data analysis, we believe that some of the concepts we de-
veloped are also applicable in other domains. Applying data depth
to an ensemble of time curves for decluttering and judging represen-
tativeness can be useful, e.g., in the visual analysis of performance
workload data from an ensemble of high-performance computing
(HPC) cluster nodes. This could show which of the nodes exhibits
abnormal behavior. Furthermore, for data that contains high frequen-
cies that are less important, where the user needs to see the overall
trend, our proposed simplification and smoothing of time curves can
be valuable. An example would be an ensemble of companies set
into a high-dimensional context (e.g., stock price, sales per revenue,

net promoter score, etc.), where seasonal effects could be misleading
if the trend over several years is of interest.

8. Conclusion and Outlook

We presented a web-based visual analysis application for multivari-
ate, time-varying intensive care surveillance data. Due to the large
amount of data measured in such an intensive care scenario, a com-
prehensive view on the patient and their progression becomes very
difficult and traditional visualization methods like line charts fail
to adequately present the data. Our application uses dimensionality
reduction to visualize this high-dimensional measurement data as
time curves [BSH*16] to provide an overview of this progression of
the state of a patient over time. Due to the nature of the data, which
has missing or erroneous values and oscillating parameters with
varying sampling rates, we extended the time curves using filtering
and smoothing. To prevent misinterpretation when the time curve
is highly smoothed and to show the density of the input data, the
underlying data can be shown as a heat map in the background. A
small multiples view shows details on demand about the individual
dimensions as line plots and allows users to select and compare dif-
ferent points in time. Our visual analysis application also provides
methods to facilitate the comparison of multiple patients by project-
ing their individual filtered time curves into one two-dimensional
space. Furthermore, the system can depict an ensemble as time curve
boxplots that summarize typical time curves while highlighting out-
liers. The time curve boxplots are complemented by a scarf boxplot
that shows at which points in time the outlier curves deviate from
the box.

The design of our application was developed in close collabora-
tion with medical researchers. Requirements were defined to ensure
the effectiveness of the employed visualizations and concepts. We
evaluated our application with real-world data and iteratively im-
proved it based on feedback from the medical experts. As discussed
in Section 7, the domain experts rated our application as useful and
see the definite potential for further developments.

We have shown the utility of our application for medical research
using ICU data from a controlled animal experiment. As a next step,
we want to apply our application to clinical data collected during the
2020 COVID-19 pandemic in the local university clinic. We hope to
identify groups of patients with varying severity of the progression
of the disease. Linking these groups to measured quantities might
lead to insights into how to improve the treatment and, consequently,
the chances of survival for future patients.

In the future, we also want to extend the scope of our application
to live data, which would allow for live monitoring of patients in
the hospital. To this end, the application has to be improved and
retargeted in several ways: First, it has to be ensured that the time
curve does not change too dramatically when adding new samples
and recalculating the dimensionality reduction. For this, one possible
avenue is the adaption of projection techniques to allow for the
progressive addition of data points. Several interesting approaches
to avoid frequent, global recalculations have been proposed for
streaming data [FCS*19; CMX16; GHN13].
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