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Abstract

In radiation therapy, anatomical changes in the patient might lead to deviations between the planned and delivered dose—
including inadequate tumor coverage, and overradiation of healthy tissues. Exploring and analyzing anatomical changes
throughout the entire treatment period can help clinical researchers to design appropriate treatment strategies, while identify-
ing patients that are more prone to radiation-induced toxicity. We present the Pelvis Runner, a novel application for exploring
the variability of segmented pelvic organs in multiple patients, across the entire radiation therapy treatment process. Our ap-
plication addresses (i) the global exploration and analysis of pelvic organ shape variability in an abstracted tabular view and
(ii) the local exploration and analysis thereof in anatomical 2D/3D views, where comparative and ensemble visualizations are
integrated. The workflow is based on available retrospective cohort data, which incorporate segmentations of the bladder, the
prostate, and the rectum through the entire radiation therapy process. The Pelvis Runner is applied to four usage scenarios,
which were conducted with two clinical researchers, i.e., medical physicists. Our application provides clinical researchers with
promising support in demonstrating the significance of treatment plan adaptation to anatomical changes.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Life and medical sciences;

1. Introduction

Prostate cancer is the most frequent type of cancer among

men [DJFB05]. Radiation therapy is a common therapeutic ap-

proach against it, requiring detailed treatment planning to iden-

tify where the tumour is located and to calculate how to treat it

effectively [WL15]. In radiation therapy, high radiation doses are

administered to “destroy” the tumor. However, apart from the tu-

mor, also the surrounding healthy tissue may be affected by radia-

tion, leading to potentially severe side effects—commonly known

as toxicity. Modern treatment techniques allow for a more pre-

cise treatment, but toxicity remains a problem for a number of pa-

tients [CMMH∗17, MLK∗07, VYM∗10].

Recent clinical research suggests that anatomical variability

of certain patients can lead to increased radiation doses be-

ing delivered to healthy organs, such as the bladder or the rec-

tum [CMMH∗17]. The main reason is that the dose is delivered in

multiple sessions over a period of weeks, when the natural anatom-

ical variations of the organs may cause deviations between planned

and delivered doses. During these sessions, alignment corrections

are made before dose administration, but the the main goal of align-

ment is to ensure that the tumor is positioned correctly. In adaptive
radiotherapy, adapting the workflow to encompass changes in or-

gan shape is anticipated to enable higher precision with less dam-

age to healthy tissues [THLM∗13].

To achieve this, clinical researchers, such as medical physicists,

working on the design of robust treatment strategies require a bet-

ter understanding of the general shape and position variability of all

pelvic organs, as well as the anatomical variability of subgroups of

patients [CvHvdK∗11, LvHB∗05, CvHHB12, RDCO∗17]. To eval-

uate the overall robustness of specific treatment options, cohort

analysis is conducted in retrospective studies, while individual pa-

tient or cohort partition exploration accounts for particular cases.

This has been proposed in the past only for the case of the blad-

der [RCMA∗18, CMRP∗19, CMMH∗17], but radiotherapy treat-

ment involves a number of other organs, as well. By providing an

application to estimate and visualize the shape variability of pelvic

organs, we aim to support clinical researchers in demonstrating the

significance of dose plan adaptation to anatomical changes.

The contribution of this work is the design and development of

a novel application, the Pelvis Runner. The Pelvis Runner is to be

used by clinical researchers for the exploration of a cohort of pelvic

organs segmented from multiple patients, across the whole radia-

tion treatment procedure. We focus on the global exploration and
analysis of the shape variability of all pelvic organs in a cohort
of patients (T1) and on the local exploration and analysis of all
pelvic organs in individual patients or cohort partitions (T2).

The Pelvis Runner builds upon the previous work of the Blad-
der Runner [RCMA∗18]—an application for the detailed visual ex-
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ploration and analysis of the impact of bladder shape variation on

the accuracy of dose delivery, during the course of prostate cancer

radiotherapy. For the Pelvis Runner, we retrospectively employed

pelvic organ data from a cohort of 24 prostate cancer patients, for

whom detailed CT data were available for 13 treatment sessions.

The current application allows clinical researchers to explore the

entire pelvis anatomy of a large cohort of patients in a quick and

easy way, and also enables in-depth exploration of particular pa-

tients or partitions of the cohort.

2. Clinical Background

For patients diagnosed with prostate cancer, a common treatment

method is external beam radiotherapy (EBRT). EBRT follows a

complex workflow, which involves an interdisciplinary team and

incorporates several processes from imaging to pre-processing, and

from treatment plan simulation to evaluation [SRM∗19]. Radiation

doses are delivered using multiple beams aimed at the tumor loca-

tion. When superimposed, these beams sum up to a high dose ap-

plied to the targeted tumor area and a lower dose to the surrounding

tissue. The planned dose is not administered at once, but is instead

split up over several weeks, to allow the recovery of healthy tissue,

while minimizing tumor growth [WL15]. This is called fractiona-
tion, and its distinct sessions are called fractions. Recent techniques

allow us to effectively spare normal tissue, while delivering the de-

sired high dose to the tumor volume [QLL∗12]. However, parts of

healthy organs of the pelvis are still unavoidably irradiated and this

can lead to side-effects affecting the quality of life of the patient.

This is referred to as radiation-induced toxicity.

The anatomy of the male pelvis is depicted in Figure 1. In ev-

ery human, it presents unique variations, which can be naturally

occurring across individuals, occurring due to pathological fac-

tors, or due to day-to-day changes in the same person. The lat-

ter occurs because the pelvic organs consist of soft deformable

tissues, which are flexible and their shapes are affected by filling

changes [MSD03,CvHvdK∗11,LvHB∗05,CvHHB12,RDCO∗17].

Organs, such as the bladder and the rectum, whose position

and shape varies significantly, are especially prone to this ef-

fect [VYM∗10]. Recent works suggest a link between pelvic organ

motion and deformation, and increased toxicity risks [CMMH∗17].

This is due to the inherent complexity of the radiation therapy

Figure 1: Pelvic organs of the male body. We depict the main or-
gans included in the Pelvis Runner.

workflow, which does not make it possible to adapt the treatment

plan before every fraction. Usually, tumor location is prioritized.

The standard treatment procedure is to generate one initial treat-

ment plan and to use it as a basis for all subsequent sessions. To fa-

cilitate this, the setting of the initial planning is reproduced during

the treatment. For example, prostate treatment commonly requires

a full bladder regime [WL15], while positioning inaccuracies are

addressed with simple translational adaptations. As there are many

different factors that lead to shape deformations and position vari-

ations over the course of the treatment, these cannot be entirely

covered by these small adaptations to the initial plan [CMMH∗17].

The necessity for a more drastic adjustment of the target volume

in prostate cancer therapy on a per-treatment basis has been high-

lighted by several recent works [VYM∗10,CvHvdK∗11,LvHB∗05,

CvHHB12,RDCO∗17]. Prostate cancer research starts looking into

adaptive treatment approaches—similarly to lung cancer treatment

where breathing motion is considered—that will take into account

the shape variability and movement of the pelvic organs of the pa-

tient through treatment [THLM∗13].

In clinical practice, the evaluation of a treatment plan is currently

done in two ways [SRM∗19]. Both approaches are shown in Fig-

ure 2. First, spatial 2D/3D views allow the experts to see how the

dose affects the tumor and its surrounding organs for a given point

in the treatment period [NDSM∗19]. This approach does not allow

for an easy exploration of multiple patients at the same time—an

important tool for judging the robustness of treatment strategies,

which is often done in retrospective studies. Second, dose volume

histograms (DVHs) show how much radiation is received by the

volume of each organ and allow the experts to quickly identify or-

gans at risk of toxicity [WL15]. Although DVHs scale well for a

large number of patients, they do not allow for an easy link to pa-

tient anatomy. Adequate tools for the inspection and analysis of

pelvic organ variability within the content of radiotherapy do not

exist—with the exception of the Bladder Runner [RCMA∗18]. This

application has demonstrated its clinical usefulness in a retrospec-

tive clinical study with a single focus on bladder toxicity in cohorts

of patients [CMRP∗19]. However, the Bladder Runner does not

support the exploration of anatomical variability of all pelvic or-
gans during the entire radiotherapy treatment period. It also does

not support the exploration of motion of the pelvic organs.

Employed Dataset: For this work, we had access to data from a

cohort of 24 patients undergoing radiation therapy for prostate can-

cer. The provided data includes 13 treatment sessions, for each pa-

Figure 2: Left: Spatial 2D view on the radiation therapy plan of
one patient. Right: Dose Volume Histogram of two patients for two
treatment regimes (empty and full bladder).
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tient. The first five are from the five daily sessions of the first week,

while the subsequent datasets were evenly sampled from the fol-

lowing treatment weeks [CMMH∗17]. The initial treatment plan

was calculated for patients with an empty rectum and full blad-

der. At each session of their treatment, the patients were instructed

to have roughly the same organ fillings. Before each treatment, a

Cone Beam Computed Tomography (CBCT) acquisition was done

for patient alignment using rigid translations. For each of these ses-

sions, we were provided with pelvic organ delineations in the form

of contour lines. For all patients, the bladder and rectum delin-

eations are available. Additionally, the patient data might incorpo-

rate delineations of either the prostate, or the prostate and seminal

vesicles, or the prostate, seminal vesicles and lymph nodes. Within

the context of this work, we use for simplicity the term “prostate”

for the first category (prostate only) and “clinical target volume or

CTV” for the other two. The dataset is depicted in Figure 3.

3. Related Work

To facilitate understanding of the daily occurring shape varia-

tions in pelvic organs and especially their correlation to toxi-

city, some works have already been performed by clinical ex-

perts [NDSM∗19, CMMH∗17]. These are, however, limited to the

exploration of spatial 2D/3D views or DVH analysis, as discussed

in the previous section. These works give insight into what kind of

visualizations are common to clinical experts, and also show that

looking at more than one patient or more than one time point of

treatment simultaneously is a tedious process that does not scale

well. Solutions for the visualization of many pelvic organs in an

entire cohort of patients through the entire treatment period can be

provided by the domains of shape space and cohort analysis, and

in comparative and ensemble visualization.

Our Pelvis Runner is building upon the previous work of the

Bladder Runner [RCMA∗18]. The Bladder Runners aims at pro-

viding information about the amount of irradiation applied to the

bladder across the treatment for a cohort of patients. The entire ap-

proach is based on a 14D shape descriptor vector for the cohort of

bladders [PI97]. The 14D shape descriptors are given as input to a

t-Distributed Stochastic Neighbor Embedding (t-SNE) [MH08] fol-

lowed by clustering [CM02] to detect cohort partitions with similar

bladder shapes and evolutions through the treatment period. Us-

ing multiple coordinated views, the clinical experts are enabled to

Timestep 1 Timestep 2 Timestep 13

Patient 1

Patient 2

Patient 24

...

...

...

...

... ... .........

Figure 3: Schematic depiction of the cohort data used in this work.
The delineations of pelvic organs of 24 patients are available, with
each of them having 13 sessions throughout their treatment. For
each patient, multiple organs are delineated.

analyze the cohort of bladders through the radiotherapy treatment

sessions, while the dose distributions and toxicity information are

also incorporated in the views. We are hereby extending the appli-

cation to multiple organs, including the possibility of having differ-

ent subsets of organs in the data (e.g., for one patient we have the

delineations of the bladder, rectum and prostate and for another one

we have additionally the seminal vesicles).

Other previously proposed frameworks include the work of Re-

iter et al. [RBGR18], who are able to explore and analyze the vari-

ability in multiple pelvic organs. For this, they use an approach

based on spherical harmonics [KFR03]. To distinguish clusters

across organ classes, they employ t-SNE [MH08], while to dis-

tinguish clusters within organ classes (and more importantly, out-

liers) they use Principal Component Analysis (PCA) [Shl14]. Yet,

this approach does not support multi-timepoint analysis, while their

data is derived from automatic segmentation algorithms where a

triangle-to-triangle correspondence can be ensured across the in-

dividual structures. Generally, the use of descriptors, as presented

in the former works, supports the efficient differentiation between

different shapes, but it lacks the ability to synthesize arbitrary ele-

ments in their shapes.

In shape space analysis, Hermann et al. [HSK11, HSSK14,

HSSK16] investigate anatomic covariances in ensembles of data,

providing also a state of the art report with future prospects on the

visual analysis of shapes [HK15]. Busking et al. [BBP10] propose

to use a 2D scatter plot to represent the distribution of elements in-

side a cohort and to synthesize additional arbitrary objects in the

shape space. For comparing objects, they later deal with visual-

izing intersecting 3D surface meshes [BBF∗11]. Landesberger et

al. [VLBK∗13] extend the scatter plot concept for parameter sen-

sitivity analysis in segmentation and the link to the segmentation

outcomes. Considering the high learning curve for many complex

visualizations of high dimensional data, such as cohort data, Blu-

menschein et al. [BBS∗18] propose visualization concepts aimed

at people who are not necessarily visualization-literate.

More specifically for cohort analysis, Klemm et al. [KLR∗13]

focus on the extraction of spine canal variability and the explo-

ration of clusters of similarly shaped spines. This work has been

extended to incorporate additional patient information [KOJL∗14],

demonstrating how to effectively reduce and visualize image co-

hort data and to facilitate their understanding on a broader ba-

sis. Steenwijk et al. [SMB∗10] also go beyond shape analysis by

proposing a framework for the interactive and structured visual

analysis of cohort data. Cohort analysis has also been tackled by

Preim et al. [PKH∗16], Bernard et al. [BSM∗15] and Alemzadeh et

al. [AHN∗17], for various purposes.

Given the available data, which are contour delineations of the

pelvic organs, we cannot overlook the previous work in ensemble
visualization [WHLS18]. Our work relates to contour boxplots by

Whitaker et al. [WMK13], their extension for streamline ensem-

ble data by Mirzargar et al. [MWK14], and the recent techniques

of Ferstl et al. [FBW16, FKRW16, FKRW17]. The latter are ap-

plied on weather simulation ensemble data, covering 2D lines, 3D

volumes and also the time evolution thereof. In comparative visu-
alization [KCK17], for the investigation of jaw movement, Keefe

et al. [KERC09] introduce small juxtaposed representations, where
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the movement is explicitly encoded giving a good overview of all

the data, while parallel coordinates allow for an in-depth search.

Tory et al. [TMA01] investigate a superposition approach for the

development of brain lesions extracted at different time points from

MRI images. The use of explicit encoding to highlight structural

differences is used by Schmidt et al. [SPA∗14], where they can

compare a large number of similar meshes and can quickly iden-

tify regions of differences in multiple linked views.

To sum up, previous literature includes several approaches that

are able to tackle a multitude of individual objects (in our case,

either multiple patients or multiple organs)—possibly, even differ-

ent object sets, i.e., missing some instances (organs). Also, previ-

ous work proposes approaches that visualize the development of

structures through time (in our case, multiple timesteps). The most

relevant works and their characteristics are represented in Table 1,

showing that an approach that encapsulates all these aspects is not

available yet. We aim to cover this gap with the Pelvis Runner.

4. Method

The Pelvis Runner focuses on two main objectives: the global ex-
ploration and analysis of all pelvic organs shape variability across
the treatment period and across a cohort of patients (T1) and the

local exploration and analysis of all pelvic organs shape variabil-
ity across treatment period for individual patients (T2). Clinical

researchers are initially interested in extracting the amount of vari-
ability of the available pelvic organs among all patients and across

Table 1: Schematic depiction of the most relevant previous work
and which main aspects of our application they fulfill.

Multiple 
Organs

Possibly 
Different 

Organ Sets

Multiple 
Patients

Multiple 
Timepoints

Raidou et al. [RCMA+18] 

Reiter et al. [RBGR18] 

Hermann et al. [HSK11, 
HSSK14, HK15] 

Busking et al. [BBP10] 

Landesberger et al. 
[VLBK+13] 

Blumenschein et al. 
[BBS+18] 

Klemm et al. [KLR+13, 
KOJL+14] 

Steenwijk et al. [SMB+10] 

Mirzagar et al. [MWK14] 

Ferstl et al. [FBW16, 
FKRW16, FKRW17] [in FKRW17]

Keefe et al. [KERC09] 

Tory et al. [TMA01] 

Schmidt et al. [SPA+14] 

time. We, therefore, need to calculate a simple descriptor for each

individual organ class that allows us to quantify organ similarity

and estimate the variability of each organ. Subsequently, we need

to visualize the variability of the organ classes within the whole co-
hort. This provides a quick overview on the entire cohort, as well as

capabilities to identify patients or organs with high variability, i.e.,

outliers. At this point, patient and time correspondences should not

be lost. When interesting parts of the cohort are identified, a more

detailed exploration needs to be conducted. Drilling down to indi-

vidual objects should be possible, i.e., exploring individual patients

or individual organs, to understand which regions of certain organs

are prone to variations and how large these differences are. Changes

in position and in shape should be both displayed.

Our general workflow is presented in Figure 4. Our approach

starts with data processing, and with quantifying the similarity of

the volumetric organ shapes of the organs in order to estimate their

variability. For visualizing the variability in the organ shapes, an ag-

gregation approach based on Ferstl et al. [FKRW16] is employed.

For (T1), a low dimensional embedding of each organ is used to

calculate the variability on a per-patient basis and to visualize the

whole cohort. After clustering, a tabular plot is employed to ex-

plore the cohort partitioning in a flexible and intuitive manner. For

(T2), information on the anatomical space is shown on demand.

We enable the user to drill down to selected groups or patients from

the cohort and to perform a detailed inspection of the organ varia-

tions. This is achieved by reconstructing the initial 3D objects from

their low dimensional embeddings. By sampling the embedding

space for the median and the standard deviations, we reconstruct

the shape variations and we show them in a representation similar

to contour boxplots [WMK13].

4.1. Data Processing, Shape Analysis and Display

The first step in the shape analysis is to transform the data into a

format that is easier to handle and to visualize. We use a combina-

tion of volumetric data and triangular meshes, generated from the

available contour data. The volumetric data allows us to directly an-

alyze the data and to perform further calculations. However, while

the calculations are easier in this space, the visualization is compu-

tationally more expensive. Thus, for the visualization components,

we employ the triangular meshes.

For the registration, we retain all organs of every individual pa-

tient at their relative positions and we only align patients to each

other. We do so, by estimating the mean center of all organ posi-

tions across time. Although this approach adds small translational

variations, it preserves the volume changes and their main growth

directions, which is our main focus in this work.

Furthermore, we need to reduce our 3D volumetric patient data

into a low dimensional vector representation that can be employed

for the statistical analysis of the cohort. At the same time, we

need to map the two dimensions of our cohort, i.e., patients and

timesteps, into a single one without losing correspondences within

the data. For this, we employ linearization strategies along two

curve types: Scanline Curve and Hilbert Curve [Hil35]. The for-

mer approach is employed to unravel the individual patients and

timesteps, as we are interested in preserving the temporal order
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Data Processing

Transformation

Registration

Data Unraveling

Time: Scanline Curve

Patients: Hilbert Curve

Dimensionality 
Reduction

PCA: Within Classes

tSNE: Across Classes

(T1) Global 
Exploration and 
Cohort Analysis

Interactive Tabular 
Representation: 
Dissimilarity and/or Hierarchical 
Clustering, Distribution, Missingness, 
Comparison of (Groups of) Patients

(T2) Local 
Exploration and 

Partition Analysis

Shape Variability 
Summarization
2D/3D Anatomical Display
Optional Exploded Views

on demand
ABSTRACT OVERVIEW ANATOMICAL VIEW

Figure 4: Schematic depiction of the workflow and the main components of Pelvis Runner.

within the data. In this way, we can create a vector where all

timesteps of the first patient are followed by the timesteps of the

second patient, and so forth. This allows us to easily select patients

and their timesteps, while we can also efficiently add new patients

in the analysis. For the unfolding of the 3D volumetric data, we

select a Hilbert Curve approach that allows us to analyze how the

shape differentiation capabilities of our method changes if the sam-

pling density is reduced. This has also been employed in the work

of Weissenböck et al. [WFG∗19] for volume data comparison.

After the volumetric data are transformed into vectors without

losing patient and timestep correspondence within the cohort, they

are displayed. For this, we create a low dimensional embedding,

which allows us to create a computationally efficient way to store

and process large cohorts of patient data. The dimensionality re-

duction step creates a low dimensional representation of the struc-

ture of the high dimensional space where each cohort datapoint,

i.e., individual patient organ at a specific timestep, is represented

by one position in space, where similar shapes are placed nearby.

We employ a Principal Component Analysis (PCA) [Shl14], when

we are more interested in the differentiation within classes of or-

gans. We combine it with a t-Distributed Stochastic Neighborhood

Embedding (t-SNE) [MH08], when we are more interested in the

differentiation across organ classes, as in Reiter et al. [RBGR18].

4.2. (T1) Global Exploration and Analysis of a Cohort

For the global exploration and analysis of the entire cohort, we

need to enable clinical researches to manage the comparison of

the different pelvic organs in multiple patients throughout several
timesteps. Additionally, the patient data might incorporate different
sets of organs, as the delineations include either the prostate, or the

prostate and seminal vesicles, or the prostate, vesicles and lymphs.

We first provide users with an overview of the whole cohort data.

The main idea behind this is to generate a high-level representation

that conveys the general patterns present in the data, before the user

starts a detailed investigation of individual interesting cases. This

is based on the low dimensional outcome of the previously dis-

cussed dimensionality reduction step. The distance calculation be-

tween datapoints enables the explicit estimation of outliers on a per-

patient basis, if the distance to their mean shape is used. It also gives

an indication on how much the shape varies across the treatment

timepoints for each patient. For this, we calculate the Euclidean
distance, similar to Klemm et al. [KLR∗13]. If clustering would be

employed for this task instead, subtle differences would not be visi-

ble. Clustering would only offer a binary variability option—either

the shape belongs to a cluster or not. On the other hand, cluster-

ing enables the extraction of the main shape groups within patients.

These can be later analyzed and compared to one another, offering

an understanding on what shape types are to be expected and how

prominent they are. As both subtasks are valid, the user can de-

ploy both options in the application. For the clustering, we employ

a hierachical clustering with complete linkage [ELL01].

From the previous calculations, we receive a single distance met-

ric and/or cluster value per combination of patient, timestep and

organ. To represent this, we employ a tabular representation sim-

ilar to the contingency matrix of the Bladder Runner [RCMA∗18]

or the representation in the work of Blumenschein et al. [BBS∗18].

This representation (Figure 5) was chosen to show the shape change

information, while at the same time preserving information about

time and patient correspondences. We also want to ensure that

the visualization itself is readily understandable by users who do

not employ visual analytics tools on a regular basis. In the tabu-

lar view, patients are denoted on the vertical axis and timesteps

on the horizontal one, to enable comparison both across timesteps

and patients. The encoded values may represent the similarity dis-

tance encoded with a sequential white(low)-to-blue(high) colormap

(Figure 5), or cluster membership denoted with a qualitative col-

ormap (Figure 10 (a)). Both of these maps were taken from Col-

orbrewer [HB03]. To extend this approach for multiple organs, we

split each cell of the tabular view into equally sized parts—one for

each organ to be shown (Figure 5, right). With this encoding, the

users can directly compare values of multiple organs and detect

patterns and correlations, similar to a glyph-based representation,

as also demonstrated by Blumenschein et al. [BBS∗18]. The users

can manually filter which organs are shown at any given time, as

well as whether they want to show the Euclidean distance or the

clustering. Labels and legends accompany the representation.

The tabular representation can accommodate additional infor-

mation with regard to the underlying data distribution and to the

amount of missing data, i.e., missing organ delineations, as both of

these indicate trustworthiness. The former is represented with ad-

ditional distribution histograms accompanying the groups and po-

sitioned to the left-hand side of the tabular plots, as shown with

the grey bars in Figure 5. The latter is represented with an “empty

glass” metaphor on each cell in the tabular plot. As shown in Fig-

ure 6 (left), the emptier the cell, the less data it contains and this

partition is less trustworthy. For example, in Figure 6 (left), Groups

1 and 2 have less available data for the prostate (third component

of the glyph, see also legend) than Group 3. Going one step further,

the user might also be interested in finding out how different shape
group types compare to each other. For this, several encodings, i.e.,

size, texture, color, and blur, have been investigated, as shown in

Figure 6 (right), for the encoding of the standard deviation of each

observation from the mean value.

While the initial layout of the overview visualization provides
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time

time

time

time

One organ

One organ, with time aggregation

Two organs

Two organs, with time aggregation

Figure 5: Some of the possible configurations of the tabular view—with one or multiple organs, and with or without time aggregation.

Figure 6: Left: Encodings for the standard deviation from the mean shape (orange colormap) and for data missingness (emptiness of cells).
Right: Alternative encodings for the standard deviation of each organ from the mean value (size, texture, color, and blur).

clinical researchers with the option to see the whole cohort at once,

the analysis process would require the user to scan row-by-row the

representation to detect similarities or outliers. This can be time-

consuming even for a small cohort of patients. To this end, we ad-

ditionally enable Focus+Context (F+C) [BCS96], sorting and filter-

ing [FGS∗17], visual aggregations, e.g., based on significant time-

points as shown in the bottom row of Figure 5, and additional parti-

tioning based on patient metadata, e.g., available retrospective tox-

icity data.

4.3. (T2) Local Exploration and Analysis of Partitions

During the exploration and analysis of the entire cohort, the users

identify specific interesting cases, i.e., individual patients or parti-

tions of the cohort, which require further investigation. We enable

the users to drill down to individual patients or partitions, for local

exploration. Up to this point, only abstract key figures with regard

to the cohort and its shape properties have been displayed in the tab-

ular view. We provide an additional view on the anatomical shape

of selected patients or partitions. Multiple patients or subgroups

within the cohort are selected respectively by clicking on a cell or a

row label in the cohort visualization. Each selection gets assigned

a unique color from a qualitative scheme by Colorbrewer [HB03].

For the summarization of shape variations, we extract the me-

dian element inside the shape space as a general representative of

the group. In this way, we are able to retrieve a representative shape

that exists in our cohort—as opposed to the mean shape. The anal-

ysis of the center point variations is indicative of the organ move-

ment. For this, we also use the mean and standard deviation of the

center point of each organ to calculate the main variation directions

for groups of organs. This is also in accordance with our used reg-

istration method, where we also took the average center point for

each patient to align its organs before the analysis. Before this step,

we have already performed a Kolmogorov-Smirnoff test to confirm

that the distribution of the shapes within the cohort is indeed close

to a normal distribution. This combined approach has also been

employed by Ferstl et al. [FBW16, FKRW16].

To display the above summarized shape and position variability,

we employ the common combination of three anatomical 2D planes

(sagittal, coronal and axial) with a 3D view, e.g., in Figure 9 (c).

Standard interaction, e.g., zooming, panning, slicing through the

volume, is possible. For the comparative visualization [KCK17] of

the pelvic organs of multiple patients within a 2D view, two alterna-

tives are possible: (i) superposition of stacked contours, where each

patient instance is denoted with a distinct color, (ii) superposition of

contour boxplots [WMK13], where each patient or cohort partition

is denoted with a distinct color. The latter is shown in Figure 7 (a).

A combination of the two is also possible, e.g., when comparing

one patient instance to a specific partition. We additionally display

the center point variations for each organ. These are explicitly en-

coded by drawing ellipsoid glyphs that deform in the direction of
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 7: Comparison of two partitions (red, blue) in the anatomi-
cal view. (a) Shape and positional variability are visible in 2D. (b)
F+C on the red partition for shape variability. Positional variabil-
ity has been hidden. (c) Exploded view for the extrusion of bladders
in 2D. (d) F+C on the exploded bladder view with an indication of
the extent of the extrusion. (e) Superposed 3D view. (f) Explicit en-
coding of variability in the 3D view for the red group only.

the highest positional variance, to indicate the main directions in

which the organs move, as shown in Figure 7 (a).

In the 3D views, we show the median shapes of all selected

groups superimposed (Figure 7 (e)). The lighting in the scene and

the surface material aim at highlighting the organ structure, while

transparency is not employed. Instead, if a specific group is se-

lected, it is brought forward with a F+C strategy in the 2D (Figure 7

(b)) and the 3D views. On demand, the 3D view can show the ex-

plicit encoding of the surface variations (Figure 7 (f)). In this case,

the surface color is used to encode the amount of surface variation,

using a sequential colormap based on the organs group color. With

this view, we aim at supporting users trying to find regions with in-

teresting shape changes. As the adjacency of the organs may cause

overplotting and difficulties in judging the shape variations, we pro-

vide also an optional exploded view [BVG10], where the user can

extrude the organs in the display (Figure 7 (c,d)). In this exploded

view, the same organ of all groups is taken and placed in such a way

that it does not overlap with any other shape, while at the same time

being centered at a common point. To preserve parts of the initial

context, a line glyph connects the center of the extruded organ to

its original position (Figure 7 (d)).

Implementation: Pelvis Runner is designed as a server-client ap-

plication. A webserver in conjunction with MATLAB performs the

computationally expensive operations, including data processing,

unraveling, and dimensionality reduction. A client-side browser ap-

plication written in JavaScript receives the shape information and

creates the visualizations using three.js and D3.js.

5. Results

In this section, we present four scenarios with single and mul-

tiple patients and organs and we evaluate how well tasks (T1)
and (T2) are fulfilled, together with two domain experts (medical

physicists). We further document the feedback of the two domain

(a)

(b) (c)

Figure 8: Scenario (1)–Single Organ Cohort Exploration, showing
the shape and positional variability of bladders.

experts giving an initial indication of the strengths and weaknesses

of the Pelvis Runner, and future improvements of our approach.

Scenario (1)–Single Organ Cohort Exploration: This scenario is

depicted in Figure 8. We perform a grouping of patients based on

their average bladder variability. When comparing each shape to the

mean of the first treatment day (Figure 8 (a)), the bladder changes

significantly through the treatment period. This is important, as nor-

mally only the first timestep is used for the treatment planning.

When comparing each shape to the mean of the first five treatment

days (Figure 8 (b)), the variability is lower. This can be an indica-

tion that performing the planning based on the first five timesteps

instead of only the first one could more precisely model the shape

of the bladder over time. The users can also explore the precise

shape variations, as seen in the contour boxplots of Figure 8 (c). All

groups have a similar shape, which can be due to the fact that pa-

tients with varying average variability are found all over the shape

space and have no individually distinctive shape. The group with

low shape variability (Group 1, red) has also small local shape vari-

ations and the group with high shape variability (Group 2, green)

has also large local shape variations. The positional variations also

correspond to the respective groups, the higher the general shape

variability the larger the positional variations are. They also seem to

largely vary along the sagittal axis (up–down), which corresponds

to the findings of other works in this field [CMMH∗17].

Scenario (2)–Multiple Organs Cohort Exploration: This sce-

nario is depicted in Figure 9. The previous explorative tasks of Sce-

nario (1) can be repeated for all organs present in the data. The co-

hort overview encodes the average values of the three organs side-

by-side (Figure 9 (a)) or the deviation and missing value proportion

for each organ in Figure 9 (b). The prostate (rightmost glyph) does

not undergo any large shape variations, as it has low values (al-

most white) for all groups (Figure 9 (a)). This is due to the fact that

prostate and CTV delineations are often used as the target area for

the radiation treatment and are, therefore, not adapted in shape—

only moved in position, even if their physical counterparts change.

In Figure 9 (b), the coloring shows that the values for the bladders

are rather similar in each group, while the ones of the rectum are

strongly varying. The glyphs also reveal that around a third up to

a half of all patients are missing a segmented prostate. Looking at

the resulting contour variability plots in Figure 9 (c), the previous

findings are confirmed in the anatomic view. Also, there are slight

overlaps between the prostate shape and the bladder, which may

result from the fact that the prostate shape includes an additional

safety margin for adequate treatment. Also, all organs seem to un-
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(a)

(b) (c)

Figure 9: Scenario (2)–Multiple Organs Cohort Exploration,
showing the shape and positional variability of all pelvic organs.

(a) (b)
Figure 10: Scenario (3)–Shape Type Identification, for bladder
shape analysis.

dergo the same positional changes, although the prostate seems to

move slightly less—probably, due to anatomical confinement.

Scenario (3)–Shape Type Identification: This scenario is depicted

in Figure 10, and it investigates possible organ shape types result-

ing from the clustering. In the case of the bladder, four groups (Fig-

ure 10 (a): red, green, blue, and purple) are obtained. Each group is

selected to inspect their median shapes, confidence bands, and posi-

tions. The shapes produced in this scenario appear more different in

form than the ones produced by splitting the shapes based on their

average shape variation, as seen in the first two scenarios (Figure 10

(b)). Group 2 (green) and 3 (purple) are slightly bigger, and Group

2 bladders are more convex and protrude further in the direction of

the prostate bottom left side of the shapes in Figure 10 (b)). This

is not only visible in the 2D views but also in the superimposed

3D view. Both Group 0 (red) and 1 (blue) have a flatter interface

towards the prostate (bottom left side of the shapes in Figure 10

(b)) and have a more concave shape. In general, all bladders tend

to have the largest growth on the upper side, as this is the space

where the bladder has the fewest constraints in the body and can

freely extend. All of the bladders move predominantly along the

sagittal axis (up–down), with Group 0 (red) and 3 (purple) mov-

ing more towards this direction. This verifies findings of previous

clinical work [PAG∗06, CMMH∗17].

Scenario (4)–Retrospective Toxicity Analysis: This scenario is

depicted in Figure 11, and investigates possible correlations of or-

gan shapes to toxicity manifestation. This figure also showcases the

comprehensive interface of the Pelvis Runner. For the toxicity, ret-

rospective data of all patients are available. The elements are sorted

based on this attribute, as seen in Figure 11 (a). Group 1 (red) pre-

sented no toxicity and Group 2 (blue) presented toxicity. In group

2, there are patients with high (1, 10 and 18) and low (0, 4) shape

changes. Also there are patients whose average shape of the first

five days is similar to the rest of the treatment (0, 1 and 14), and

those whose average shape is not (10 and 18), leading to higher

(a)
(b)

Figure 11: Scenario (4)–Retrospective Toxicity Analysis, to com-
pare patients with toxicity (blue) against patients without (red).

variations. Both of these findings do not indicate a connection be-

tween bladder variability and induced toxicity. When looking at

the anatomical views, there are no large differences in the shapes

themselves, although the one with toxicity seems to be slightly big-

ger (Figure 11 (b)). However, the positional differences of the CTV

look vastly different for the two groups of patients. Looking at the

sagittal view (top left in Figure 11 (b)) indicates that the group with

toxicity (blue) seems to move more than the one without (red). In-

creasing the number of patients might allow clinical researchers in

the future to derive more information about these initial findings.

Initial Feedback: The domain experts also gave us feedback with

regard to the strengths, weaknesses, limitations, and future im-

provements of our work. The domain experts commented that the

application provides a flexible and systematic way to explore the

data—allowing them to aggregate information in different ways

and inspecting the most interesting aspects of these. The approach

is “a promising and useful decision-making tool for radiation on-
cologists”. As they stated, “there are many possibilities, and many
features” and this allows them to approach their data in many dif-

ferent ways. It allows them to see individual organs, multiple or-

gans, multiple patients, and also subgroups of the cohort, at the

same time. Although this was not intended functionality, they com-

mented that “the tool offers a way of identifying the setup uncer-
tainty of the entire treatment”, as it allows an overview of the mo-

tion, i.e., uncertainty, of the prostate. They also discussed that the

ellipsoid glyph visualizing the positioning of the organs is more ap-

propriate, as a probability distribution would show positions where

the organ has never been. The exploded views of the organs were

neither judged positively nor negatively—probably, due to their in-

herent distortion of the anatomy. The 2D views seemed to be more

useful than the 3D views. The domain experts expressed that they

would like to explore further the data in the frame of their future

clinical research. They expect that working more with the applica-

tion will bring forward interesting aspects for improvements—but

most importantly, for the improvement of treatment planning. For

example, the application could give “indications of patients that
will fail or that may develop toxicity at the beginning of the treat-
ment”, allowing them to adapt the employed strategy. Potentially, it

could help “creating thresholds [i.e., guidelines] for patient treat-
ment”. As points for future work, the domain experts proposed the

addition of functionality for conducting easy annotations and mea-

surements concerning, e.g., the confidence bands of the contour

boxplots. This would quantify the up-to-now qualitative inspec-

c© 2019 The Author(s)

Eurographics Proceedings c© 2019 The Eurographics Association.

76



N. Grossmann et al. / Pelvis Runner

tion of the variability, and could be done by, for example, probing

along the median contour. Additionally, they would like to compare

also the outcome of this approach with other applications, e.g., the

Bladder Runner [RCMA∗18]—or as they mentioned “the two tools
could be used in combination with each other and also with other
metrics”. This is considered to be initial informal feedback, and in

the future we would like to conduct an extensive evaluation.

6. Conclusions and Future Work

We present the Pelvis Runner, a visual analysis application for the

exploration of segmented pelvic organs in multiple patients, across

the whole radiation therapy treatment procedure. In this work, we

focused on the global exploration and analysis of pelvic organ

shape variability in an abstracted tabular view and on the local ex-

ploration and analysis in a combined 2D/3D anatomical view. We

showcased the functionality of the Pelvis Runner with four usage

scenarios conducted with two domain experts. Directions for fu-

ture work include a thorough evaluation with the intended users, as

well as a quantitative evaluation to assess the robustness of the cur-

rent partitioning approach. For this, a larger cohort would also be

needed. The registration part of the workflow could also be evalu-

ated and improved to yield more robust results, as well as the cho-

sen metrics for the shape space description. Additionally, poten-

tial occlusion issues in the anatomical view should be addressed.

In its current state, the Pelvis Runner has been designed for do-

main experts—namely medical physicists—who are familiar with

the implemented analysis and are also (up to a certain extent) visu-

alization and machine learning literate. However, there is another

group of potential users: clinicians, who are more involved into the

design and administration of treatment plans. This group might sig-

nificantly benefit from a simplified version of the application that

focuses more on describing the organ shape variations of individ-

ual patients. Hereby, guidance [CGM∗16] and a more automatized

approach might be preferred. The Pelvis Runner is a first step to-

wards the analysis of variability in multi-organ patient cohorts and

its inclusion in adaptive radiotherapy.
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