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Abstract
Breast cancer is the second most common cause of death in women. Computer-aided diagnosis typically demand for carefully
annotated data, precise tumor allocation and delineation of the boundaries, which is rarely available in the medical system. In
this paper we present a new deep learning approach for classification of mammograms that requires only a global binary label.
Traditional deep learning methods typically employ classification error losses, which are highly biased by class imbalance – a
situation that naturally arises in medical classification problems. We hereby suggest a novel loss measure that directly maximizes
the Area Under the ROC Curve (AUC), providing an unbiased loss. We validate the proposed model on two mammogram
datasets: IMG, comprising of 796 patients, 80 positive (164 images) and 716 negative (1869 images), and the publicly available
dataset INbreast. Our results are encouraging, as the proposed scheme achieves an AUC of 0.76 and 0.65 for IMG and INbreast,
respectively.

1. Introduction

Breast cancer is one of the most commonly diagnosed forms of can-
cer among women in the world [BL08], and mammographic exam-
ination constitute the most basic type of screening for this disease.
As such, there is a need for reliable automatic or computer-aided
diagnostic (CAD) systems. Most approaches rely on classic com-
puter vision and classification tools, and consist of a two-stage pro-
cess: an initial detection of potential abnormal candidates, and their
posterior classification as malignant or benign. These methods rely
on finely annotated data requiring the location and often segmenta-
tion of the tumor, which implies expensive and tedious labor from
expert radiologists. Such detailed annotations are rarely available
in practice, limiting their applicability. In this work we study the
problem of classification of globally-labeled mammograms, with-
out any local annotations. This is a very challenging task, as often
the size of the lesion can be orders of magnitude smaller than the
image, as shown in Figure 1.

Data for binary classification often exhibits a highly skewed
class distribution, i.e. most samples belong to a majority class. In
the medical domain this scenario arises naturally as the number of
healthy (normal) cases is commonly orders of magnitude higher
than ill (positive) counterparts. Most learning methods minimize a
classification loss based on classification accuracy – a metric that
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Figure 1: Left: normal mammogram. Right: mammogram with a
malignant tumor, which has been annotated in red for illustration
purposes. Note the small size of the finding, yet determining the
class of the whole image as positive (malignant finding).

is highly biased by the class population. Strategies such as class
re-sampling or data augmentation are often employed to somewhat
mitigate this issue [HLCLT16], but these approaches are far from
optimal. Class re-sampling and data augmentation also introduce
further hyper-parameters, which makes these approaches more in-
tricate in practice. The Area Under the ROC Curve (AUC), on the
other hand, is insensitive to class distributions [CM03]. In fact,
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as the class imbalance grows the solution achieved by algorithms
maximizing the AUC is increasingly better than those maximizing
classification accuracy [AS05].

In this work, and unlike most current CAD methods, we address
the very challenging problem of mammogram classification with-
out any local annotations of the tumor and employing only a global
label per screening - what we refer to as global labeling. Our work
entails the following contributions:

1. We suggest a new convolutional neural network (CNN) archi-
tecture combining a pre-trained model and a customized CNN
for classification of mammograms requiring only a global label
for training.

2. The network architecture is simple and easily configurable.
3. The proposed deep convolutional network is trained with a new

formulation of a loss function that maximizes the AUC measure.
4. We demonstrate our approach on the publicly available INbreast

dataset and on proprietary multi-center database, IMG.

Our results indicate not only that considerable classification ac-
curacy can be obtained in this very challenging setting, but also
show the benefits of the proposed AUC-maximizing framework in
the deep learning setting.

2. Current CAD Approaches for Breast Cancer

Breast cancer produces a series of organic changes in the breast tis-
sue, which manifest as micro-calcifications, masses, architectural
distortion and asymmetry. Most CAD systems focus on detecting
and further classifying these different abnormalities [LCCM16],
which often relies on the design of ad-hoc and handcrafted fea-
tures. For instance, a traditional (not convolutional) neural network
was employed in [PBP∗08] to detect micro-calcifications in dig-
itized mammograms. The work in [JY15] proposed an algorithm
for the automatic detection of abnormal mammograms using fea-
tures based on low level computer vision and Principal Compo-
nent Analysis (PCA). The reader is referred to [LCCM16] for a
more thorough review. Importantly, all these approaches require the
ground-truth local annotation of the tumor, making them unsuitable
for screening with only global labels.

A number of methods have been recently developed deploy-
ing deep learning techniques for mammogram classification. The
work in [LJ16] employed CNN to classify pre-segmented masses
in mammographies. Similar approaches were proposed in [DCB16,
JGWL16]. These methods, naturally, are unable to manage the set-
ting we tackle in this work, as they only classify pre-segmented
masses. An exception is the work of [HK16], which proposed a
Self-Transfer Learning framework for the classification and local-
ization of lesions in weakly labeled mammograms. Their solution
is given in terms of two networks, a classifier and a localization
network. Our work is different in that we concentrate in the de-
sign and training formulation of the classification network – which
could further benefit approaches such that in [HK16]. We will refer
to this work again in the Results section.

3. AUC Maximization for Deep Convolutional Networks

The design of classifiers to maximize the AUC has received in-
creasing attention in recent years. The work in [HR04] introduced

a gradient descent algorithm to optimize a linear classifier with
an AUC-driven loss, and on-line variants have also been proposed
[ZJYH11, GJZZ13]. These methods, however, considered either
linear classifiers or SVMs [AS05]. Very few attempts have been
made to address this problem in convolutional deep networks. The
work in [CB12] showed that maximizing the AUC in a multilayer
perceptron network with a simple loss function provided better re-
sults in small and imbalanced dataset. The recent work of [WSX16]
proposed an AUC-driven loss for deep belief networks, although
for the case of structured data as in protein sequencing.

Convolutional neural networks that implement complex non-
linear functions can be expressed as the composition of simpler
blocks, where each lth layer is parameterized by weights wl , re-
ceiving the input xl and producing the input to the following layer,
xl+1 = fl(wl ,xl). Considering a CNN with L layers for binary clas-
sification, the last layer typically computes the score (or probabil-
ity) of the input image x, denoted by xL. The training of the model
reduces to minimizing a loss function that will encourage these
scores to be similar to their respective labels by back-propagation.
Typically, this loss is just the `2-difference between the label and
the obtained probability, whereas in this work we provide a cost
function that maximizes the AUC.

Consider the scenario of a set of N+ training examples xi from
a positive (minority) class, and N− examples x j from a negative
(majority) class, i.e. N− >N+, each with label yi. Given a classifier
f , the AUC can be estimated through the Mann-Whitney statistic
[MW47], as

AUC =
1

N+N−
N+

∑
i=1

Ni

∑
j=1

I( f (xi)> f (x j)), (1)

where I is the indicator function. One could indeed maximize the
this measure by proposing a loss function that penalizes cases
where a positive sample xi is assigned a lower or equal score than
a negative one x j, i.e. when f (xi)≤ f (x j). We define such loss by
means of an appropriate function `, while adding a regularization
term on the network weights, symbolically represented by W, i.e.

L(W) =
λ

2
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Moving to an online optimization scheme, the above loss can be
modified to become the sum of a loss over individual samples dur-
ing training at time t, i.e., L(W) = ∑

T
t=1Lt(W). In this setting, the

computed loss for every training sample (xt ,yt) is given by

Lt(xt
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When the above `(xt
L,x

j
L) is a step function of the difference

(x j
L−xt

L), the expression in Eq. (3) effectively maximizes an online
estimation of the AUC [ZJYH11] (plus the regularazation term).
One should propose a smooth surrogate function for the above term,
and we define it as a variant of the logistic function,

`(xi,x j) =− log
(

1
1+ e(x j−xi)

)
. (4)
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Figure 2: The complete architecture, comprised of a first scanning network and a classifier network.

Note that to employ back propagation, one only needs to compute
∂Lt/∂xt

L, which reduces to the sum of the terms ∂`
∂xt

L
. These partial

derivatives are very simple to compute as they are nothing but the
derivatives of a shifted logistic function.

The difficulty in the minimization of Eq. (3) resides in the pair-
wise nature of the loss between samples of different classes: each
sample xt also depends on other samples xi from the opposite class.
This might be problematic not only because of the added computa-
tional complexity, but also because keeping all previous samples in
memory is often infeasible. Interestingly, and unlike previous ap-
proaches [ZJYH11,GJZZ13], the latter is not a problem in the deep
learning framework, as one only needs to compute the gradient of
the loss w.r.t xi

L – and not w.r.t the high dimensional images xi.
Since these elements xi

L are scalars (simply the values assigned to
each previously seen sample), they can be easily stored in memory.
To this end, we propose to keep two buffers of positive and neg-
ative classes, S+ = {xi

L : yi = 1} and S− = {xi
L : yi = −1}, with

which to compute Eq. (3). From a complexity perspective, evalu-
ating Lt(xt

L) is O(N2). In the context of mammography classifica-
tion, where the number of training examples is in the order of a few
thousands, this does not constitute a limitation. However, this sim-
ple approach might become prohibitive when considering big-data
scenarios, where the size of the dataset grows considerably. In such
cases one can easily modify the scheme above by keeping only a
(properly) sub-sampled version of the buffers S+ and S− as done
in [ZJYH11], reducing the complexity to O(N).

4. The proposed architecture

The problem of classifying a mammogram screening based only on
a single label is a challenging task, though very relevant in practice.
Mammographic images are very high-dimensional, usually in the
order of 1K×3K pixels – an order of magnitude larger than com-
mon natural images benchmarks. On the other hand, while the size
of the image is large, malignant findings can be as small as tens of
pixels in width and height, as exemplified in Figure 1. A naive ap-
proach would be to resize the images to a standard 224×244 image
so as to employ off-the-shelf CNN models that require this input
size. However, this severe shrinking inevitably causes loss of in-
formation and details, which might be critical for the classification
process. Thus, we present a network architecture that processes the
mammogram in full resolution in order to capture even small find-

ings that can potentially determine the label of the whole image.
To this end, we decompose the image into a grid of overlapping
patches that are analyzed with a screening network, generating a
global representation for the input mammogram. This representa-
tion is subsequently analyzed by a classifier CNN that effectively
assigns a global label to the input. This general scheme is depicted
in Figure 2.

The scanning CNN constitutes the first step of the analysis of
the mammogram, and it is a completely convolutional network
whose main task is to provide feature descriptors of local areas in
the mammogram. Training such a network from scratch might be
problematic due to insufficient data, so we leverage the representa-
tion power of the popular VGG-m network [CSVZ14] and employ
its first 5 convolutional layers for this stage, disregarding its last
two fully-connected layers. This choice is motivated by choosing a
powerful feature extraction architecture while disregarding the last
classification-focused layers, as it is common in Transfer Learn-
ing. Because of its convolutional properties, this first network scans
the entire image producing a feature vector of fixed size per loca-
tion. In practice we restrict the effective area of the image to an
automatically determined bounding box. Each window produces a
4096 features long vector, and np overlapping local windows are
analyzed in each vertical and horizontal directions (np = 15 in our
experiments). These features, which represent and characterize a
local neighborhood are then grouped together preserving their spa-
tial relation, resulting in a representation volume of np×np×4096.
Note that this particular aggregation strategy guarantees the spatial
proximity of features originated from proximal regions.

The output of this stage is fed into a second network, whose
objective is to classify the obtained representation as containing
or not a malignant lesion. To this end, we propose an architecture
that combines convolutions, REctifying Linear Units (RELUs) and
max-pooling operations, in order to decrease the spatial dimensions
to a single pixel. As detailed in Figure 2, we employ 256 filters in
the first layer, 128 in the second layer and 256 in the third convolu-
tional layers. Finally, two fully connected (FC) layers of 512 filters
each perform the final classification yielding a singular output, cor-
responding to the probability of presence or absence of a malignant
lesion. Certainly, other choices of architectures are possible and de-
signing better alternatives is subject of ongoing work.

Recall that while these two networks can be explained separately,
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Table 1: Results of the proposed approach, as well as other competing methods.

Method dataset Algorithm Input Labels AUC

Dhungel et al [DCB16] INbreast Segmented Masses
Birad +masses
bounding box

0.76

Dhungel et al [DCB17] INbreast
Mammograms

(joint MLO+CC)
Global Label

Birad
0.74

Baseline 1
(this work)

INbreast
Mammograms

(resized to 224×224)
Global Label

Birad
0.602

Baseline 2
(this work)

INbreast
Mammograms
(original scale)

Global Label
Birad

0.630

Proposed
Method

INbreast
Mammograms
(original scale)

Global Label
Birad

0.650

Baseline 1
(this work)

Proprietary
Mammograms

(resized to 224×224)
Global Label

Birad
0.677

Baseline 2
(this work)

Proprietary
Mammograms
(original scale)

Global Label
Birad

0.727

Proposed
Method

Proprietary
Mammograms
(original scale)

Global Label
Birad

0.767

they can also be understood as an integrated complete deep convo-
lutional neural network. Indeed, both architectures can be merged
together by setting the stride of the first layer of the scanning net-
work accordingly. The training of the model consists mainly on
training the classification network (while possibly fine-tuning the
first scanning stage), given the positive and negative image labels.
In practice, and to speed-up training, one can pre-compute the vol-
umetric representations of all images in the training set. After a cer-
tain number of training epochs, and given sufficient training data,
one can merge both networks back together and continue the train-
ing further, improving performance while fine-tuning.

5. Experiments and Results

We validate the proposed model on two dataset: the first one, IMG,
is a proprietary mammogram dataset comprising of 796 patients,
80 of them defined as positive (164 images BIRAD ≥ 4), and
716 negative (1869 images) with both Cranial-Caudal (CC) and
Mediolateral-Oblique (MLO) views, belonging to normal patients
as well as benign findings (BIRADS ≤ 2), resulting from a large
multi-center study and examined by expert radiologists. The sec-
ond dataset is the publicly available INbreast dataset [MAD∗12],
consisting of 115 cases with 410 images. We define positive and
negatives classes in the same manner as for the previous dataset.
The splitting of positive and negative classes follows the rationale
of distinguishing between severe abnormalities from normal im-
ages (BIRADS 1) and most-likely-benign findings (BI-RADS 2).
This splitting makes the classification task all the more challeng-
ing, as it is not enough to detect abnormalities (e.g., masses) but
the system must also discriminate benign (rounded) from malig-
nant ones (spiculated).

We compare our method with 2 baseline algorithms. Baseline 1
comprises of a naive transfer learning strategy, in which the im-
age (after cropping the area of the breast) is resized to a size of
224× 224 pixels. The breast image is then run through an off-the-

Figure 3: Evolution of the AUC with the iterations, for one of the
splits in the proprietary dataset, for the AUC optimization frame-
work compared to the traditional Error-Loss.

shelf deep CNN model, trained on the Imagenet dataset (we employ
the same VGG-m model just as described before), obtaining from
it a 4096 long representation vector for the entire image. These fea-
tures are then used to train an SVM in order to classify them as
positive or negatives. Note that this scheme, while it benefits from
a similar feature-extraction machinery, does not have the advan-
tages of analyzing local or detailed structures. The second baseline
consists of the very same deep CNN architecture described in Fig-
ure 2, though the learning of the network is done with a traditional
logistic (binary) loss. This scheme benefits from the same analysis
power of the proposed approach, but does not leverage our AUC-
maximization formulation.

Five-fold cross validation was used to evaluate the methods per-
formance, and training and testing samples were separated patient-
wise. We report the average results over all folds in Table 1. For
the sake of completion, we include the results achieved by related
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works. Unfortunately, to the best of our knowledge, there are no
works reporting results for the setting we consider in our work for
the INbreast dataset. The work in [HLCLT16] considers a similar
setting, but for a database that is not originally digital. The very re-
cent work in [DCB17], on the other hand, employs both MLO and
CC images jointly for each patient. This implies having additional
information, which we can consider leveraging in the future.

In the INbreast dataset, the naive baseline 1 algorithm obtained
an AUC of 0.602, while the proposed architecture with the binary
loss achieved an AUC of 0.630. This result is boosted to 0.650 once
the AUC-maximization loss is employed. In the proprietary dataset,
on the other hand, the results for the baseline 1 is of 0.677, while
baseline 2 obtained an AUC of 0.727 and our complete method
achieved an AUC of 0.767, representing a 9% and nearly 5% im-
provement, respectively. The advantage of the proposed formula-
tion is also evident in the evolution of the AUC during training,
shown in Figure 3 for one of the splits from the IMG dataset.
The difference in performance between the two datasets can be at-
tributed to the amount of training data in each of them: the propri-
etary data base contains about 2,000 images, while INbreast con-
tains only 410, which might compromise the training of the model.

As can be seen from the results in Table 1, performing mammo-
gram classification with only globally labeled data is significantly
harder than having access to local annotations and masses segmen-
tation. Lastly, while employing a different dataset (MIAS), it is
worth noting that the work in [HK16] recently reported an AUC of
0.675 also employing a global label per image. Our method com-
pares favorably with their results, in particular as their class criteria
was selected as containing or not containing abnormalities. This
might result in an easier task than discriminating malignant from
benign abnormalities, as in our case.

6. Conclusion

In this work, we have presented a new deep learning architecture
for the classification of globally-labeled mammographies. The par-
ticular design allows to circumvent the need of local annotations,
as only a global label is used to train the entire model. The pro-
posed CNN is trained by means of a new AUC-maximization loss
as opposed to minimizing the classification error. Our approach is
validated on two different datasets, showing that promising classi-
fication performance can be obtained in the very challenging sce-
nario of globally-labeled mammograms.

As future work, a systematic analysis of the implications of
the model used as the scanning network, and comparing differ-
ent off-the-shelf trained models for this purpose, could potentially
increase the overall performance. In addition, considering several
input channels (for instance, with more than one mammography
per patient, as done in [DCB17]) while leveraging the proposed
AUC maximization loss, would likely yield improved results. On
the other hand, one could employ the trained model presented in our
work to improve other, more complex, algorithms such as those of
localization. Finally, extending the experimental validation to other
datasets will definitely contribute to the understanding of the capa-
bilities and limitations of our methods. All these points are subjects
of ongoing work.
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