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Figure 1: Radial FBP for visual comparison of a healthy volunteer (left) and patient (right) datasets to a healthy volunteer cohort.

Abstract
Regional anomalies in the myocardial motion of the left ventricle (LV) are important biomarkers for several cardiac diseases.
Myocardial motion can be captured using a velocity-encoded magnetic resonance imaging method called tissue phase mapping
(TPM). The acquired data are pre-processed and represented as regional velocities in cylindrical coordinates at three short-axis
slices of the left ventricle over one cardiac cycle. We use a spatio-temporal visualization based on a radial layout where the
myocardial regions are laid out in an angular pattern similar to the American Heart Association (AHA) model and the temporal
dimension increases with increasing radius. To detect anomalies, we compare patient data against the myocardial motion of a
cohort of healthy volunteers. For the healthy volunteer cohort, we compute nested envelopes of central regions for the time series
of each region and each of the three velocity directions based on the concept of functional boxplots. A quantitative depiction of
deviations from the spatio-temporal pattern of healthy heart motion allows for quick detection of regions of interests, which can
then be analyzed in more detail by looking at the actual time series. We evaluated our approach in a qualitative user study with
imaging and medical experts. The participants appreciated the proposed encoding and considered it a substantial improvement
over the current methods.

1. Introduction

Abnormal function of the left ventricle (LV) increases the risk
for cardiovascular complications and death after cardiac and non-
cardiac surgery [DAS∗14]. The evaluation of LV performance im-
proves the risk assessment. Thus, an early detection of its dys-
function, monitoring, and accurate diagnosis is of great impor-
tance [FJS∗09, MRG∗13]. The LV function is often assessed using
global indicators such as ejection fraction, ventricular volume, or

stroke volume. However, these global indicators lack information
about the local or regional ventricular function that can provide im-
portant biomarkers for several cardiac diseases and plays a crucial
role in their diagnosis [FJS∗09, MRG∗13]. For instance, despite
having normal ejection fraction, nearly 50% of the heart failure pa-
tients have anomalies in the diastolic function [WN09]. Therefore,
in a thorough clinical analysis, regional wall motion anomaly anal-
ysis shall be preferred.
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Myocardial motion can be captured using a velocity-encoded
magnetic resonance imaging (MRI) method called tissue phase
mapping (TPM) [PSY∗94], see Section 3. It allows for the evalua-
tion of the heart’s anatomy, the function of its chambers and valves,
and the blood flow through major vessels (among other aspects)
in a non-invasive manner with high spatial and temporal resolu-
tion [JFB∗06]. TPM enables the extraction of myocardial velocities
in all three spatial dimensions, which are transformed to radial, cir-
cumferential and longitudinal components with respect to the LV
geometry, see Section 3. Due to the three-dimensional nature of the
TPM, it is particularly well suited to study the complex motion of
the LV in order to analyze the regional heart function [FJS∗09].

In clinical practice, regional wall motion is often analyzed using
a standard developed by the American Heart Association (AHA)
[Cer02], which represents the LV with 17 standardized segments
obtained from three short-axis slices. Such analysis relies on vi-
sual assessment and interpretation of the motions of each segment.
This interpretation is time-consuming and highly dependent on the
experience of the clinician and, thus, has high inter-observer vari-
ability [RKL∗07]. There has been a significant research effort in
automated anomaly detection in the wall motion [PBI∗13,SFK∗09]
to reduce the subjectivity of the assessment. However, there is little
attention paid to developing improved visualization tools for the as-
sessment. The goal of this paper is to present a novel approach for
the visual assessment of regional wall motion anomalies to assist
clinical researchers.

Our approach is based on a radial layout similar to the AHA
model that cardiologists are familiar with. We lay out the segments
in the same manner to capture the spatial distribution within each
of the three slices. To encode the temporal dimension we use the
radius of the radial layout, thus, allowing for the analysis of spatio-
temporal patterns [SCK∗16]. We use the concept of functional box
plots (FBPs) for the time series of each segment and each ve-
locity dimension to capture the variability within the healthy co-
hort, and to visually encode spatio-temporal regions of anomalies.
We document the effectiveness of our approach using patient and
healthy volunteer datasets, see Section 5. Our approach is evaluated
in Section 6 by conducting qualitative user studies with imaging
and medical experts.

2. Related Work

To our knowledge, visual assessment of regional anomalies in my-
ocardial motion has not been fully addressed in the literature. The
focus of the academic community has been more towards the au-
tomatic detection of anomalies [PBI∗13, SFK∗09], which by itself
does not facilitate an intuitive understanding of the spatio-temporal
behavior. Most of the studies use the 17-segment model devel-
oped by the American Heart Association (AHA) [Cer02]. This
model is the most common way of showing the myocardial motion.
For instance, Barnes et al. [GBGCP08] use the AHA-based bulls-
eye charts to highlight abnormal regions in pathological cases.
Punithakumar et al. [PBI∗13] worked on automatic detection of re-
gional anomalies and demonstrated the results of their algorithm
on a color-coded AHA-based plot. The major limitation of all ap-
proaches using the exact AHA model is that it shows the data for a
single time step only. Several individual AHA plots are then needed

to investigate the temporal behavior throughout the cardiac cycle.
Our visualizations are based on a spatio-temporal layout that allows
for the analysis of the spatio-temporal behavior of anomalies.

A somewhat smaller limitation of the AHA model is that it rep-
resents the myocardium with very few regional segments only. A
higher spatial resolution would be desirable for a more fine-grain
analysis of regional myocardial motion. Föll et al. [FJS∗09] used
an extended version of the AHA model with 24 segments for each
of the three short-axis slices. They encode average myocardial ve-
locities of normal volunteers of various age groups and perform
a correlation analysis with the data of a patient with dilated car-
diomyopathy to find the differences in regional LV dynamics for
all three velocity components. However, the correlation analysis
does also not provide any temporal information of the correlation
results. Based on discussions with medical experts, we follow the
idea of Föll et al. to use a higher spatial resolution, but enhance it
to a spatio-temporal layout.

A recent study by Codreanu et al. [CPS∗15] for assessing LV
wall motion anomalies using TPM imaging compares the anoma-
lies in the patients having coronary artery disease with a group of
healthy volunteers. They generated graphs of velocities over time
and arranged them radially next to the corresponding segments for
each slice and each velocity direction separately. For represent-
ing the velocities for the cohort of healthy volunteers they merely
showed the average, which does not allow for an understanding of
how much variation exists within the group. Our approach, instead,
is based on the concept of functional boxplots, which allows for the
assessment of the variation within the healthy group and the visual
comparison of a patient dataset against that group.

Clarysse et al. [CHCM02] performed a functional data analysis
on the spatio-temporal deformation of the myocardium during sys-
tole from tagged MRI. To visualize the MR data of six short-axis
slices with 12 segments each, they used a polar plot to study the
spatial deformation at a single time step and, in a separate repre-
sentation, a rather large matrix of 6×12 small multiples to investi-
gate the temporal patterns. They highlighted the abnormal regions
with dashed lines. In this matrix of views, it is quite challenging to
correlate the temporal patterns among different segments to their
spatial distribution in the polar plot. Also, the anomalies are not
quantified and not temporally located, i.e., it is not clear how much
the velocities deviate from a normal behavior and in which part of
the cardiac cycle. The visual encodings we propose allow for such
an analysis.

Taimur and Hua [TH13] proposed a 3D model-based approach
to study the dynamic object deformations such as cardiac motion.
They developed a classification and visualization method based on
the medial surface shape space, in which two shape descriptors
were defined for differentiating normal and abnormal human heart
deformations. The 3D visualizations are inherently difficult to com-
prehend due to occlusion issues. Our approach, instead, is based on
the 2D design that is easier to analyze.

Our paper is based on the spatio-temporal visualization of
regional myocardial velocities presented in our earlier work
[SCK∗16]. The main approach is given in Section 3.3. However,
in our previous work, we were only visualizing the motion of indi-
vidual datasets. The goal of this paper is to show anomalies by vi-
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sualizing cohorts of healthy volunteer data and visually comparing
a patient dataset to this cohort to observe if abnormal behavior is
present (pathological case), where it happens (spatial dimensions),
when it happens (temporal dimension), and how severe it is (quan-
tified deviation).

3. Prerequisites and Problem Description

3.1. Image Data Acquisition

TPM imaging for LV myocardial motion has proven to be a ro-
bust technique offering high spatial (< 2mm) and temporal (≈
20ms) resolution when compared to other acquisition techniques
[CHS∗16] such as tagging [ZPR∗88]. For the healthy cohort, we
have used the data acquired for the reproducibility study performed
by Lin et al. [LCB∗16]. In that study, 19 healthy subjects (13 men,
6 women, age = 49.94±15.43 years) with normal cardiac function
and no history of cardiovascular disease were scanned. Each sub-
ject underwent two separate MRI scans, using the same imaging
method with a time difference of 16.63± 6.58 days between the
two scans. This makes a total of 38 healthy datasets.

Three short-axis image slices (base, mid-ventricular, and apex)
along the LV were acquired according to the recommendations
by the AHA, as shown in Figure 2. For each slice, a magni-
tude and three velocity-encoded images (one for each of the three
spatial dimensions in an image-aligned 3D Cartesian coordinate
system) are acquired. All scans were performed on a routine
1.5T MRI system (Magnetom, Aera, Siemens, Germany) using a
black-blood prepared 2D gradient echo (GRE) cine phase-contrast
MRI sequence with three-directional myocardial velocity encod-
ing [JFB∗06, MRG∗13]. Other imaging parameters included: spa-
tial resolution=1.98− 2.29× 1.98− 2.29 mm2, slice thickness=8
mm, and temporal resolution=20.4−20.8 ms/frame.

Three patient datasets (P1 to P3), all diagnosed with dilated car-
diomyopathy, were acquired using the Siemens Avanto 1.5T MRI
machine with imaging parameters as spatial resolution=2.1875−
2.25 × 2.1875 − 2.25 mm2, slice thickness=8 mm, and temporal
resolution=22.8−24.4 ms/frame. P1, a 52 years old male, has 40%
ejection fraction (< 50% is considered bad) and is known to have
abnormalities primarily in the radial direction in the septum in all
slices. P2, a 67 years old female, has significant inflammation with
60% ejection fraction and P3, also a 67 years old female, has little
inflammation with 52% ejection fraction.
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Figure 2: Acquisition of basal, mid, and apical slices. [CNS∗15]

3.2. Data Processing and Preparation

The healthy datasets were processed using an in-house software de-
veloped in MATLAB. The epicardial and endocardial LV contours

were manually traced in all three slices for all acquired cardiac time
frames to segment the LV. However, the patient datasets were seg-
mented using a semi-automatic segmentation technique based on
contour propagation and particle tracing [CHS∗16]. The segmenta-
tion step results in a binary mask of the myocardium for each time
step, which is partitioned into 24 segments to get a higher spatial
sampling. The velocities are converted to a cylindrical coordinate
system that is aligned with the LV and consequently represents ra-
dial, circumferential, and longitudinal velocity components of the
myocardium (see Figure 2). This mask and partition is applied to
all velocity-encoded images to extract the regional velocity infor-
mation. Velocities within each segment are averaged to compensate
for noise.

For all of the acquired datasets, imaging started at the beginning
of the systolic phase (acquisition is ECG-gated to the R-wave), but
not the full cardiac cycle was measured for all subjects. The used
prospective gating needs dead time (10-20%) at the end of the car-
diac cycle to be able to catch the next trigger signal. In order to
have comparable spatio-temporal patterns, the individual datasets
need to be synchronized, which was rather challenging due to in-
complete cycles and missing heart rates. The only point in time
(except the starting point) that can be detected sufficiently reliable
in all datasets was the end-systolic point (ES) when the heart tran-
sitions from the systolic to the diastolic phase. The ES is the point
in time within the cardiac cycle with minimum LV area. We com-
pute the LV area by counting the number of pixels inside the my-
ocardium within the given slice. We split all time series at the ES
into a systolic and a diastolic phase. Then, the systolic phases have
a well-defined starting and end point and can be synchronized us-
ing linear time interpolation [JFB∗06]. Independently, the diastolic
phases are interpolated, but due to the different ending times they
only have a synchronized starting point. Figure 3 shows the radial
velocities (averaged over all segments) in the mid-ventricular slice
after synchronization. The different end points of the time series
are apparent.

After these data preparation steps, we obtain for each dataset
an unsteady 3D vector field, where spatial sampling is provided
within a region of interest (LV myocardium) on three distinct 2D
image slices (apex, mid-ventricular, and base) and aggregated over
24 segments per slice. The 3D vectors are given with respect to a
cylindrical coordinate system. The evolution of the 3D vector field
is measured over a maximum of 100 time steps from one (incom-
plete) cardiac cycle, which are synchronized at beginning and end
of the systolic phase.

End 

Systole

Figure 3: Averaged radial velocities of mid-ventricular slice for all
datasets from healthy volunteer cohort.
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3.3. Radial Layout for Spatio-temporal Visual Analysis

In our previous work, we proposed a spatio-temporal layout for
visualizing regional myocardial velocities for individual datasets
[SCK∗16]. In this paper, we want to build upon this layout to visu-
alize cohorts and differences of individual datasets when compared
to cohorts (anomalies). The spatio-temporal layout amends the idea
of the AHA model to radially lay out the segments. Hence, spa-
tial information is encoded by the angular coordinate (azimuth) in
the radial layout (polar coordinates). We use a finer spatial granu-
larity than the AHA model with 24 segments per slice. The tem-
poral dimension is then mapped to the radial coordinate in the
layout, where the time series does not start in the center but at a
larger radius to avoid visual clutter towards the center. In this ra-
dial layout, we can depict velocities using various encodings (cf.
[SCK∗16, TBB∗08]), for example, by a color mapping of the ve-
locities, see Figure 4. In Figure 4 (left), we created one radial plot
for each of the three slices and each of the three velocity compo-
nents leading to a visualization with 3× 3 views. This image en-
codes the entire spatio-temporal information of a single dataset.
Hence, one still image can replace going sequentially through all
images of all velocity components and all time steps. The contin-
uous color mapping uses blue color for negative and red color for
positive values, where values close to zero can be shown in white or
transparent. We also highlight beginning and end of the systole and
diastole phase and label the AHA segments. Since medical experts
are most familiar with the AHA plots, an AHA-based visualization
of a single, interactively selected time step is also supported in the
interactive visual analysis tool, see Figure 4 (right column).

Radial Circumferential Longitudinal

B
a
s
e

M
id

A
p

e
x

R
a
d

ia
l

C
irc

u
m

fe
re

n
tia

l
L
o

n
g

itu
d

in
a
l

Time step: 4

1

6

5

4

3

2
7

12

11

10

9

8 13

16

15

14

1

6

5

4

3

2
7

12

11

10

9

8 13

16

15

14

1

6

5

4

3

2
7

12

11

10

9

8 13

16

15

14

Snapshots

end of cardiac cyclestart of cardiac cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12
current time marker

13

14

15

16

Figure 4: Linked views of 3×3 spatio-temporal views of individual
slices (rows) and velocities (left three columns) and spatial views
of selected time step (right column). [SCK∗16]

3.4. Anomaly Analysis Tasks

Anomaly analysis refers to the process of finding patterns or values
which do not conform to the patterns or values of some reference
data. Within the medical context the reference data are typically
provided in the form of a selection of datasets from healthy people
(commonly volunteers). In the case of spatio-temporal patterns, lo-
cations in space and time of anomalies are of interest. Moreover,
one would also like to know how severe an anomaly is, i.e., how

much it deviates from the normal state. These objectives also hold
true for our application scenario and can be summarized as:

T1 Visualize variability within a cohort. The goal is to observe the
variability in the patterns within a cohort of healthy volunteers.
In order to be able to judge anomalies, one needs to know how
much variation is normal.

T2 Visually compare individual datasets to a cohort. The goal is to
analyze whether a patient dataset matches the spatio-temporal
pattern of the cohort of healthy volunteers.

T3 Visually encode location of anomalies.The goal is to see where
an individual dataset in the case of pathology deviates from the
spatio-temporal pattern of the cohort of healthy volunteers. Of
interest are both the spatial location (segment) and the time point
(phase) of the anomaly.

T4 Visually encode severeness of anomalies.The goal is to quantify
how much an individual dataset in the case of pathology devi-
ates from the spatio-temporal pattern of the cohort of healthy
volunteers.

4. Visual Encodings

Starting from the analysis tasks described in the previous section,
we developed visual encodings suitable for fulfilling the respective
tasks. The visual encodings address different aspects of a visual
analysis of anomalies in the spatio-temporal patterns of regional
myocardial motion captured by TPM imaging for individual pa-
tients in comparison to a reference cohort of healthy volunteers. We
present the visual encodings with increasing task complexity (T1 -
T4) in Sections 4.1-4.4, while the analytical workflow would make
use of the visual encodings in reverse order, i.e., starting from an
overview and providing more details on demand, see Section 4.5.

4.1. Functional Box Plots (FBPs)

Our first goal (Task T1) is to visualize the variability within a co-
hort. Variability of a numerical attribute is often captured and vi-
sualized using boxplots. They cover median, interquartile range,
upper and lower quartiles, and outliers of the statistical distribu-
tion. For each member of a cohort we have a time series of ve-
locity values, i.e., the velocity is a function of time. When deal-
ing with functions rather than values, the concept of functional box
plots (FBP) [SG11, HS10] has been introduced. They are based on
the concept of band depth, which allows for ordering functional
data from the center outwards, i.e., according to decreasing depth
values. The median area is then the band with the highest depth
and the central 50% of the curves is the analog to the interquar-
tile range. Lui et al. [LPS∗99] introduced the concept of central
regions, where a central region envelopes a proportion of deepest
curves from the sample. We follow this concept and define four
central regions covering 25%, 50%, 75%, and 100% of the func-
tions, see Figure 5a. We apply a single-hue luminance color map
for encoding the sequence of four central regions (all color maps
within this paper were generated using ColorBrewer [HB03]). The
FBP conveys better the shape of the time series when compared to
the standard boxplots applied to each time point, cf. [SG11].

The FBP requires all time series to be of equal length, which is
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not the case in our datasets. Thus, we divide the temporal dimen-
sion into five intervals where 100%, 75%, 50%, 25%, or at least one
of the time series are present, see Figure 5a. Then, we can compute
the FBP for each of the five intervals separately (for all time se-
ries that exist throughout the interval) and stitch them together. The
plots exhibit discontinuities at the stitches, which is desired to visu-
ally reveal the five intervals. For the visual encoding of the results,
we should take into account that having less data increases the un-
certainty, i.e., the bands should widen when some time series stop.
We achieve this by setting the values of the missing time series for
each interval to the minimal and maximal observed diastolic values.
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Figure 5: Functional box plot (a) and outlier detection (b).

4.2. Radial FBPs

When applying FBPs to a cohort, we get four central regions for
each LV segment of each slice (base, mid, and apex) and each ve-
locity direction (radial, circumferential, and longitudinal). To allow
for an understanding of spatio-temporal patterns of the variabil-
ity within a cohort, we have to use an intuitive layout of all these
FBPs. We adopt the radial layout concept described in Section 3.3,
which was shown to be effective for analyzing spatio-temporal pat-
terns in myocardial motion [SCK∗16]. Figure 6 demonstrates the
design methodology of the layout. The FBPs for all segments are
arranged along the angular direction (same as in Section 3.3) to
capture the spatial structure of the LV. The temporal dimension is
mapped to the radial coordinate, i.e., time increases with increas-
ing distance from the center. The display space for each FBP is
a rectangle, though, and not a trapezoid to avoid any distortions,
i.e., the function values at the beginning and at the end of the time
series remain comparable. All FBPs are normalized to the global
minimum-maximum range and the plots are scaled accordingly to
fit the display space. The visualizations are also enhanced by mark-
ing the cardiac phases as rings, and the velocity directions are la-
beled, e.g., as contraction or expansion for radial velocities (not

shown in the sketch in Figure 6). We refer to this radial layout of
FBPs according to the spatio-temporal dimensions as radial FBP.
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Figure 6: Design idea for layout of radial FBP.

For the anomaly analysis, we want to convey whether an indi-
vidual dataset matches the spatio-temporal pattern of the cohort of
healthy volunteers (Task T2). We overlay the radial FBPs with the
velocity values of the individual dataset for all FBPs in the lay-
out, see Fig. 1. The time series of the individual dataset is shown
in red. One can observe whether the red curve follows the pattern
of the four nested bands. Note that Fig. 1 shows the anomalies for
the radial velocity in the base slice only. To analyze the complete
dataset for all three velocities and all three slices, we would have to
investigate 3×3 such images, cf. Figure 4 or Figure 9.

4.3. Highlighting Anomaly Regions

The goal of analysis Task T3 was to show where an individual
dataset deviates from the cohort. This can be observed in our radial
FBPs, as they contain all information. However, differences may
be subtle and when looking at the overview of 3× 3 radial FBPs,
the display area of each radial FBP is limited. Thus, when start-
ing the visual analysis with an overview of all velocity directions
in all slices, a less detailed encoding that highlights where devia-
tions occur is desirable. Consequently, we propose to highlight the
segments (regions) in the radial FBPs where the time series of the
patient dataset is significantly different from the cohort.

To test for significance in the difference, we add the patient
dataset to the cohort and test, whether it is an outlier in the FBP.
In the construction of the FBP, observations (functions) are ordered
by a notion of band depth that allows ordering the functions from
the center outwards and thus provides a measure to define func-
tional quartiles and the centrality or outlyingness of an observa-
tion [SG11]. The outliers in the FBP can be detected by considering
an envelope of 1.5 times the 50% central region. This is motivated
by the empirical rule of taking 1.5 of the interquartile range for
detecting outliers in conventional boxplots. Thus, for FBP, fences
are obtained by inflating the envelope of the 50% central region to
1.5 times its width [SG11]. Any observations outside the fences are
marked as potential outliers. Figure 5b shows the envelope for out-
lier detection in an FBP. Outliers are shown in red. The outliers are
computed for each interval separately. For highlighting outliers, we
only detect them in the time interval, where 100% of the time series
are available, as this is the most important and most reliable part.
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Figure 7 shows a radial FBP for comparing patient data against a
healthy cohort with those time series, where the patient is detected
to be an outlier marked with a red dot and a red color for the seg-
ment number. The markers directly attract the attention towards the
respective segments.

Circumferential

Apex

Figure 7: Outliers (red dots and numbers) in radial FBP for cir-
cumferential velocities in the apical slice of patient P1 (Task T3).

4.4. Difference-encoded Radial FBPs

The outliers in the radial FBPs show effectively where the regions
of abnormal motions are, but they do not encode how severe these
anomalies are, e.g., how far the velocity values lie outside the 100%
band and whether the values are too low or too high when com-
pared to the cohort. Moreover, the outlier highlighting marks entire
segments, but not the time frames within the respective time series
when the deviations occur. These aspects, though, are captured in
the radial FBP. The radial FBP encodes the actual velocity values
for the cohort in comparison to the velocity values for the individ-
ual dataset that we test against the cohort. If we want to quantify
their differences (Task 4), then we can derive this information from
the radial FBP, but it may be more effective to explicitly encode the
differences. We propose to display such differences (the amount of
anomaly) by amending the radial FBP.

Amending the radial FBP allows for encoding the differences to
all central regions in one plot. We plot the difference from each of
the central regions in a nested fashion. To not confuse these plots
with the radial FBPs above, we use a different coloring scheme for
the bands, namely another single-hue luminance color map for a
different hue.

The difference is considered to be zero if a value lies between
the minimum and maximum values of the region, otherwise, the
difference is calculated from the minimum and maximum bound-
aries of the region. Figure 8b shows an example of displaying the
difference in a radial FBP. The outer-most band shows the differ-
ence between the patient velocities to the 25% central region of the
velocity-encoded FBP, next to the 50% region, then to the 75% re-
gion, and the inner-most band shows the difference to the 100%
region. It can be observed with this encoding that the severeness
of the anomaly can vary a lot for different potentially abnormal
regions. The differences in the radial FBP also show the sign of

the differences and not only the magnitude, i.e., it can be observed
whether the velocities are too high or too low. The difference en-
coding can, of course, also be combined with the outlier highlight-
ing, see Figure 8b.

4.5. Analytical Workflow

When starting to analyze a dataset, the user would first of all like
to get an overview, i.e., the user would like to see the information
about all time steps of all segments for all three slices and all three
velocity directions. Hence, the user would start with a 3 × 3 ra-
dial FBP view. Since analyzing these data is rather complex and
the visual complexity may be overwhelming, the user needs guid-
ance, which we provide by starting with difference plots (enhanced
with highlighted outliers) as in Figure 9. The difference plots and
the outlier highlighting quickly guides the user to regions that are
potentially interesting for further inspection.

How to proceed from here depends on the individual case. If one
of the 3×3 plots exhibits strong differences, one may click at that
plot and further analyze it, cf. Figure 8c. Within that radial FBP one
may observe some segments that are of interest, which can then be
clicked at to analyze an individual FBP, cf. Figure 5a. A second
scenario would be that one segment exhibit strong difference in all
3× 3 plots such that one would click immediately at that segment
to analyze a 3× 3 plot of that segment only. During the process
of going from overview to detail, the user may at any time switch
between the difference encoding and non-difference encoding, cf.
Figure 7. The final analysis after providing detailed views is per-
formed on the FBPs that show the actual time series and not on the
difference encoding.

5. Results

To visually encode the variability in a cohort (Task T1), we pro-
duced functional box plots for each segment for the healthy cohort
and arranged them in a radial layout (see Sections 4.1 and 4.2). For
instance, Figure 10 shows the velocity values and their variabil-
ity in the healthy cohort for the radial velocities in the basal slice.
First of all, the radial FBP indicates the complex motion behavior
of the myocardium, which also for healthy people does not simply
compress and expand equally in all regions. Instead, the individual
FBP exhibit some clearly different behaviors in different segments.
This is because the heart is simultaneously shrinking/elongating
and rotating. Moreover, we can see that the variation within the co-
hort also differs for different segments and different cardiac phases.
In particular, we can observe that the healthy datasets have higher
variability in the diastole phase for segments that have been marked
with arrows of different colors. The black arrows indicate stronger
radial motion in segments 1, 2, and 24 than other segments. Simi-
larly, the red arrows indicate opposite directions between 50% and
75% regions at segments 11-12, and the orange arrows indicate
higher velocities in the 50% central region than the 25% region
in segments 21-23 in diastole. Such a visualization of cohorts can
be helpful for training and teaching purposes of still inexperienced
medical students or doctors. Note that Figure 10 shows just one ve-
locity for a single slice. For a complete analysis, one would require
a matrix of 3×3 views.
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Figure 8: Difference-encoded radial FBPs of (a) healthy volunteer vs (b) patient (Task T4) and (c) with outlier highlighting (Task 3).

Slices

Velocities

Figure 9: Difference-encoded radial FBPs of a patient showing all slices and velocities with outlier highlighting (Tasks T3 and T4).

For visual analysis of anomalies, we can show the velocities of
an individual dataset (usually a patient) on top of the visual encod-
ing of a cohort, to see if the individual dataset matches the spatio-
temporal patterns of the cohort (Task T2). Figure 1 (left) shows
the cohort with a healthy dataset H1 overlaid as a red dotted line.
The healthy dataset was one of the 19 volunteers mentioned above,
where the reference model was then built by considering only the
other 18 volunteers. We can observe that except for few segments
that go out of the healthy range (100% central region) in the late di-
astole (marked with black arrows), the red line mainly stays within
all central regions of all FBPs, i.e., the red line matches the bands
quite well. On the other hand, the visualization of the pathologi-
cal dataset P1 in Fig. 1 (right) exhibits stronger deviations of the
red line from the bands indicating anomalies. In particular, we ob-
serve anomalies on the septal side (left in the image) in the systole
(marked with red arrows) and on the lateral side (right in the image)
in the diastole (marked with black arrows). The red arrows indicate

segments where there is a slight expansion (negative velocities) in
the systolic phase in segments 12 to 15, where there should be no
expansion, but contraction, as indicated by the bands having posi-
tive velocities. This anomaly is a clear indicator of a pathological
case, possibly caused by a scar. The black arrows indicate a very
strong expansion (negative velocities) in the diastole on the oppo-
site side (segments 1 to 5 and 22 to 24). While there should be
expansion in the respective phase at these segments, there is a clear
overshooting of the red line. A possible explanation of this abnor-
mal behavior is that the lateral side tries to compensate the anomaly
on the septal side by expanding strongly in order to maintain a cer-
tain blood pressure. The observations confirm the initial diagnosis
of the patient’s condition.

The anomalies for the two other patients P2 and P3 that we in-
vestigated were less obvious than for patient P1. In fact, for patient
P2 only the circumferential velocities in the apical slice showed
obvious deviations from the healthy cohort in inferior lateral and
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Figure 10: Radial FBP to visualize cohort variability (Task T1).

anterior regions, see black arrows in Figure 11a, while for patient
P3 only the radial velocities in the apical slice showed obvious de-
viations from the healthy cohort, see black arrows in Figure 11b.

Figure 7 shows the radial FBP of circumferential velocities in
the apical slice with the statistical outliers marked in red color.
This encoding combined with the patient (P1) velocities on top
of the visual encoding of a cohort was meant to serve for high-
lighting spatio-temporal regions of potentially abnormal behavior
(Task T3). Hence, the outlier markers quickly pinpoint the spatio-
temporal locations of abnormal areas. When looking at Figure 7,
one can immediately see that segments 1, 3, 4, 6, 8, and 15 have
been identified as outlier segments.

While the outliers in the radial FBP plot above only show regions
of abnormal behavior, Task T4 was concerned with the quantifica-
tion of the anomalies, see Section 4.4. Figure 8 shows the differ-
ences of the radial velocities in the basal slice to the cohort when
using radial FBPs for healthy dataset H1 and patient dataset P1.
We can now observe for which time frames differences occur and
whether the velocity values are too high or too low. For example,
for the patient dataset, in the systole we see that there is not enough
contraction, while in the diastole there is too much expansion, in-
dicating why this patient has a too low ejection fraction.

Finally, a 3× 3 combined plots of outlier indicators (Task T3)
and differences (Task 4) can be used to highlight the key areas
of potential anomaly in all slices and velocity directions. Figure 9
shows an example patient P1. One can observe that the radial ve-
locities in the basal slice show greater differences in the right side
of the myocardium while in mid slice, the differences are rather on
the left side. One of the segments (16) has also been marked as a
statistical outlier. (3×3 plots for all visual encodings are presented
in full detail for both H1 and P1 in the supplementary material.)

6. Evaluation

We conducted a user study to qualitatively evaluate the effective-
ness of our approach. Seven experts (4 imaging and 3 medical ex-
perts), familiar with the concept of TPM imaging, and having expe-
rience levels between 1 and 10 years, participated in the study. The
study had two stages. In the first stage, in a roughly 30-40 minutes

long session, participants were introduced to the project and got fa-
miliarized with the proposed visualization methods and analytical
workflow. They were asked to give their general feedback on the
intuitiveness and effectiveness of our visual encodings and were
asked to rate the proposed visual encoding on a 5-step Likert scale
(with 1 being worst and 5 being best) in terms of intuitiveness.

All participants appreciated the proposed encoding and consid-
ered it a substantial improvement over the commonly used AHA-
based methods. They liked the idea of presenting a lot of data in a
very compact format and also appreciated the use of a spatial lay-
out as it matches that of the heart and makes areas of abnormal
velocity patterns stand out. They liked the difference-encoded plots
as a quick and faster way for screening the patterns of abnormality
to reduce the user input and also the number of individual images
that users must examine. They also appreciated the emphasis on the
uncertainty of the measurements (using the five time intervals) in
terms of presenting from how much of the normal volunteers data
was inferred. In terms of intuitiveness, the average rating was 4.14
(out of 5). Some of the participants mentioned that initially they
had difficulty understanding the bands and colors, but once they
“got their head around it”, it was actually intuitive. A couple of par-
ticipants commented that the 3× 3 view of all slices and velocity
directions with 24 segments is a lot of information and one partici-
pant even proposed to consider using just 16 segments. Two of the
participants (with more experience) suggested to include time-to-
peak (TTP) and dyssynchrony calculations [FJG∗11], which would
be useful in clinical settings.

The second stage of the user study was a task in which partic-
ipants were required to visually assess two healthy and two pa-
tient datasets (without knowledge of being healthy or patient and
also different from the ones used in the first stage) and to explain
how they analyze the data. Each dataset was presented with our
tool and for comparison with AHA-based visualizations as shown
in Figure 12, which reflect common practice. The first observation
was that AHA model visualizations by themselves did not allow for
a proper judgment whether there is a pathology. Participants with
imaging background or less (or no) clinical experience asked for a
reference or ground truth that they could use to compare with the
given dataset. We then provided such a reference (see Figure 12)
in the form of the average of the healthy volunteer cohort (without
indicating variance), but it was still too difficult for them. Using
our tool instead allowed the participants to detect spatio-temporal
anomaly regions in patient data. On the other hand, some partici-
pants interpreted deviations of the time series from the bands for
healthy people also as (mild) pathologies.

One medical expert mentioned that our visual encodings could
be applied to any cardiovascular magnetic resonance imaging
parameter, such as segmental strain analysis, perfusion, LGE,
T2/T1/ECV, as long as one can acquire a good sample of healthy
control values. Another participant mentioned that this tool might
be integrated with the AHA representation in the sense that, once
the users have identified a certain time step of a certain velocity
direction as relevant, the respective AHA plot could be shown. We
actually have this addition implemented, but did not include it into
the user study to keep things separated and not elongate this study
too much.
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Figure 11: Radial FBP for visual comparison of patients P2 (left) and P3 (right) datasets to a cohort (Task T2).
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Figure 12: Radial velocities in the basal slice of a patient (P1) represented as the AHA model. The right side has a series of smaller plots,
one for each time step of the patient data.

7. Discussion and Future Work

It is important to point out that TPM is not yet clinical routine.
Consequently, we do not have massive numbers of datasets yet and
most medical experts have not yet dealt with analyzing such data.
Having more datasets would help in forming a better healthy con-
trol cohort, to which we compare. In particular, we did not consider
any demographics for our cohort. Currently, the cohort mixes vol-
unteers of different age and gender (to just name two demographic
variables). In particular, age is known to have a severe effect on
heart motion. Ideally, one would compare a patient dataset only
against healthy volunteers of the same demographic group, which
presumably would lead to much more accurate results. Still, we
were able to show that our visual analysis methods can be effective
and intuitive.

Another factor that was a challenge for us was the missing heart
rate information, e.g., acquired using an electrocardiogram. Such
information would allow us to better synchronize the data. In fact,
when generating the FBPs for the healthy cohort, some healthy vol-
unteers turned out to be outliers for some segments, which we ex-

cluded then from the cohort. Further inspection showed that an im-
precise synchronization most likely caused the healthy volunteer to
be an outlier.

Computing outliers is a helpful method for detecting potential
pathologies. However, there are many segments (such as segment 7
in Figure 8c), where there are severe differences to the cohort with-
out being detected as an outlier. This documents that relying just
on automatic methods does not suffice and that our visual analysis
workflow can improve the analysis. On the other hand, we observed
that healthy volunteers also exhibit differences to the 100% band as
shown in Figure 8a. As one of the volunteers must have the maxi-
mum value in each time point among the cohort, such differences
must exist. These differences are small, but they still caused some
confusion in our user study. We believe that users would be in a
better position to interpret these cases after having seen a few of
them, as TPM is not yet clinical routine.

In terms of future directions, we would like to look into other de-
rived indicators such as time-to-peak (TTP) for velocities, dyssyn-
chrony calculations, or temporal changes in wall thickness, and
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we would like to build cohorts of patients with certain types of
anomalies such as hypokinetic, akinetic, or dyskinetic and analyze
the difference between patient cohorts (also in comparison to the
healthy cohort). We would also like to apply our visual encodings
to other MR imaging methods such as myocardial perfusion, seg-
mental strain analysis, late gadolinium enhancement (LGE), and
extracellular volume (ECV) .

8. Conclusion

The comprehension of the spatio-temporal patterns and identifica-
tion of anomalies in the myocardial motion are extremely challeng-
ing tasks. Our approach uses the concept of functional box plots
to visualize the variability within a cohort, puts it into a layout
for spatio-temporal analyses, and visually encodes locations and
severeness of anomalies in an individual dataset by comparing it
to the cohort. An analytical workflow with suitable visual encod-
ings for different analytical steps was proposed and evaluated with
medical experts.
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