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Abstract
We introduce discoVA as a visual analytics tool for the refinement of risk stratification of cancer patients and biomarker
discovery. Currently, tools for the joint analysis of multiple biological and clinical information in this field are insufficient
or lacking. Our tool fills this gap by enabling bio-medical experts to explore datasets of cancer patient cohorts. By using
multiple coordinated visualization techniques, nested visual queries on various data types can be performed to generate/prove
a hypothesis by identifying discrete sub-cohorts. We demonstrated the utility of discoVA by a case study involving bio-medical
researchers.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Modern diagnostics aims at the stratification of individual patients
into risk groups and enables the identification of patients that will
benefit from certain therapy protocols. Initiatives with the overall
aim to use more precise diagnostics to allow the selection of pa-
tients for therapies that target particular molecular abnormalities
have been launched worldwide. The genome-wide search (often re-
ferred to as OMICS) for tumor-specific molecular changes as well
as histopathological analyses have led to a better understanding of
tumorigenesis, progression and relapse and even treatment failure.

This is a particularly promising approach for the treatment of
rare cancers, especially for patients with metastatic and/or relapsed
cancer [GCB∗17]. Because of unknown characteristics of rare can-
cers and consequently less effective treatment options, the five-year
survival rate for patients suffering from rare cancers is on average
lower than in case of common cancers, 47% vs. 65% [GVDZC∗11]
[KLM∗13]. Sub-grouping of tumor types, risk stratification and/or
survival prediction typically involve genomics (DNA-based analy-
sis) and gene expression (messenger ribonucleic acid mRNA) anal-
ysis which are combined with clinical data and minimal residual
disease (MRD) analysis. This work is using the childhood cancer
neuroblastoma as a use case for rare cancers which account for 15%
of all cancer-related deaths in children [SJLD14].

At present, cancer researchers use various independent tools to
navigate the different kinds of data acquired through genome-wide
multi-scalar analyses, clinical or MRD data to mine for significant
differences between groups of patients, e.g. those with a high vs.

low risk of relapse or death or to search for biological similarities.
Identification and classification of these patient groups is challeng-
ing due to heterogeneity, high dimensionality and sparsity of the
data. Besides, not all data types are available for all patients. In
our case, the clinical information (62 features) of 170 patients was
available, while RNA analysis has only been performed on a subset
of all patients as often the biopsy was too small to allow for both
DNA and mRNA analysis.

There are various visual sub-cohort identification tools that al-
low the user to explore the subject’s data and visually identify sub-
cohorts of subjects [KPS15, ZGP15]. Visual analytics of OMICS
data (specially to support precision medicine) in an under-explored
topic. Marai et al. [MMB∗19] proposed a multiple coordinated
views system to allow the exploration of heterogeneous data. The
aim of their work is to compute the probability of patient’s survival
considering other similar patients. They represented the patients’
features by Kiviat diagrams along with a Kaplan-Meier plot that
shows the predicted survival curve. Lex et al. [LSS∗12] proposed
StromeX as an integrative tool to explore the correlation of clusters
of cancer subtypes across OMICS data. In another work of Streit
et al. [SLG∗14], StromeX is combined with an exploratory tool to
compare the patient groups regarding their clinical, genomic alter-
nations and molecular profiles.

Although our work also allows the user to identify sub-cohorts,
it is different from previous works, since discoVA provides coor-
dinated navigation of heterogeneous data and enables the expert
to identify sub-cohorts of patients by employing a combination of
multi-OMICS and clinical data. In this paper, we propose discoVA,
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Figure 1: This panel shows the global information describing the cohort. Component 1a displays the information of the selected individuals
belonging to each group. The Kaplan-Meier component (1b) displays the survival curves of identified/brushed group(s). The similarity
between identified sub-cohorts based on the shared patients and the brushed sub-cohort is shown in component 1c.

a Visual Analytic multiple coordinated views tool for refined pa-
tient stratification and biomarker discovery. Our contributions in-
clude:

• Design and implementation of discoVA to support the expert
to identify distinct sub-cohorts using wide-scaled multi-OMICS
data along with clinical data in an integrative manner. discoVA
functionalities includes:
• A case study of biomedical domain experts using discoVA for

joint exploration and identification of a sub-cohort to validate
a hypothesis based on previously published correlations in the
data.

2. Design Process and Task Analysis

The discoVA design decisions were created in close cooperation
between visual analytics experts, data scientists and biology ex-
perts. The development of discoVA consisted of three main phases:
1. system design and requirement analysis, 2. system implemen-
tation and 3. follow-up. Within each phase of development, mul-
tiple meetings were organized to refine the initial system design
and requirements. Based on the design considerations, system re-
quirements were defined to allow discovery of discrete sub-cohorts
based on the joint exploration of multi-OMICS data along with
clinical data. The following describes the tasks in more detail:

T1. Coordinated exploration of heterogeneous patient data.

a. Clinical and MRD data: It is necessary to visualize the dis-
tribution and correlations between variables of clinical and
MRD data of a patient cohort. Additionally, the user should
be allowed to select a sub-cohort by using these kind of
data. The MRD data of bone marrow samples is collected
in five time points. The clinical dataset comprises 62 clini-
cal features including metastasis state, blood and urine val-
ues.

b. Genomic data: The user should have an overview and com-
parison of CNA/genomic intervals of structural genomic
aberrations of patient (sub)cohorts to interrogate correla-
tions between patient groups. visualization of individual
samples to compare individually. Moreover, having the list
of genes located in user-selected chromosomal regions of
interest could help to support the generation of new biolog-
ically/clinically relevant hypothesis. For our analysis, CNA
of 50 samples from 10 patients were available.

c. mRNA expression data: Heatmaps of genes covering most
of the variance in the data can support comparison between
different sub-cohorts. As the feature space of mRNA data
is large, it is necessary to use techniques to make the inter-
pretation of the data easier. At the time of analysis, mRNA
data was available for 50 patients on 20202 genes.

T2. Identification of discrete sub-cohorts using different aspects of
the data: Specifying sub-cohorts by iterative queries on het-
erogeneous data (i.e. MRD, clinical, somatic CNA and mRNA
expressions) should be provided to support the hypothesis gen-
eration and validation.

T3. Exploration of individual patient data across all data types: To
give a more detailed view on the subjects of a sub-cohort.

T4. Comparison of similarity between specified sub-cohorts: The
similarity between sub-cohorts regarding the shared members
and the deviation survival rates of sub-cohorts from each other
should be provided.

T5. Inspection of identified sub-cohorts: The user should be al-
lowed to refer to a previously identified sub-cohort for further
investigation.

3. Methods

We propose discoVA as an interactive web-based multiple coordi-
nated views system to support tasks as described in Section 2.

3.1. discoVA Components

The user interface (UI) of discoVA was optimized to support biolo-
gists to explore and identify a hierarchy of sub-cohorts using nested
visual queries on different data types. At system start-up, datasets
are loaded and displayed in all views. Within the following subsec-
tions, we describe each of the panels in detail.

3.1.1. Sub-Cohorts Information

This panel provides information on sub-cohorts identified and on
individuals within each sub-cohort. It contains three main compo-
nents:

a. Samples view: This component presents an overview on ge-
nomic and clinical information of individuals, see Fig. 1(1a).
The genomic information of samples is summrized by using
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simple circos plots. Sectors represent chromosomes If chromo-
somes harbor a deletion, a gain or both, the corresponding sec-
tor is colored in red, blue and yellow, respectively. Moreover,
all chromosomes which do not have any deletion or gain are
colored gray. this view presents the user a summary of the ge-
nomic information of a sample at a glance (Tasks T1 and T3).
This panel contains three tabs:
Matrix view: This tab gives a compressed view of samples in
a matrix table for samples with genomic information available.
List View: Gives more information on individuals and contains
a list of important features and circos plots of individuals in a
cohort.
Detail View: This tab shows the information of individuals by
showing the table of all clinical information and a summary of
circos plots of samples derived from the same patient (a patient
may have multiple genomic samples).
Matrix view and List view are filtered for the brushed sub-
cohorts. Thus, it lets the expert quickly see the summary of ge-
nomic information of patients of the brushed sub-cohort or a
selected sub-cohort. Once the user selects one of the samples in
these views, the information of the corresponding patient will
appear in the detailed view.

b. Kaplan-Meier: The Kaplan-Meier curve is one of the best tech-
niques to visualize the estimation of the proportion of subjects
living for a certain amount of time after diagnosis [GKK10], see
Fig. 1(1b). discoVA enables the expert to compare the survival
rate of the whole cohort vs. brushed sub-cohort vs. identified
sub-cohorts (Tasks T1 and T4).
To start the analysis, the Kaplan-Meier shows the survival curve
of the whole population in gray. Once the user brushes a sub-
cohort, the survival curve of the corresponding population will
appear. Hence, before finalization of a sub-cohort the user can
check the survival chance for the brushed population.

c. Overview of sub-cohorts: This view shows the similarity of the
discovered sub-cohorts and the brushed sub-cohort based on the
shared subjects between them (Fig. 1(1c))(Task 4). We model
each cohort as a vector, then the pairwise similarity between
sub-cohorts is retrieved by cosine similarity. Cosine similarity
is already used to calculate the similarity between clinical trial
cohorts [LMW17] based on the counties population, but mainly
used to show the similarity between documents in the text min-
ing [Hua08].
For this purpose, we generated a binary weighting vector for
each sub-cohort by considering a vector with the size of the total
number of patients which, by default, is filled with zero. Then,
we replaced zero to 1 for involved patients in a specific sub-
cohort.

A ·B = ‖A‖‖B‖cosΘ (1)

After calculating the similarity matrix, the position of
sub-cohorts is estimated by multidimensional scaling
(MDS) [CC00]. In the overview of sub-cohorts each node
visualizes a sub-cohort where the size of nodes represents the
size of cohorts and the thickness of line between the nodes
represents the pairwise similarity between the cohorts. The
expert can refer to a specific sub-cohort by clicking on the node
(sub-cohort) (Task T5).

Figure 2: This panel contains MRD and clinical/genomic manu-
ally annotated features. The first parallel coordinates plot shows
sequential MRD data in different time points. Some general patient-
related statistical information are displayed in component 2b. The
last parallel coordinate (2c) shows the clinical and genomic marker
information.

3.1.2. Clinical Information

This panel enables the expert to explore additional clinical infor-
mation of patients and consists of three components (Task T1).

a. MRD data: As shown in Fig. 2(2a), each axis corresponds to
one time point of treatment. Each line in the parallel coordinate
plot represents a patient and the number of cancer cells in dif-
ferent stages from the diagnosis to after-treatment. The user is
allowed to brush specific intervals in any time point to filter the
sub-cohort (Task T2).

b. Statistics: The sunburst plots show the gender and known risk
factors, i.e. these are features which are associated with a high
risk of relapse or death, see Fig. 2(2b).

c. Clinical features: As displayed in Fig. 2(2c), the x-axis of Par-
allel Coordinates (PC) plot displays features selected by the user
from a drop-down menu and contains time-independent clinical
patient information. Because of the high number of features the
expert has the option to choose features of interest via a list lo-
cated in the left side of the plot (Task T1). The expert can apply
the brushing of subjects in any desired order.

3.1.3. Genome Information

This panel consists of genomic information of samples in 3 com-
ponents.

a. Integrative Genomics Viewer: The main component of the ge-
nomic panel is an embedded IGV which is a well-known tool for
biologists to browse genomic information [TRM13](Fig. 3(3a)).
The loaded tracks include a cumulative view of genomic CNA
intervals, the segmented data, raw data and gene tracks. As
shown in Fig. 3(3a) the segmented data track shows the CNA
of a sample (with the same color code as in the circos plots).
We enhanced web IGV to adapt to the requirements according to
Section 2. We have added a cumulative track of CNA informa-
tion for the whole genome view (display of all chromosomes)
and the whole chromosome view (display of one chromosome)
to visualize the total frequency of deletions and gains at each
position within the displayed samples (Task T1).

b. Genome filter management: As presented in Fig. 3 (3b), this
component is linked to the IGV and used for managing the fil-
tering of sub-cohorts by extracting the samples in regions of in-
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Figure 3: The genome information panel comprises three compo-
nents. The IGV (3a) represents the CNA information of all patients’
samples and the raw data of the selected sample. The component
3b is attached to the IGV and is used for the management of regions
of interest and settings to specify a sub-cohort. The table of genes
(3c) represents the genes within selected locus intervals in IGV.

terest. To do this, the expert selects specific locus intervals in
different chromosomes from IGV and saves the sample lists in
each of these regions based on the frequency of deletions or
gains. In other words, the expert can save the list of samples
which display deletions or gains in a specific region. Then to
define/filter a sub-cohort three options are possible: first, getting
the union, second, intersect or third, inversion of the samples in
the regions of interest. After selection of the desired filter, the
operation will be applied to the currently active cohort (Task
T2).

c. Table of genes: This component shows the table of genes
and their relevant information within the intervals (located
within the field of view) selected by zooming in IGV, see
Fig. 3(3c). These information consist of variant ID, gene name,
chromosome, strand and the start and end position of the genes.
As the expert selects an interval at a chromosome of interest in
IGV, this table will be updated and shows the gene information
of the corresponding region. By selection of a certain gene in
the table, it will redirect the user to a web page describing the
specific gene (https://www.genecards.org).

3.1.4. RNA Expression Data

To show a compact representation of mRNA expression data in
discoVA, two components were integrated: hierarchical clustering
overlaid to a gene heatmap and a sample similarity plot based on
different dimensionality reduction techniques. The components are
connected by using the top x genes selected covering most of the
variance within the dataset.

a. mRNA clusters: As shown in Fig. 4, this component shows
a heatmap of agglomeration hierarchical clustering [ML14] of
mRNA data for the top selected genes - the top genes can be
set by using the threshold slider in the 4b component (Task

Figure 4: The mRNA panel consists of two components. The
Heatmap (4a) represents the clustered mRNA expression data for
the top regulated genes. The second component(4b) shows the sim-
ilarity between samples for the genes with highest variance. The
distance between samples is calcuated by three techniques t-SNE,
UMAP and PCA. This component also contains a list of the top
genes (the left side). Sub-cohorts can be filtered by brushing data
points in this view, where one point corresponds to an individual
sample.

T1). The results of clustering are shown in a clustergrammer
heatmap [FGR∗17].

b. Similarity of samples: As presented in Fig. 4(4b), this compo-
nent contains information on the similarity of samples regard-
ing the involved top genes (it is set by the slider) (Task T1).
We used three methods to map the samples in 2D space: t-
SNE [MH08], PCA [Fod02] and UMAP [MHM18] using python
libraries. Thus, it allows the expert to easily compare the results
of different techniques.
The user can switch between different dimensionality reduction
techniques using radio buttons and to adjust the number of top
genes by using the slider. Besides, the expert is enabled to fil-
ter the patients by brushing groups of samples of corresponding
patients and to generate new sub-cohorts based thereon.

4. Evaluation

To evaluate the power of discoVA, we used the system to investigate
a case study. The investigating team consisted of a biologist and a
data scientist.

4.1. Case Study

In this case study the analyst team developed strategies to investi-
gate the prognostic relevance, and biological and clinical character-
istics associated, of a particular genetic event that has potential rel-
evance in the given cohort of neuroblastoma patients. In many can-
cer types, mechanisms of telomere maintenance are active, which
is not only a major step in tumor development, but is also con-
sidered as prognostic factor together with mutations in the TP53
gene and genes of the Ras/MAPK pathway [ACH∗18]. Further-
more, it has been demonstrated that in bone marrow metastases
certain markers involved in telomere maintenance, e.g. intragenic
deletions of the ATRX gene, are frequently associated with copy
number aberrations in the 1q and the 19q arm at the time point of
relapse [ARB∗17].

Therefore the expert user first referred to the clinical features
component and selected disease stage and typical genetic features
that are either associated with telomere maintenance or that are sus-
pected to occur only in certain sub-cohorts, but not in others. These
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were: the status of ATRX intragenic deletion, status of ALT, MYCN
amplification status and 1p deletion. Then, the expert selected pa-
tients with ATRX deletion from the PC of clinical data (Fig. 2(2a)).
In the next step, the expert checked the MRD data from the PC of
the MRD component.

Second, the expert inspected the detailed genomic CNV infor-
mation (IGV component) of the selected sub-cohort with ATRX
deletion using the cumulative whole genome view in the embed-
ded IGV to see if there are any obvious large scale differences, i.e.
segmental chromosomal aberrations. In this step, the expert was in-
terested in aberrations in chromosomes 1 and 19, which have been
shown to frequently co-occur [ARB∗17]. Thus, the expert took the
union list of patients with chromosome 1 and 19 aberrations and
submitted it as another sub-sub-cohort. To gain more insights into
the characteristics of individual patients in the two sub-cohorts as
compared to the total cohort, the expert moved to the Matrix view
of samples, then selected one sample and switched to the detail
view to see the other samples of the same patient. Next, the ex-
pert investigated which genes are located there by using the table
of genes component.

Third, the expert referred to the 2D projection of mRNA expres-
sion data to investigate the highlighted samples of selected patients.
The expert switched between different dimensionality reduction
techniques to investigate which ones resulted in a better separation
of samples.
5. Conclusion

We developed discoVA, a coordinated multiple views system for
integrating and exploring multi-OMICs datasets, to identify poten-
tially new prognositc features and to build new hypotheses. Dis-
coVA allows the joint exploration of patient-related, clinical, tran-
scriptomic and genomic data of patient cohorts with cancer, using
neuroblastoma as a rare pediatric cancer as a use case. Distinct sub-
cohorts can be identified by brushing multiple linked datasets visu-
alized in separate components. To evaluate discoVA, we demon-
strated its power by using the system to explore a neuroblastoma
case study.

discoVA was considered to satisfy all requirements defined ini-
tially. Additional adaptations will be carried out to improve the
design and allow a simultaneous view of all components. By in-
creasing the number of samples available in dataset, we plan to im-
plement an unsupervised approach to identify discrete sub-cohorts,
hidden relations within the dataset could be revealed .
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