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Abstract

Computer-Aided-Diagnosis (CAD) systems supporting the diagnostic process are widespread in radiology. Digital Pathology
is still behind in the introduction of such solutions. Several studies investigated pathologists’ behavior but only a few aimed
to improve the diagnostic and report process with novel applications. In this work we designed and implemented a first
protocol-based CAD viewer supported by visual analytics. The system targets the optimization of the diagnostic workflow in
breast cancer diagnosis by means of three image analysis features that belong to the standard grading system (Nottingham
Histologic Grade). A pathologist’s routine was tracked during the examination of breast cancer tissue slides and diagnostic
traces were analyzed from a qualitative perspective. Accordingly, a set of generic requirements was elicited to define the design
and the implementation of the CAD-Viewer. A first qualitative evaluation conducted with five pathologists shows that the
interface suffices the diagnostic workflow and diminishes the manual effort. We present promising evidence of the usefulness
of our CAD-viewer and opportunities for its extension and integration in clinical practice. As a conclusion, the findings
demonstrate that it is feasibile to optimize the Nottingham Grading workflow and, generally, the histological diagnosis by
integrating computational pathology data with visual analytics techniques.

CCS Concepts
•I.3.8 Computer Graphics → Applications;

1. Introduction

The advent and the uptake of digital pathology technology rep-
resented a vast boost in the discipline of anatomical pathology,
both in research and the clinic. In the research setting, the avail-
ability of large volumes of digitized tissue slides, also known as
Whole-Slide-Images (WSIs), enabled to experiment with image
analysis algorithms that promise to improve the accuracy and the
reproducibility of the diagnosis [LST∗16, GBC∗09]. At the same
time, many hospitals invested in the transition from a microscope-
based environment to digital platforms [SVHvD13]. The diag-
nostic workflow, however, has not changed substantially and the
current software products still tend to mimic the current rou-
tine at the microscope [Fin14]. Whereas radiology diagnosis is
empowered across many image modalities by Computer-Aided-
Diagnosis (CAD) systems [HSC06, SSMD10], digital pathology
lacks methodology to optmize the diagnostic process. The labo-
ratories that adopted digital pathology see the pathologists work-
ing on standard viewers that provide different tools for measure-
ment, annotation-taking and quantification. Some automatic tools
are available to facilitate counting and quantification of histologic
primitives. In general, these applications do not significantly im-
prove pathologists’ diagnostic workflow. However, premises for

its improvement are currently emphasized by a wide collection
of image analysis techniques specifically addressing typical histo-
logic primitives [VPvDV14]. Besides traditional segmentation al-
gorithms, researchers have been investigating promising techniques
based on machine learning and deep learning that are boosting the
field of computational pathology [FB11]. For example, Janowczyk
et al. [JM16] present several use cases based on task specific fea-
tures. The foremost aspect now becomes to integrate the output of
these techniques visually to equip pathologists with interactive and
smart interfaces towards the optimization of the diagnostic process.

To achieve this goal, it is important to understand the nature
of the histopathology diagnostic process. In fact, diagnosis is the
result of a set of complex and subjective cognitive tasks [PAF09]
that lead towards the completion of standard protocols such as the
College of American Pathologists templates [LBC∗09]. Patholo-
gists complete the diagnostic report by describing and quantifying
a list of required findings and the aggressiveness of the disease.
Some of these steps are error prone (e.g., glands grading and mi-
totic counting) [OEC∗16,VvDJ∗16,SKM∗13] and time consuming
(e.g., measurements). The final information on the report reflects a
semi-quantitative and personal exploration that might be affected
by subjectivity [AWM∗17].
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Figure 1: Two examples of diagnostic traces. The pathologist reviewed two Invasive Ductal Carcinoma breast tissue slides according to the
CAP protocol [LBC∗09]. In the first part of the process, the histological type and the gland Formation (GF) are examined. Most of the traces
cover the steps involved in Nuclear Pleomorphism (NP) assessment and Mitosis Counting (MC). In the first trace (top) the pathologist often
uses zooming interaction to relocate himself on the tissue slide. After these first steps, he proceeds with examination at high magnifications.
The first part of this case shows the pathologist using the zooming interaction more often than in the second case (bottom). In this process,
the pathologists identified a region where to focus on tumor cells morphology and mitosis. As evidenced, he did not need to zoom out or move
away much further than his chosen target.

The work of Cervin et al. [CML16] is one of the few studies
on the optimization of pathologists’ workflow. Their solution di-
minishes the effort in note-taking and measurements towards the
generation of a final report in a dynamic way. The first evaluation
of the software underlines the potential of a digital solution to re-
duce the cognitive effort. The authors, however, do not discuss the
integration of image analysis methods in the diagnostic process.

Other studies observed pathologists’ behavior for different pur-
poses and provide valuable input for the implementation and the
design of CAD systems. The work of Molin et al. [MFMTL15]
looked at slide navigation patterns among pathologists with long
experience on digital platforms. In their analysis, the authors iden-
tified different exploratory strategies covering the most common
behaviors in the diagnostic routine. Unfortunately, this study does
not define the specific tasks performed by the users (e.g., nuclear
pleomorphism assessment or mitotic counting). Hence, it is diffi-
cult to determine whether the pathologists would have benefited
from automation or image analysis support. Recently, Langer et
al. [LBG∗15] presented a CAD system for digital pathology for

pancreatic cancer in mice. This represents a completely automated
technique, which does not require human input. In a similar way,
Tashk et al. [THDA14] developed a novel CAD system for mito-
sis detection. The evaluation of this last system showed the effi-
ciency and feasibility of these techniques with respect to patholo-
gists’ needs. However, these studies do not provide any informa-
tion concerning the way the computed information should be pre-
sented to the pathologist. The need for more intuitive and visual
tools is also stated by Langer et al., who affirm that "a visually in-
terpretable model based only on quantifiable clinical measures will
lead to computer-aided diagnostics systems which are more likely
to be incorporated in a pathologist’s workflow".

In this context, we apply principles from Visual Analytics
(VA) as a mean to equip the pathologists with an interpretable
CAD application. Medical imaging is the field that so far saw the
profusion of new VA techniques in support of radiologists and
physicians [NRS∗14, RBV17]. Lundström and Persson [LP11]
characterized VA in the field of radiology. They identified effi-
ciency as the most challenging aspect in radiology routine and
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the need for exploratory techniques to examine medical images.
Likewise, similar opinions have been expressed with the advent of
digital pathology. The workload has increased in the last years and
will maintain this trend [Wor14]. In this scenario, efficiency is on
the priority list in laboratories. In addition, whole-slide-images are
large medical images that require different interaction strategies
from common radiology images. Therefore, further methods have
still to be disclosed to apply visual analytics to digital pathology.
Thus far, little literature has been presented on the topic. A valuable
viewpoint is given by Fine [Fin14], who suggests an interesting
design and ideas towards an optimized workflow wherein triaged
regions of interest (ROIs) are presented to the pathologist in an
automated way. Moreover, the author proposes the introduction
of pre-existing templates able to capture the selected ROIs and to
quantify relevant data without manual entry. These ideas, however,
did not lead to a real solution for clinical practice.
Our goal is to fill the gap between histopathology diagnostic
process and image analysis integration. As a conclusion of this
study, our contribution is an actual implementation of a CAD
system for histopathology diagnosis.

2. Clinical Background

In this paper, we target the histopathology examination of Inva-
sive Ductal Carcinoma (IDC) of breast cancer specimens. IDC is
the most common type of breast cancer with about 80% of all
diagnosed cases [AHZ∗13]. Despite the high incidence of breast
cancer, discordance among pathologists on final diagnosis still
presents large variability [ELC∗15]. The standard diagnostic work-
flow of a pathologist consists of two main steps: review of the
tissue slides and reporting. Tissue slides are typically processed
by different stainings to intensify the visibility of specific bio-
logical phenomena. For instance, a mixture of Hematoxylin and
Eosin (H&E) is used to highlight cellular structure and it is often
considered the gold standard [Cha14]. Pathologists examine H&E
breast tissue slides according to the Nottingham Grading (NG) sys-
tem [RESL∗08]. This grading system is part of the CAP protocol
and is currently used in clinical practice. NG classification consists
of three histologic primitives, which must be examined by pathol-
ogists: Gland formation (GF), nuclear pleomorphism (NP) and mi-
totic counting (MC). Each of these primitives is scored from 1 to 3
and each score is added to give a total score in a range between 3-9.
Despite the clear importance of the NG for patients’ diagnosis and
prognosis [RRFB∗10], this kind of examination lacks reproducibil-
ity as well as inter- and intra-observer concordance [EE02].

3. Task analysis

In this scenario, our final goal was to design and develop a vi-
sual analytics CAD system by using computational pathology data.
Along this study, we collaborated with a specialist in breast cancer
diagnosis. First, we started collecting requirements from the litera-
ture. Next, we implemented our tracking component to observe the
behavior of the pathologist during breast cancer examination. The
tracked interactions are used to generate a diagnostic trace that is
the sequence of interactive steps conducted by the pathologist on
the viewer. This concept is already presented in our previous work

PathoVA [CvDW17]. We let the pathologist familiarize with the
viewer and we recorded a series of diagnostic traces on three WSIs.
Next, we identified the downsides in the process. Subsequently, we
analyzed the behavior for each diagnostic task and we studied how
image analysis data can aid the pathologist to diagnose.

3.1. Tracking component

We implemented a tracking component in the spirit of Molin et
al. [MFMTL15]. This component captures the main interactions on
the viewer. For our specific task analysis we adapted the specificity
of the tracked interactions that Molin et al. named navlets. Different
from their work, we differentiate only two types of panning actions:
exploratory panning and direct panning. The first identifies interac-
tions in the micrometers range, while the second captures the ones
in the millimeters range. Beside these actions, we tracked zooming
events and the fixation navlet when the pathologist keeps the view
static for more than two seconds. In addition, we also record the
annotation actions and measurements. This helped to characterize
the workflow of the pathologist. The results are visualized as di-
agnostic traces (Fig. 1) wherein the interactions are displayed with
different dots labeling the corresponding navlet.

After tracking our user on three WSIs, we discussed the diag-
nostic process on a dedicated view. We visualized the traces on a
customized line chart (Fig. 1). Furthermore, we extrapolated the
stages and the respective pitfalls of these workflows. Our study
is based on the analytical thinking process used in design studies
and extensively discussed by Brehmer et al. [BM13]. The method
used is based on the typology terms why, how and what. We used
this abstraction to define the design and user’s interactions of our
CAD application. The typological description of the targeted tasks
is shown in Fig. 2 and described in detail in the next section. We
summarize the tasks involving the NG primitives in Fig. 2. In more
detail, we can describe these processes as follows.

Gland formation. Generally, pathologists examine the organiza-
tion of glands at low magnifications (2x - 10x). Usually, zoom-
ing is only required to look at the edges and at the lumina
of such structures to assess the entity of tumor growth. Thus,
the quantification of this factor is performed at the early stage
(Fig. 1). However, the discrimination between normal and ab-
normal glands might require more interactions at higher magni-
fication levels and on larger regions.

Nuclear morphometry. In an IDC review, the pathologist identi-
fies a large cancerous region and zooms at higher magnification
levels (20x - 40x). At this magnification, nuclei can be judged
for their morphology and appearance. Usually, a few glances and
observations are enough to define a final score. At this stage, a
quick strategy is to compare the size of tumor cells with the one
of red blood cells or normal epithelium cells. Nevertheless, this
task produces a semi-quantitative evaluation. The final score can
be hampered by illusions of size and brightness of the cells and
their surrounding context [AWM∗17]. Computational pathology
can aid diagnosis to become more quantitative and to reduce the
interobserver variation.

Mitotic activity. The last task concerns assessing tumor prolifer-
ation. The protocol requires the pathologist to identify the mi-
totic cells in a certain field of view and count them at each 40x
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Figure 2: A typology description of the three workflows for the NG primitives according to the why, how and what spans. Nuclear Pleo-
morphism and Mitotic Counting require the pathologist to zoom at the highest magnification (up to 40x) levels and perform several panning
actions. The panning interaction is not always necessary for GF and NP. One or two views are enough in standard cases. The black border
box represents a cognitive actions while the green border box represents the required interaction to feed the respective cognitive processes.
Dashed borders indicate an optional interaction (not always required).

magnification (approx. 10 non overlapping regions are required).
In this stage, panning is the main interaction. Besides the high
number of interactions, this task is time consuming and error
prone [VvDJ∗16] as visible in Fig. 1. This task took almost 40
per cent of the diagnostic time and it requires many sequential
exploratory interactions.

3.2. Image analysis data

We gathered data from image analysis techniques for the detec-
tion of tubules, nuclei and mitosis counts. Regarding nuclei detec-
tion, nuclei objects are associated with several attributes such as
area, short axis, perimeter and median Hematoxylin value. This in-
formation can be used to characterize nuclear pleomorphism. For
tubule detection, the method described in Chen et al. [CQY∗17]
has been adopted. Despite the difficulty in discriminating normal
tubules from abnormal tubules, in this work we use the results to il-
lustrate our concepts. For instance, we could identify tubules filled
by a high number of tumor cells, which leads to cancer invasion,
and use it as a proof of concept in our design. This suffices for our
purpose of providing useful features for the GF task.
To obtain mitosis counts, we used the detection technique described
in Veta et al. [VvDJ∗16]. The output of the model consists of the
x and y coordinates of the identified mitotic cells and an associated
F-score. This measure indicates the classification accuracy of the
algorithm. It considers recall and precision of the test. Precision
is the ratio of correctly predicted positive observations to the to-
tal predicted positive observations. In our context, this measure an-
swers the question: "among all the detected mitotic cells, how many
are actually true positives?" The recall is the ratio of correctly pre-
dicted positive observations to all observations in the actual class.
It quantifies, therefore, the number of mitotic cells that have been
detected among all the mitotic cells on the tissue slide. We consider
the optimal threshold of 0.67 given by the F2-score of the mitotic

counts algorithm. This measure places a higher weight on recall.
We integrate this information in our application to indicate to the
user the detection criteria of the algorithm.

4. Requirements

We generated a list of requirements based on the conducted task
analysis and on the computational pathology features at our dis-
posal. These requirements represented the pillars for the design
and implementation of our CAD-Viewer. In a broader scope, the
following prerequisites intend to be a set of general concepts for
CAD-implementation on digital pathology interfaces. The require-
ments can be distinguished in two main areas: the visual character-
istics of the histologic primitives and the way the pathologists look
at them. We refer to the image examination steps conducted on the
viewer as the diagnostic work of the pathologist.

4.1. Histologic primitives (P): visual aspects

Contrary to radiology images, WSIs are high resolution images
structured by different magnification levels. This characteristic
adds a further challenge to give visual analytics support. We list
the principal aspects to be considered when visualizing computed
objects on digital tissue slides.

P1. Size. Features can be distinguished as low magnification fea-
tures or high magnification features. The first ones such as tumor
regions or luminar structures are visible and recognizable at low
magnification. High magnification features can be identified in
micro-features like tumor cells, lymphocytes and stromal cells
that comprise the micro-environment of the tissue. These differ-
ences in size need to be converged in different visual representa-
tions.

P2. Function. Different from radiology, WSIs do not present an
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Figure 3: Overview of our tool. On the left side, an interactive report enables the pathologist to ask for CAD support. On the right, a
standard viewer is shown enhanced with the CAD-Tiles widget. Depending on the selected mode, the pathologist can get insight into nuclear
morphology or mitotic activity at 40x magnification FOV. Zooming and panning are automated and triggered respectively by single-click
actions and pressing arrow keys. In this case, the CAD-Tiles is generated by clicking on the black detected tumor area (L). Score 1 tumor
cells (G) are displaying by hovering the cell cluster in the scatterplot (B).

anatomical reference. However, pathologists refer to low mag-
nification features to build a map in their mind and to define
boundaries of the tissue architecture. Therefore, these features
are functional to the exploration of high magnification elements.

P3. Color. As Pena et al. [PAF09] observe, the identification of a
specific finding is simplified by the recognition of a set of col-
ors and textures that corresponds to a specific biological event.
Staining colors and textures are therefore important visible fea-
tures to be preserved. Consistency of colors is also an ingredient
to be considered when we plan to apply overlays of image anal-
ysis features onto tissue slides.

4.2. Diagnostic work (DW)

By observing the diagnostic work of the pathologist during grading
we extracted the following requirements.

DW1. Whole picture. The whole slide view is used by the pathol-
ogist to formulate the first hypothesis and gradually characterize
the case. Altering the aspect of this view or hiding it in the early
stage can be perceived as a barrier to a correct diagnosis.

DW2. Interaction. During the examination, pathologists typically
need to zoom in at 20x and 40x magnification to analyze cell
details. In case of the NG, the protocol requires pathologists to

look at cell morphometry and count mitotic cells. In these cases,
it is necessary to zoom in and manipulate the image at the highest
magnification levels. Often, the pathologist pans over the WSIs
to collect several fields of view and compare similar features.

DW3. Report-centric. The reviewing strategy is optimized to-
wards the completion of the final report. Therefore, we consider
the report as a central aspect to be integrated in a CAD viewer.

DW4. Automation. Quantification, comparison and memoriza-
tion need to be facilitated. Also, the navigation efforts that the
pathologist still makes can be mitigated by digital automation.
Pathologist’s main role is to bring in his domain knowledge
[Fin14] to make a final decision, and other aspects should be
taken care automatically.

As a result of our analysis, we decided to steer our implemen-
tation towards a protocol-based application. To optimize the pro-
cess, we focus on the NG primitives and to the reporting needs.
We only consider the case of H&E examination on Invasive Breast
Cancer grading. We take into account a synoptic report (structured
checklists document) comprising histological type, measurements
and the NG. With these requirements in mind, we designed and im-
plemented a CAD viewer in collaboration with digital pathology
experts and an expert pathologist. In the next sections we explain
the main components of the interface, the communication between
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Figure 4: The CAD-Tiles widget. The pathologist identifies one region on the tissue slide. A grid is automatically built within the extent of
the annotation. Each cell of this grid is a 40x field of view (FOV). In the nuclear pleomorphism mode, each cell is assigned to a score on
basis of the morphology characteristics of the tumor cells. In mitosis counting mode, the CAD system gives an estimation of the number of
mitotic counts for each FOV. The FOVs are automatically attached to the report.

the report template and the viewer and the supported interactions.
Moreover, we introduce the CAD-Tiles tool for analyzing the NG
micro-environment at low magnification levels by using image ana-
lyisis data described in the following section.

5. CAD-Viewer: design and implementation

The interface of our application consists of two main elements: a
standard viewer and an interactive sidebar for protocol-based vi-
sual analytics. The sidebar on the left (Fig. 3) consists of an area
dedicated to CAD support for the grading. The bottom part (Fig. 3
(D)) shows the updated scores for the current diagnosis. Each field
is a clickable entity that activates the image analysis layer of the de-
tected histologic primitive (Fig. 3 (C)). The report and the viewer
area are fully connected. The top part of the sidebar (Fig. 3 (A))
yields tools for the NG. This widget forms the core of our appli-
cation. We named it CAD-Tiles, a tool for analysis of High Power
Fields (e.g 40x) at low magnification levels.

5.1. CAD-Tiles

CAD-Tiles was designed and implemented to serve four main pur-
poses: view navigation, analysis, visualization of results and report-
ing. The main advantage of this tool is to provide further visual in-
sights of the image analysis primitives without cluttering the entire
picture (DW1). Moreover, CAD-Tiles aims to reduce the panning
and zooming required for the assessment of features at high mag-
nification (DW2). Also, it gives the pathologist an automated and
interactive way (DW4) to look at quantification of the detected fea-
tures in strong connection with the report (DW3).

Generation. The generation of the CAD-Tiles grid and its external
widget works as follows. First the pathologist identifies a region
to examine as illustrated in Fig. 4. Next, he draws a polygonal
annotation on the tissue slide. At this point, the CAD system au-
tomatically produces a grid divided by tiles of 40x field of views.
We restrained the tile size at the equivalent of a 40x magnifica-
tion that represents the High Power field that pathologists use
to count mitotic cells during standard breast cancer diagnosis.

Alternatively, the pathologist can click on a tumor area, upon
which a polygon surrounding the identified area is automatically
visualized. The tumor area polygon In this case the CAD-Tiles
are created over the pre-defined region (Fig. 3 (F)). When the
grid is composed on the viewer, an external view is updated on
the left sidebar as shown in Fig. 3 (A). This serves as a map for
the pathologist once he zooms to the high magnification level.
The tool and its functionalities are designed to avoid cluttering
of features on the tissue slide and disruption of the diagnostic
workflow. Therefore, the grid serves as a tool to display the char-
acteristics of high magnification features at middle range zoom
level (P1). On the viewer, the CAD-Tiles grid is computed as
follows. We extract the extent of the annotation A. We calculate
the width w and the height h of a 40x magnification FOV. Each
one of these views is a tile within our widget. Then, we divide
the extent of A in n tiles of width w and height h. In the final
visualization, each tile is outdistanced from its adjacent tiles by
some micrometers. This distance is added to avoid cells to be
considered in two different tiles.

Navigation. One of the main goals in the design process was to
provide strong integration between image analysis data and the
viewer area along with protocol observance. Like standard view-
ers we support zooming, panning and measurements tools. Cus-
tomized navigation interactions are given through the CAD-Tiles
grid that supplies image analysis aid. Once a CAD-Tiles grid is
generated from a manual or computed (e.g., tumor area) anno-
tation, the pathologist can interact with each tile. A click on
a tile will automatically zoom at 40x magnification. From that
moment, by using a left or right arrow key the view is automati-
cally switched to the corresponding tile of the grid. This automa-
tion has been specifically conceived to decrease the effort during
the examination of vast regions for mitosis counting purposes
or morphology assessment. The user can also use the CAD-Tiles
widget on the left side (Fig. 3 (A)) to navigate and jump to other
regions. A tile of the external CAD-Tiles widget is interactively
connected to the grid visualization on the WSI. A click on one
of the squares leads to a 40x zooming on the viewer.

Visualization. The visualization of the CAD-Tiles widget and the
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Figure 5: The CAD-Tiles widget with three views for two differ-
ent examples. Each view encodes information for a NG primitive.
Gland formation is displayed in 1.a and 2.a. The percentage of
gland formation within the selected (tumor) area is shown in yellow
in 1.a, corresponding to Score 2 and in red if (Score 3). In the NP
view (1.b and 2.b), the average area of the tumor cells in each tile
is displayed. The respective score is color-encoded. In the mitosis
counting (1.c and 2.c) each tile shows the mitosis counts in the re-
gion. Dashed tiles do not contribute to the total. The final score is
displayed at the bottom and shows the protocol score.

generated grid on the WSI is designed to support the three his-
tologic primitives of NG in three different views (Fig. 5). Once
the pathologist draws an annotation, the features contained in
the drawn area are displayed accordingly to the selected mode
(Fig. 3 (H)). The pathologist can select the operation mode of
CAD-Tiles by clicking on the dedicated buttons (Fig. 3) or by
selecting the respective layer from the left sidebar. The CAD
engine computes a score for each tile on the basis of the prim-
itives characteristics. High level CAD-Tiles information is en-
coded with four different colors. Green represents benign con-
dition, blue corresponds to a Score 1 in the NG, yellow and
red indicate respectively Score 2 and Score 3. This encoding
is consistent along the three different views generated in the
CAD-Tiles widget. Accordingly, the colors of tile borders fol-
low this scale both on the viewer and the complementary wid-
get. We similarly visualize the borders of detected nuclei within
the annotation region as in Fig. 3 where Score 2 tumor cells
are displayed. The stroke of the tumor cells encodes the com-
puted score. We do not use any overlay to preserve the staining
color of the cell (P3). Detected mitotic cells are indicated by a
cross, which color indicates the F-score associated to the detec-
tion. The legend is displayed in the top right corner of the viewer
bar (Fig. 3). The CAD-Tiles annotation is intended to be used at
middle range magnification (e.g. 5X - 10X). Therefore, we de-
cided to display inside the grid only high magnification features
(tumor cells and mitotic cells). The low magnification features,
such as tubules and tissue boundaries, can be requested on de-
mand by the pathologist clicking on the side menu (Fig. 3 (D)).

In this way, we distinguish the two different functions of low
magnification features and high magnification features (P2).

Grade computation. The external CAD-Tiles widget supports
three views, each one corresponding to the NG primitives: gland
formation, nuclear pleomorphism and mitosis activity (Fig. 5).
The high-level information displayed in each tile is computed
and visualized with colors as described above and numbers char-
acterizing the three histologic primitives.
The gland formation view (Fig. 5, 1.a - 2.a ) encodes the extent of
the annotation or the selected tumor region. The box is divided in
three areas wherein the markers for the CAP thresholds of 10%
and a 75% gland formation are indicated. In Fig. 5 an example
shows a region wherein a Score 2 is given on a computed gland
formation in between the two thresholds.
By selecting the NP mode, each 40x FOV of the CAD-Tiles grid
is graded with a Score from 1 to 3 according to tumor cells mor-
phology. Here we use a classification based on the average area
of the tumor cells in that FOV. We used the thresholds provided
by the CAP protocol that describes the score to be assigned to tu-
mor cells morphology with respect to a normal blood cell aspect.
We considered the diameter of a normal red blood cell roughly
8 micrometers. Hence, we calculated grading thresholds respec-
tively for mean area and the perimeter of tumor cells. We also
added the information regarding the values for the shortest axis
of the tumor cells because this was demonstrated to have prog-
nostic value for breast cancer outcome in IDC [PKC98]. Given
these factors, we assign Score 1 to tumor cells 1.5 to 2 times

Figure 6: Focus on the CAD-Tiles widget. Here, the NP mode is
enabled. In the scatterplot (right) each dot represents a nucleus.
The color identifies the corresponding score. However, all the FOVs
(left) are graded as score 1 according to the threshold. Here the
pathologist can inspect the CAD quantification and understand the
reason for its classification. In case of a different score between
area and shortest axis, the priority is given to the first.
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larger than normal red blood cells, Score 2 for those in between
2 and 2.5 times and Score 3 if larger than 2.5 times. We indi-
cate this distinction according to the CAP definition. Regarding
the shortest axis we set thresholds of 3.5, 4.8 and 6.4 microme-
ters respectively for Score 1 to 3. The exact thresholds are given
in Fig. 6. NP quantification is also supported by a scatterplot
(Fig. 6) wherein we show the distribution of the detected cells
on two axes. The basic view plots cell area on the x-axis and cell
perimeter on the y-axis. Each nucleus is represented with a dot
of which the color encodes the grade. By hovering one of the
dots, all the tumor cells matching that grade are highlighted on
the slide FOV (Fig. 3 (G)). By means of this view the pathologist
gets insight into how the CAD determined the grade. This serves
as an element designed for trust [JCvO15] where the patholo-
gist can assess the quality of the detection. At last, in the mi-
totic counting mode, our CAD determines the number of mitotic
events in each FOV. The detected number is converted to a score
as it would contribute to the final score by definition in the stan-
dard guidelines [LBC∗09]. Detected mitosis are visualized only
at tile magnification level in order to avoid cluttering (DW1) dur-
ing other diagnostic steps The total count is displayed at the bot-
tom of the grid as shown in Fig. 3.

Reporting. We support prompt integration of any CAD-tile to the
report. When the CAD-Tiles grid is generated and grades com-
puted for each tile, our application automatically includes rele-
vant regions to the NG section of an interactive report. The re-
gions with the highest scores for the three histologic primitives
are available on the CAP template. A click on a thumbnail di-
rectly shifts the viewer area to the respective FOV. Alternatively,
interesting tiles for gland formation, nuclear plemorphism and
mitotic regions can be added manually by means of a dedicated
button. Every thumbnail can be edited and removed from the
report. We also support a specific interaction to update the mi-
totic counting. The pathologist can annotate the cells in mitosis
directly by typing a number on the keyboard. This number is
displayed on the viewer area and automatically updated on the
mitotic score. The application automatically includes conducted
measurements, which can also be edited and labeled manually.
The other fields of the template are provided as a standard form
template with text boxes and checklists.

5.2. Implementation

Our tool was implemented as a server-client framework. The visual
interface has been implemented in OpenLayers [Haz17] and D3.js
[BVJ11]. The back-end comprises a GeoServer [geo17] to handle
the digital slide images and the results from image analysis. The
discussed WSIs were downloaded from The Cancer Digital Slide
Archive (CDSA) [CVS∗13].

6. Evaluation

We conducted a qualitative evaluation of our tool with five pathol-
ogists. We firstly introduced them to the concept of visual analytics
and its purpose. Next, we presented the application in the use case
of invasive breast carcinoma and the functionalities. Two pathol-
ogists actively interacted with the tool and examine a given WSI

Theme Question Agreement
(0-4)

V.A. I see the need of more visual analytics in
digital diagnostic

4 (0.0)

FV.1 The necessary features for breast cancer
grading are displayed in an intuitive way

3.3 (0.4)

FV.2
High magnification features information
are clearly visible at middle-range magni-
fication

3 (0.0)

FV.3 The grading process would not be dis-
turbed by this feature visualization

3.2 (0.4)

WO.1 The Nottingham Grading and the report-
ing can be increasingly speeded up

2.8 (1.5)

WO.2 The CAD-Tiles tool seems easy to use 3.3 (0.4)

WO.3 Nuclear Grading and Mitosis counting are
fully supported

3.3 (0.4)

T.1 I could trust this system for nuclear grad-
ing

3.5 (0.5)

T.2 I could trust this system for mitotic count-
ing

3.8 (0.5)

T.3 I would always use this system 2.4 (1.4)

Table 1: We interviewed five pathologists regarding the feature vi-
sualization (FV), the workflow optimization (WO) and the trust (T)
of our tool. The average agreements are displayed for each ques-
tion. We assigned score 4 to "strong agreement", 3 to "agreement",
0 to "disagreement" and -1 to "strong disagreement". The mean and
the standard deviation (in the brackets) are shown for each theme
question.

Figure 7: View of survey results. The five pathologists agreed on
the majority of our questions concluding that the visual analytics
funtionalities of our CAD system suffice the NG diagnostic work.
Refer to Table 1 as a legend to questions abbreviations.

by using the CAD-Tiles tool. We then interviewed the five patholo-
gists to collect their opinions on the application. Our survey covers
the following themes: features visualization, workflow optimiza-
tion and trust. As shown in Table 1 and Fig. 7, all the pathologists
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agreed with the importance of visual analytics within the field of
digital pathology. The pathologists appreciated the visualization of
the three diagnostic primitives and they considered that the CAD-
Tiles widget would not disturb the grading process. From the work-
flow perspective, the general opinion was that the tool would in-
crease the speed in the diagnostic routine. Some concern was ex-
pressed regarding the number of grids required to perform the final
diagnosis. In this case, the pathologists expressed the belief that
automated grids can be generated on the tumor regions to further
reduce the manual effort. In answer to this, we also support the
creation of a CAD-Tiles grid generated upon the entire tissue area
if considered necessary. Hence, we asked whether the pathologists
would trust the proposed system in the scenario of highly accu-
rate detection (for both specificity and sensitivity). The agreement
was high and only one pathologist claimed that he would restrain
the use of this tool only for complex cases. All pathologists admit-
ted that the gland formation represents the most debatable feature
within the CAD-Tiles widget. In fact, a simple indication of the per-
centage of gland formation in a region is enough according to the
protocol. The difficulty in manual routine as in machine-detection
is to discriminate between abnormal and normal gland formation.
This distinction may require a more detailed visualization than the
one presented in this work. A more extensive approach on this as-
pect will be addressed in future work with the availability of more
accurate gland detection features. We think that visual concepts on
this kind of feature can be extended to other low magnification fea-
tures and to other histologic diagnosis. This evaluation represents
a solid input for a further quantitative evaluation. We believe that
this will be feasible when stable image analysis results and more
trustful features will be integrated in the tool with a larger set of
tissue slides.

7. Conclusions

In this paper we have introduced a CAD application for histopathol-
ogy diagnostics in breast cancer. We presented its implementation
and development throughout the standard design process of a vi-
sual analytics system. From the literature we extracted one of the
strategies typically adopted to analyze pathologists’ behavior. We
observed that the first CAD tools implemented for digital pathol-
ogy do not meet the needs of pathologists’ diagnostic process with
visual support of CAD findings. In order to address this gap, we
observed some diagnostic traces to elicit general requirements to
design visual analytics support in histopathology. From our knowl-
edge, we conducted the first analysis on pathologists’ behavior in
relation to diagnostic tasks. Despite the limited experiment con-
ducted with only one pathologist, our findings induce us to think
that this can be inspiring for future analysis and in the development
of new applications. For this particular study, the task analysis has
been converted in a subdivision of the requirements in two areas:
visual aspects of the histologic primitives and diagnostic principles.
Accordingly, the design choices followed the requirements and the
design conveyed in a protocol-centric application.

In support of the standard workflow, we created the CAD-Tiles
widget to interact with high magnification primitives such as nuclei
and mitosis at low magnification levels. Similarly, this widget can
be used for the quantification and the presentation of data for other

use cases beside breast cancer diagnosis. This can be the case, in
the future, for the integration of new emerging important prognostic
indicators like lymphocytes density [ADP∗16] or insight on tumor-
stroma ratio [DTSS15] once they will become established factors
in the diagnosis.

In this context, we limited our CAD system to the scenario of
the Nottingham Grading System. We illustrated the impact that vi-
sual analytics can have in tedious and time-consuming tasks such
as mitotic counting. In addition to that, the adopted protocol-based
approach can be extended to other histologic cases whether they are
standardized across laboratories as the Invasive Breast Cancer pro-
tocol. In a first evaluation we received a positive feedback from five
pathologists. We think that the visual analytics capabilities of our
application will benefit of a further and more extensive evaluation
in a broader setting.

In conclusion, this study represents the first integration of image
analysis features into a histologic protocol-based diagnostic work-
flow. We aimed to pave the way to CAD applications that can be di-
rectly used by pathologists in a clinical setting. We consider that the
described study can simplify the creation of such systems in digi-
tal pathology and accelerate their introduction in clinical routine.
Our work was restricted to a limited number of users. It was, there-
fore, not possible to collect a significant range of opinions from the
pathologists regarding the use of our tool in comparison to a fully
automated workflow. As evidence of this work, we can affirm that
an attentive translation of protocol requirements into visual ana-
lytics capabilities will find positive consensus among pathologists
in the first adoption of computational pathology in diagnostics and
towards fully automated steps of their routine tasks.

References

[ADP∗16] ALI H. R., DARIUSH A., PROVENZANO E., BARDWELL H.,
ABRAHAM J. E., IDDAWELA M., VALLIER A.-L., HILLER L., DUNN
J. A., BOWDEN S. J., HICKISH T., MCADAM K., HOUSTON S., IR-
WIN M. J., PHAROAH P. D. P., BRENTON J. D., WALTON N. A., EARL
H. M., CALDAS C.: Computational pathology of pre-treatment biopsies
identifies lymphocyte density as a predictor of response to neoadjuvant
chemotherapy in breast cancer. Breast Cancer Research 18, 1 (dec 2016),
21. 9

[AHZ∗13] ARPS D. P., HEALY P., ZHAO L., KLEER C. G., PANG J. C.:
Invasive ductal carcinoma with lobular features: a comparison study to
invasive ductal and invasive lobular carcinomas of the breast. Breast
cancer research and treatment 138, 3 (apr 2013), 719–26. 3

[AWM∗17] AEFFNER F., WILSON K., MARTIN N. T., BLACK J. C.,
HENDRIKS C. L. L., BOLON B., RUDMANN D. G., GIANANI R.,
KOEGLER S. R., KRUEGER J., YOUNG G. D.: The Gold Standard
Paradox in Digital Image Analysis: Manual Versus Automated Scoring
as Ground Truth. Archives of Pathology & Laboratory Medicine 141, 9
(sep 2017), 1267–1275. 1, 3

[BM13] BREHMER M., MUNZNER T.: A Multi-Level Typology of Ab-
stract Visualization Tasks. IEEE Transactions on Visualization and Com-
puter Graphics 19, 12 (dec 2013), 2376–2385. 3

[BVJ11] BOSTOCK M., VADIM O., JEFFREY H.: Data-Driven Docu-
ments. IEEE Transactions on Visualization and Computer Graphics 17
(Dec 2011), 2301 – 2309. 8

[Cha14] CHAN J. K. C.: The Wonderful Colors of the Hematoxylin-
Eosin Stain in Diagnostic Surgical Pathology. International Journal of
Surgical Pathology 22, 1 (feb 2014), 12–32. 3

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

31



A.Corvò / Visual Analytics in Histopathology Diagnostics:a Protocol-Based Approach

[CML16] CERVIN I., MOLIN J., LUNDSTRÖM C.: Improving the cre-
ation and reporting of structured findings during digital pathology re-
view. Journal of pathology informatics 7 (2016), 32. 2

[CQY∗17] CHEN H., QI X., YU L., DOU Q., QIN J., HENG P.-A.:
DCAN: Deep contour-aware networks for object instance segmentation
from histology images. Medical Image Analysis 36 (feb 2017), 135–146.
4

[CvDW17] CORVO A., VAN DRIEL M. A., WESTENBERG M. A.:
PathoVA: A visual analytics tool for pathology diagnosis and reporting.
In 2017 IEEE Workshop on Visual Analytics in Healthcare (VAHC) (oct
2017), IEEE, pp. 77–83. 3

[CVS∗13] CLARK K., VENDT B., SMITH K., FREYMANN J., KIRBY
J., KOPPEL P., MOORE S., PHILLIPS S., MAFFITT D., PRINGLE M.,
TARBOX L., PRIOR F.: The Cancer Imaging Archive (TCIA): main-
taining and operating a public information repository. Journal of digital
imaging 26, 6 (dec 2013), 1045–57. 8

[DTSS15] DOWNEY C. L., THYGESEN H. H., SHARMA N., SHAABAN
A. M.: Prognostic significance of tumour stroma ratio in inflammatory
breast cancer. SpringerPlus 4 (2015), 68. 9

[EE02] ELSTON C. W., ELLIS I. O.: Pathological prognostic factors in
breast cancer. I. The value of histological grade in breast cancer: expe-
rience from a large study with long-term follow-up. C. W. Elston & I.
O. Ellis. Histopathology 1991; 19; 403-410. Histopathology 41, 3A (sep
2002), 151–2, discussion 152–3. 3

[ELC∗15] ELMORE J. G., LONGTON G. M., CARNEY P. A., GELLER
B. M., ONEGA T., TOSTESON A. N. A., NELSON H. D., PEPE M. S.,
ALLISON K. H., SCHNITT S. J., O ’MALLEY F. P., WEAVER D. L.:
Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy
Specimens Michael’s Hospital and the. JAMA (2015). 3

[FB11] FUCHS T. J., BUHMANN J. M.: Computational pathology: Chal-
lenges and promises for tissue analysis. Computerized Medical Imaging
and Graphics 35, 7-8 (oct 2011), 515–530. 1

[Fin14] FINE J. L.: 21(st) century workflow: A proposal. Journal of
pathology informatics 5, 1 (2014), 44. 1, 3, 5

[GBC∗09] GURCAN M. N., BOUCHERON L. E., CAN A., MADAB-
HUSHI A., RAJPOOT N. M., YENER B.: Histopathological image anal-
ysis: A review. Biomedical Engineering, IEEE Reviews in 2 (2009), 147–
171. 1

[geo17] Geoserver. http://geoserver.org/, 2017. "[Online; accessed
February-2017]". URL: http://geoserver.org/. 8

[Haz17] HAZZARD: Openlayers 4.11. http://openlayers.org/, 2017. "[On-
line; accessed February-2017]". URL: http://openlayers.org/.
8

[HSC06] HADJIISKI L., SAHINER B., CHAN H.-P.: Advances in
computer-aided diagnosis for breast cancer. Current opinion in obstet-
rics & gynecology 18, 1 (feb 2006), 64–70. 1

[JCvO15] JORRITSMA W., CNOSSEN F., VAN OOIJEN P.: Improving
the radiologist-CAD interaction: designing for appropriate trust. Clinical
Radiology 70, 2 (feb 2015), 115–122. 8

[JM16] JANOWCZYK A., MADABHUSHI A.: Deep learning for digital
pathology image analysis: A comprehensive tutorial with selected use
cases. Journal of pathology informatics 7, 1 (2016), 29. 1

[LBC∗09] LESTER S. C., BOSE S., CHEN Y.-Y., CONNOLLY J. L.,
DE BACA M. E., FITZGIBBONS P. L., HAYES D. F., KLEER C.,
O’MALLEY F. P., PAGE D. L., SMITH B. L., TAN L. K., WEAVER
D. L., WINER E., MEMBERS OF THE CANCER COMMITTEE, COL-
LEGE OF AMERICAN PATHOLOGISTS: Protocol for the examination of
specimens from patients with invasive carcinoma of the breast. Archives
of pathology & laboratory medicine 133, 10 (oct 2009), 1515–38. 1, 2,
8

[LBG∗15] LANGER L., BINENBAUM Y., GUGEL L., AMIT M., GIL Z.,
DEKEL S.: Computer-aided diagnostics in digital pathology: automated
evaluation of early-phase pancreatic cancer in mice. International Jour-
nal of Computer Assisted Radiology and Surgery 10, 7 (jul 2015), 1043–
1054. 2

[LP11] LUNDSTRÖM C., PERSSON A.: Characterizing visual analyt-
ics in diagnostic imaging. International Workshop on Visual Analytics
(2011). 2

[LST∗16] LITJENS G., SÁNCHEZ C. I., TIMOFEEVA N., HERMSEN M.,
NAGTEGAAL I., KOVACS I., HULSBERGEN - VAN DE KAA C., BULT
P., VAN GINNEKEN B., VAN DER LAAK J.: Deep learning as a tool for
increased accuracy and efficiency of histopathological diagnosis. Scien-
tific Reports 6, 1 (sep 2016), 26286. 1

[MFMTL15] MOLIN J., FJELD M., MELLO-THOMS C., LUNDSTRÖM
C.: Slide navigation patterns among pathologists with long experience
of digital review. Histopathology 67, 2 (aug 2015), 185–92. 2, 3

[NRS∗14] NUNES M., ROWLAND B., SCHLACHTER M., KEN S.,
MATKOVIC K., LAPRIE A., BUHLER K.: An integrated visual analysis
system for fusing MR spectroscopy and multi-modal radiology imaging.
In 2014 IEEE Conference on Visual Analytics Science and Technology
(VAST) (oct 2014), IEEE, pp. 53–62. 2

[OEC∗16] OZKAN T. A., ERUYAR A. T., CEBECI O. O., MEMIK O.,
OZCAN L., KUSKONMAZ I.: Interobserver variability in Gleason histo-
logical grading of prostate cancer. Scandinavian Journal of Urology 50,
6 (nov 2016), 420–424. 1

[PAF09] PENA G. P., ANDRADE-FILHO J. D. S.: How does a pathologist
make a diagnosis? Archives of pathology & laboratory medicine 133, 1
(jan 2009), 124–32. 1, 5

[PKC98] P. KRONQVIST T. K., COLLAN Y.: Morphometric grading of
invasive ductal breast cancer. I. Thresholds for nuclear grade. British
journal of cancer 78, 6 (sep 1998), 800–5. 7

[RBV17] RAIDOU R., BREEUWER M., VILANOVA A.: Visual analytics
for digital radiotherapy: Towards a comprehensible pipeline. Computer
Graphics Forum (Proceedings of Eurographics) 36 (Apr. 2017). 2

[RESL∗08] RAKHA E. A., EL-SAYED M. E., LEE A. H. S., ELSTON
C. W., GRAINGE M. J., HODI Z., BLAMEY R. W., ELLIS I. O.: Prog-
nostic significance of Nottingham histologic grade in invasive breast car-
cinoma. Journal of clinical oncology : official journal of the American
Society of Clinical Oncology 26, 19 (jul 2008), 3153–8. 3

[RRFB∗10] RAKHA E. A., REIS-FILHO J. S., BAEHNER F., DABBS
D. J., DECKER T., EUSEBI V., FOX S. B., ICHIHARA S., JACQUEMIER
J., LAKHANI S. R., PALACIOS J., RICHARDSON A. L., SCHNITT S. J.,
SCHMITT F. C., TAN P.-H., TSE G. M., BADVE S., ELLIS I. O.: Breast
cancer prognostic classification in the molecular era: the role of histolog-
ical grade. Breast Cancer Research 12, 4 (aug 2010), 207. 3

[SKM∗13] SABO E., KLORIN G., MONTGOMERY E., DRUMEA K. C.,
BEN-IZHAK O., LACHTER J., VIETH M.: Subjective grading of Bar-
rett’s neoplasia by pathologists: correlation with objective histomorpho-
metric variables. Der Pathologe 34, 2 (mar 2013), 133–7. 1

[SSMD10] SUGIMOTO K., SHIRAISHI J., MORIYASU F., DOI K.:
Computer-aided diagnosis for contrast-enhanced ultrasound in the liver.
World journal of radiology 2, 6 (jun 2010), 215–23. 1

[SVHvD13] STATHONIKOS N., VETA M., HUISMAN A., VAN DIEST
P. J.: Going fully digital: Perspective of a Dutch academic pathology
lab. Journal of pathology informatics 4 (jan 2013), 15. 1

[THDA14] TASHK A., HELFROUSH M. S., DANYALI H., AK-
BARZADEH M.: A Novel CAD System for Mitosis detection Using
Histopathology Slide Images. Journal of medical signals and sensors
4, 2 (apr 2014), 139–49. 2

[VPvDV14] VETA M., PLUIM J. P. W., VAN DIEST P. J., VIERGEVER
M. A.: Breast Cancer Histopathology Image Analysis: A Review. IEEE
Transactions on Biomedical Engineering 61, 5 (may 2014), 1400–1411.
1

[VvDJ∗16] VETA M., VAN DIEST P. J., JIWA M., AL-JANABI S.,
PLUIM J. P. W.: Mitosis Counting in Breast Cancer: Object-Level In-
terobserver Agreement and Comparison to an Automatic Method. PLOS
ONE 11, 8 (aug 2016), e0161286. 1, 4

[Wor14] WORLD HEALTH ORGANIZATION: World cancer report 2014.
IARC Publications (2014). 3

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

32

http://geoserver.org/
http://openlayers.org/

