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Abstract
In direct volume rendering (DVR) and related techniques a basic operation is the classification of data values by
mapping (mostly scalar) intensities to color values using a transfer function. However, in some cases this kind of
mapping might not suffice to achieve satisfying rendering results, for instance when intensity homogeneities occur
in the volume data due to technical restrictions of the scanner technology. In this case it might be desirable to
customize one or more parameters of the visualization depending on the position within the volume.
In this paper we propose a novel approach for an interactive position-dependent customization of arbitrary pa-
rameters of the transfer function classification. Our method can easily be integrated into existing volume rendering
pipelines by incorporating an additional operation during the classification step. It allows the user to interactively
modify the rendering result by specifying reference points within the data set and customizing their associated vi-
sualization parameters while receiving direct visual feedback.
Since the additional memory requirements of our method do not depend on the size of the visualized data our
approach is applicable to large data sets, for instance in the field of ultra microscopy.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In recent years the visualization and visual analysis of vol-
umetric data sets (or simply volumes) have become stan-
dard operations in biomedical research. Technologies such
as fluorescence microscopes used by cell biologists or com-
puted tomography (CT) scanners used by physicians allow
to acquire volumetric data sets or image stacks from which
volumes can ultimately be reconstructed. The application of
both two- and three-dimensional rendering techniques can
then provide insightful visualizations for domain experts.
The volume rendering process usually includes a classifica-
tion step which consists of mapping features (often corre-
sponding to scalar intensity values) at given sampling posi-
tions within the data set to optical properties, i.e., color val-
ues, by applying a transfer function. Various transfer func-
tions to realize this mapping have been proposed, ranging
from a simple linear transformation from intensity values
to grayscale values up to high-dimensional mappings using
multiple intensity channels as well as additional input pa-
rameters, e.g., the local image gradient.

Figure 1: Our proposed customization approach can be inte-
grated into rendering pipelines for large volume data sets.
This image shows the maximum intensity projection of a
9.5 GB 3-channel mouse embryo data set where an intensity
gamma correction has been applied to the marked region.
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Usually classifications assume constant characteristics of
features in the data. An example is the linear mapping of in-
tensity values acquired by a CT scanner to Hounsfield units
(HU) which allows physicians to classify anatomical fea-
tures based on their range of values [Hou80]. Due to this
assumption samples in the volume data which correspond
to the same feature characteristics are mapped to the same
optical properties, similar to a mathematical function map-
ping a specific set of input parameters always to the same
output. However, in some situations this behavior might not
be desirable. Instead, incorporating the position of a given
sample within the volume as an additional parameter offers
a more flexible visualization by allowing local adaptations
of the transfer function. This might be due to a combination
of the scanner technology and the physiological properties
of the tissue leading to complex effects such as absorption
which can not be easily corrected, or the necessity to modify
the classification for highlighting regions of the volumetric
data set or choosing different transfer functions for several
regions of interest.
We propose a technique which offers domain experts the
ability to perform a local on-the-fly customization of ar-
bitrary visualization parameters to achieve insightful visu-
alizations and which can easily be integrated into existing
rendering systems. The development of our approach was
driven by the following design goals:

1. Interactive position-dependent customization of any pa-
rameter related to the transfer function classification

2. Direct visual feedback during user interaction

3. Integration into existing volume rendering techniques

4. Compatibility with existing rendering techniques for
large data sets exceeding available GPU memory

2. Related Work

With the emergence of programmable graphics hardware,
sophisticated volume rendering techniques such as GPU-
based ray-casting [KW03] became applicable to interactive
visualizations. In recent years, the rapid development of new
and enhanced scanner technologies as well as more complex
scientific simulations, e.g., in the field of materials science
and geophysics, have led to an increasing size of volume data
sets, requiring efficient out-of-core and multi-resolution ap-
proaches like the ones proposed by Gobbetti et al. [GMG08]
or Crassin et al. [CNLE09] to maintain interactive frame
rates. Both of their implementations utilize an octree data
structure to organize a dynamic block-wise transfer of re-
quired parts of the volume to the GPU memory.
Despite the methodological diversity of available volume
rendering techniques, all of the approaches incorporate a
classification step relying on a transfer function to map the
features of the input data into a color space. A simple way to
directly classify intensity values during rendering is given by
the use of opacity functions [Kin02], which assign an opacity

value to each intensity and thus allow to highlight important
features of the volume data corresponding to specific ranges
of intensity values. By extending the concept from opacity
values to additional parameters such as colors, these types
of transfer functions offer additional flexibility for creating
volume visualizations [LCN98].
Besides one-dimensional transfer functions, which are lim-
ited to the scalar intensity values of the volume data,
two-dimensional functions, which have been introduced by
Levoy [Lev88] in 1988, are commonly used. Such func-
tions use the image gradient at a given sample position as
a second input dimension in addition to the intensity value.
The specification of simple shapes in the two-dimensional
space defined by the gradient magnitude and the scalar in-
tensity allows to visualize the surfaces of structures within
the volume data which manifest themselves in the shape
of arcs within the two-dimensional histogram [KKH02].
Roettger et al. [RBS05] have introduced spatialized trans-
fer functions, which assign colors to connected components
within the data set using two-dimensional transfer functions
based on the local image gradient.
Besides the image gradient, other features of the data set can
be used for specifying two-dimensional transfer functions,
including spatial information. Correa and Ma [CM09] com-
pute an occlusion spectrum for each voxel and use it as the
second dimension of the classification. Selver and Günzeliş
have proposed a method for semi-automatic generation of
transfer functions which take into account the individual
slices of a medical image stack [SG09]. Another approach
is to determine the size of anatomical structures and incor-
porate it as the second dimension of the transfer function
classification. Such methods have been proposed in [CM08]
and [WKK10].
Zhou et al. [ZDT04] have proposed a distance-based trans-
fer function, which takes into account the current view-
point of the volume rendering. In their method, the posi-
tion of a voxel is used to modify the rendering depend-
ing on the distance to the camera or a specific point in
space. Tappenbeck et al. [TPD06] have extended this con-
cept by considering distances to anatomical structures which
have been determined by segmentation. A similar approach
using weighted distance fields has been proposed by Ker-
win et al. [KHS∗10]. Another system proposed by Cor-
rea and Ma [CM11] computes a visibility histogram for the
current view point and opacity function, which allows gener-
ating visibility-driven transfer functions. Their approach can
be applied to one- and two-dimensional transfer functions.
There also exist higher-dimensional transfer functions which
consider multiple intensity channels as well as additional in-
put parameters such as curvature or local texture informa-
tion, e.g., the one proposed by Kim et al. [KSC∗10].
Bruckner and Gröller [BG05] have proposed VolumeShop,
a software package which connects the transfer function
classification to segmentation and volume registration ap-
proaches. This concept has been extended and refined
in [BKW08] and [GY13].
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Figure 2: Schematic representation of the three steps re-
quired for the classification parameter customization.

Our approach can be combined with all of the above trans-
fer function concepts, extending the corresponding classi-
fications by allowing user-defined position-dependent cus-
tomizations to arbitrary subsets of the used input parameters
and thus addressing a position-dependent extension of the
general transfer function concept without the need for pre-
processing computations.

3. Overview

In this section we give an overview of the three basic steps
required by our method for customizing classification pa-
rameters. These steps are also schematically shown in Fig. 2.
A detailed description of specific parts of our approach will
be given in the following sections.

Step 1: Define seed customization points
For large volumetric data sets with over 10003 voxels an in-
dividual user-driven specification of classification parame-
ters for each individual voxel of the data set is not feasible.
We have thus limited the customization to user-defined seed
voxels, which we will be referring to as seed customization
points in the following. A seed customization point p con-
sists of a unique voxel position within the data set as well as
a parameter vector −→v containing all customizations of the
visualization parameters, i.e., reference values for this voxel
position.
The type of the parameters can range from float values, e.g.,
for an intensity correction, to any complex structure, e.g., an
entire color map. The way in which the user can create such
seed customization points and define their parameter vectors
will be outlined throughout Sec. 6.

Step 2: Calculate customization volume
Since the user modifies the visualization parameters for a
few seed points only, it is necessary to interpolate these pa-
rameter customizations for all of the other voxels within the
volume in a reasonable fashion. The term reasonable will be
defined in detail later on (see Sec. 4).
To reduce the memory requirements and achieve interactive
frame rates during the parameter customization, we map the
seed customization points into a smaller volume, which will
be denoted as the customization volume in the following. The
resolution of the customization volume can be chosen be-
tween 323 and 5123 voxels, depending on the available GPU
memory and parameter complexity. The interpolation itself,
i.e., the calculation of each interpolated visualization param-
eter for each voxel of the customization volume, is then per-
formed on the GPU using OpenGL compute shaders (see
Sec. 5).

Step 3: Integration into the volume rendering pipeline
The customization volume calculated in the previous step
is integrated into the classification step of the volume ren-
dering pipeline. At a specific point in the rendering process
all of the required input parameters for the classification are
gathered from the volume data set, e.g., the intensity value
or image gradient at a sampling position, and passed to the
transfer function. The customization step is integrated di-
rectly before the application of the transfer function. The pa-
rameter modifications for the current sampling position are
fetched from the customization volume and can be applied
to both the input parameters as well as the transfer function
itself, depending on the type of each of the visualization pa-
rameters. This modification will be outlined in more detail
throughout Sec. 5.

4. Interpolation Method

In this section the interpolation method for the customiza-
tion values and the calculation of the customization volume
will be described. Throughout this section we will assume a
given set S of user-defined seed customization points pi with
associated visualization parameter values vi and a requested
point q with q 6∈ S for which the parameter vq should be in-
terpolated based on the set S. This section also contains a
discussion of alternative interpolation approaches, which we
have considered impractical for our system, as they do not
fulfill the requirements of a reasonable interpolation in our
context, which will be defined in the following subsection.

4.1. Requirements of the Interpolation

As outlined above, the customization values are defined by
the user for only a small number of seed customization
points, making it necessary to derive values for the remain-
ing sampling positions in the volume data set from the seed
customization points. Those values are determined by inter-
polating between the reference values corresponding to the
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Figure 3: Possible interpolation between seed customization
points in 1D satisfying all requirements of Sec. 4.1.

user specified seed customization points. For this purpose
three basic requirements for the interpolation were defined:

1. The interpolation should not change the value at the user-
defined points.

2. The interpolation between two neighboring seed cus-
tomization points should be continuous and monotonic.

3. Each seed customization point should only have local in-
fluence.

Since the seed customization points are set by the user to
customize the visualization in a specific way at the chosen
voxel position, the first requirement ensures that the voxel
corresponding to the seed customization point itself keeps
the specified parameter value independent from changes in
the set of the other seed customization points.
The second requirement excludes choosing the value of the
nearest seed customization point for each voxel, but allows
linear interpolation between two seed customization points.
All of the values interpolated between a set of seed cus-
tomization points should be in the range defined by the min-
imum and maximum values associated with the seed cus-
tomization points within the set.
The third requirement means that if a seed customization
point is occluded by one or more other seed points for a
voxel position, it should not influence the value computed
for this voxel. We conveniently omit a formal definition of
the term occluded here and instead settle for the intuitive
concept of the one-dimensional example outlined below.
An example of an interpolation for an arbitrary numerical
value using seed customization points in a 1D space is shown
in Fig. 3. The interpolation shown in the bottom half of the
image satisfies all of the above requirements. The first re-
quirement is met, since the values vi are attained at their
corresponding positions pi. The second requirement is satis-

fied since the interpolation between each pair of neighboring
seed customization points is monotonic and continuous and
all of the interpolated values lie within the range of the seed
customization points’ values. In this example in 1D space the
term occluded can be intuitively understood, as in the linear
interpolation between neighboring points shown in Fig. 3,
the rightmost point p3 with the value v3 = 100 does not in-
fluence any of the values left of p2 with the value v2 = 20.
However, it should be noted that the term is more complex
to define in 2D or 3D space. Fortunately, our interpolation
method already entails a certain form of this property with-
out the necessity of further care (see Sec. 4.3).

4.2. Discussion of Interpolation Approaches

Generally, an interpolation between a set of seed customiza-
tion points S as declared above can be expressed as the
weighted sum of their corresponding values in the form

vq = ∑
pi∈S

ωi · vi, (1)

where ωi are the weights defined by the interpolation
function, the positions of the seed customization points, and
the position of the requested point q.
During the development process various alternative inter-
polation methods, i.e., definitions of the weights ωi, have
been considered. Below, we will shortly discuss some of
the concepts which were not practically applicable in our
context, before we outline the interpolation method we have
chosen for our system in detail in Sec. 4.3.

Inverse distance weighting (IDW): This approach com-
monly applied in geostatistics derives the weights ωi for
equation 1 directly from the distance between q and pi.
Shepard [She68] was among the first introducing this ap-
proach. However, this method does not comply with the third
requirement outlined in Sec. 4.1, as all of the specified seed
customization points influence the interpolated voxel and
thus have a global influence.
Kriging: The theoretical basis for this approach, which is
also frequently applied in geostatistics, was proposed by
Krige in his master thesis [Kri51]. The benefit of Krig-
ing compared to IDW is the consideration of local variance
which results in better interpolations. However, the method
is computationally expensive and (without the additional
specification of a local neighborhood) violates the third re-
quirement similar to IDW.
Seed Customization Points as spheres: This approach
is based on interpreting the seed customization points as
spheres with a user-defined influence radius in which the in-
fluence of the seed point decreases with increasing distance
to the center. However, difficulties arise when trying to de-
fine interpolated values in the intersection between two or
even more spheres. Approaches like using the maximum or
weighted averages violate at least one of the above require-
ments.
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Figure 4: Example of the natural neighbor interpolation in
2D. Given seven seed points pi with their associated values
vi the value vq of a query point q is determined by using
equation 2.

Tetrahedralization by Delaunay-triangulation: This ap-
proach is based on computing a decomposition of the bound-
ing box of the volume data set into a set of tetrahedrons
by applying Delaunay-triangulation [Del34] using the set
Q = S∪E, where E is the set of the corners of the volume
and S is the set of seed customization points. The benefit
of this approach is the given natural interpolation inside a
tetrahedron by the barycentric coordinate system. However,
there occur some degenerate cases where the triangulation
results in undesired interpolation results. An example is a
set of seed customization points lying on a sphere around the
point q, where only four of those seed customization points
affect the value of q instead of all of them, which is a com-
mon configuration in our approach (see Sec. 6).

4.3. Natural Neighbor Interpolation

To satisfy the requirements outlined in Sec. 4.1 we apply
natural neighbor interpolation, which has been proposed by
Sibson [Sib81] and is also known as Sibson or Voronoi in-
terpolation.
The basic concept of this interpolation method is to calculate
a Voronoi diagram containing all seed customization points.
A two-dimensional example is shown in Fig. 4 for a set S
consisting of seven seed customization points pi with their
associated numerical visualization parameter vi. Let VCpi be
the Voronoi cell of point pi, for which its boundaries are

shown in green in the image, and let vol(VCpi) be the vol-
ume (i.e., the area in 2D) of the Voronoi cell VCpi . To cal-
culate the interpolated value vq of a query point q, a new
Voronoi diagram is computed for the set Q = S∪{q}, i.e.,
the set of seed customization points and the query point q.
The newly created Voronoi cell of q is highlighted in blue in
Fig. 4. The interpolated value vq can then be computed using
the equation

vq =
N

∑
i=1

vol(VCpi ∩VCq)

vol(VCq)
· vi, (2)

which is a realization of equation 1 in which the value vq is
calculated as the sum of all neighboring vi, each weighted
by the volume of the intersection of VCq with the original
Voronoi cell VCpi .
It can be shown that this method satisfies the first and second
requirement outlined in Sec. 4.1 and at the same time implies
a definition of the third requirement and the term occluded,
where only the seed customization points in a local neigh-
borhood are taken into account for each point q, which are
the neighbors of the newly created Voronoi cell of q. Natural
neighbor interpolation thus satisfies all of the requirements
we have set for our interpolation method.

4.4. Calculation of the customization volume

By applying the interpolation method outlined in the preced-
ing section the required customization volume can be cal-
culated as follows. A natural neighbor interpolation is per-
formed for each voxel in the customization volume not cor-
responding to a seed customization point. However, a num-
ber of special cases have to be taken into account.
A Voronoi cell can have infinite volume, if its associated
point is not strictly inside the convex hull of the given set
of points. This applies to any requested interpolation point
q outside the convex hull of all seed customization points,
which makes equation 2 undefined. To overcome this issue
we limit the Voronoi diagram to the bounding box of the vol-
ume data set so that all Voronoi cells have a finite volume.
To provide a well-suited default setup eight default seed cus-
tomization points are provided, each of them corresponding
to a corner of the volume’s bounding box. This prevents the
insertion of a single seed customization point for a local cus-
tomization from having a global influence, which would be
the case if computing the Voronoi diagram for the natural
neighbor interpolation with a single inserted seed customiza-
tion point. At the same time these default points allow to ap-
ply simple linear gradients over the volume by adjusting the
values of the corner seed customization points without the
necessity of adding additional seed customization points.

5. Implementation

In this section we describe our implementation and how
the performance of the theoretical approach outlined above
has been improved. Our method has been integrated
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into the rendering pipeline of the visualization frame-
work Voreen (http://voreen.uni-muenster.de),
which has been developed at the University of Mün-
ster and is capable of rendering large volumetric data
sets [MSRMH09, BPH14]. Throughout this section we will
be assuming a given set of seed customization points consist-
ing of their position in voxel coordinates and one numeric vi-
sualization parameter. This set should also contain the eight
corner points mentioned in Sec. 4.4. The user interface for
adding or removing seed customization points from the set
or modifying the seed customization points will be outlined
in Sec. 6.

5.1. Discretization of the customization volume

To apply the natural neighbor interpolation described in
Sec. 4.3 it is necessary to compute the Voronoi dia-
gram, i.e., the Voronoi cells of the seed customization
points and each query point q, several times. Many ac-
curate algorithms are based on computing the Delaunay-
triangulation, which is the dual of the Voronoi diagram.
This approach was implemented using the implementation
of Pion and Teillaud [PT15] published in the open source li-
brary CGAL [cga]. Although this implementation achieves
visually satisfying results, the computational cost of the ge-
ometric computations results in a very low framerate during
user interaction, which prevents immediate visual feedback.
Furthermore, calculating the customization volume in the
resolution of the original volume data, thus providing inter-
polated information for each voxel in the data set, might re-
sult in problems with the memory management on the GPU
during rendering, especially for large volume data sets.
To overcome those issues we use a discretization similar to
the one proposed by Park et al. [PLK∗06], which can be cal-
culated on the GPU (see Sec. 5.2) and solves both of the
above performance issues. We approximate the volume of a
Voronoi cell by the number of voxels, which belong to it,
by computing an approximate discrete Voronoi diagram on
a regular grid. This allows to exploit the massively parallel
computing capabilities of modern GPUs.
Furthermore, the required memory was reduced by calculat-
ing the Voronoi diagram and the resulting customization vol-
ume in a lower resolution. Good results can be achieved even
with a resolution of 643 voxels. This is due to the fact that
samples between the voxels of the low-resolution customiza-
tion volume are reconstructed using trilinear interpolation
when accessing the customization volume during the vol-
ume rendering process, which can be performed efficiently
on the GPU. This procedure allows to choose the resolution
of the customization volume independently from the input
volume data size and provides interactive frame rates.

5.2. Calculation on the GPU

The calculation of the customization volume on the GPU
is performed in a two-stage process. First, we calculate the

Algorithm 1: PseudoCode of the compute shader calcu-
lating the discrete Voronoi diagram.

Input : Buffer of all seed points (points[]), each containing
their 3D voxel position (pos) and their visualization
parameter (value).

Output: Discrete Voronoi diagram with 3D extent (resolution)
as linear buffer (voronoi[]) storing the index of the
point in the input buffer (points[]) to which
Voronoi-cell this voxel belongs.

// get 3D position from current global work item index
1 vec3 cur3DPos = gl_GlobalInvocationID.xyz;

// initialize temporary variables
2 int minPoint = 0;
3 float minDist =∞;

// determine the nearest point to cur3DPos
4 for i = 0; i < #points; i++ do
5 float d = distance(points[i].pos, cur3DPos);
6 if d < minDist then
7 minDist = d;
8 minPoint = i;

// calculate linear index from cur3DPos and set Voronoi data
9 int index = cur3DPos.x

+ resolution.x*cur3DPos.y
+ resolution.y*resolution.x*cur3DPos.z;

10 voronoi[index] = minPoint;

Voronoi diagram, and then we compute the customization
volume via natural neighbor interpolation. Both steps are
performed using compute-shaders which are available in
the OpenGL standard since version 4.3 and offer parallel
general-purpose computing capabilities in OpenGL, which
are similar to OpenCL or the CUDA framework of Nvidia.
A conceptual version of the shader code used to calculate
the Voronoi diagram can be seen in Algorithm 1. For every
voxel of the customization volume a work item is started,
which receives its coordinates and a vector containing all
seed customization points as its input. Each work item deter-
mines then the seed customization point that has the closest
distance to the associated voxel position. The distance mea-
sure can be changed between the (squared) Euclidean dis-
tance or the Manhattan distance. Since the voxel position of
all seed customization points has been specified in the orig-
inal higher input volume resolution, the position has to be
scaled relative to the customization volume resolution before
the points are passed to the shader. The index of the near-
est point in the input vector is stored in the output Voronoi
volume. Thus, the Voronoi volume stores for each voxel the
information, which seed customization point, referenced by
the index in the input vector, is nearest to it, i.e., to which
Voronoi cell the voxel belongs.
In a second shader pass the final customization volume is
calculated. Again, we start a work item for each voxel of the
customization volume to determine the interpolated value.
The simplified shader code can be seen in Algorithm 2. We
test for each voxel in the Voronoi volume if it is included
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Algorithm 2: Pseudocode of the compute shader calcu-
lating the customization volume.

Input : Buffer of all seed points (points[]), each containing
their 3D voxel position (pos) and their visualization
parameter (value).
Discrete Voronoi diagram with 3D extent (resolution)
as linear buffer (voronoi[]) storing the index of the
point in the input buffer (points[]) to which
Voronoi-cell this voxel belongs.

Output: Customization volume with 3D extent (resolution) as
linear buffer (interpolationResult[]) storing the
natural neighbor interpolated value at this voxel.

// get 3D position from current global work item index
1 vec3 cur3DPos = gl_GlobalInvocationID.xyz;

// initialize temporary variables
2 float result = 0.0;
3 float divider = 0.0;

// determine for each voxel of the discrete Voronoi diagram if
is included in the new Voronoi cell of cur3DPos.

4 for x = 0; x < resolution.x; x++ do
5 for y = 0; y < resolution.y; y++ do
6 for z = 0; z < resolution.z; z++ do
7 vec3 curPos = vec3(x, y, z);
8 int voronoiIndex = x

+ resolution.x*y
+ resolution.y*resolution.x*z;

9 int pointIndex = voronoi[voronoiIndex];
10 if distance(cur3DPos, curPos) <=

distance(curPos, points[pointIndex].pos) then
11 result += points[pointIndex].value;
12 divider += 1.0;

// since each voxel has the same volume, the result can be
divided by the total number of samples

13 if divider != 0.0 then
14 result = result/divider;

// calculate linear index from cur3DPos and set customization
volume data

15 int outIndex = cur3DPos.x
+ resolution.x*cur3DPos.y
+ resolution.y*resolution.x*cur3DPos.z;

16 interpolationResult[outIndex] = result;

in the newly created Voronoi cell associated with the seed
position of the corresponding work item. If the distance (Eu-
clidean or Manhattan) between the tested voxel position and
the seed customization point of the work item is smaller than
the distance of the tested voxel position to the seed cus-
tomization point of the stored Voronoi cell in the Voronoi
volume, we add the value of the visualization parameter of
the stored seed customization point to a temporary sum and
count how many values have been added to the sum so far.
Since each voxel has the same volume, we get the correct
interpolation result by dividing the temporary sum by the
count of the terms of the sum. The stored value in the output
buffer corresponds to the final customization volume.

Algorithm 3: Pseudocode of a ray-casting loop for vol-
ume rendering including the required modifications to
support our customization volume. An intensity gamma
correction parameter is simulated in this example.

Input : InputVolume is the volume which should be
visualized.
CustomizationVolume is the previously calculated
customization volume.

Helper: getValue(volume,position) returns the value stored in
the volume at the given position with linear filtering.
applyTransFunc(intensity) returns the color value
mapped from the input intensity by applying a transfer
function.

1 for position← ray.begin to ray.end do
// regular code before modification

2 ...
3 float intensity = getValue(InputVolume, position);

// modification takes place here
4 float gamma = getValue(CustomizationVolume, position);
5 intensity = pow(intensity, gamma);

// regular code after modification
6 vec4 color = applyTransFunc(intensity);
7 ...

5.3. Integration into the Rendering Process

The specific integration depends on the actual visualization
parameter that should be adjusted, and thus must be handled
individually. An example of how a gamma correction of the
intensity values of a volume data set could be realized is
shown in Algorithm 3.
Independent from the visualization parameter the customiza-
tion volume always has to be passed to the shader perform-
ing the volume rendering, e.g., ray-casting. In the main ray-
casting loop, after fetching the intensity value of the data
set at the current sampling position and before the transfer
function is applied, a modification has been added, as high-
lighted in lines 4 and 5. In this example code our modifica-
tion consists of getting the visualization parameter from the
customization volume at the current sampling position (us-
ing linear filtering) and applying it to the intensity value of
the input volume.
It should be noted that the fetched intensity values in this ex-
ample are in the range [0,1] to justify the intensity gamma
correction in line 5. Overall, this method requires only minor
modifications of the existing rendering pipeline.

5.4. Impact on the Rendering Performace

Due to the additional lookups and computations (such as
the power function in Algorithm 3) the application of the
customization volume reduces the overall performance of
the volume rendering pipeline. We have tested the perfor-
mance of our prototype implementation on a standard PC
with 16 GB RAM and an AMD Radeon HD 7970 GPU
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by integrating the additional computations into our OpenCL
volume ray-caster and measuring the performance in com-
parison to the original implementation. For our tests, we ap-
plied the intensity gamma correction shown in Algorithm 3.
We have tested three data sets, the head data set (Fig. 6)
with a resolution of 160× 160× 128 and a memory size
of 6.3 MB, the heart data set (Fig. 5) with a resolution
of 512× 512× 273 and a memory size of 273 MB, and
the mouse embryo volume (Fig. 1) with a resolution of
1004×1002×1611 and a memory size of 9.5 GB for three
intensity channels. For the head data set, the framerate of
70 fps did not suffer from the additional classification step,
which is mainly due to the relatively opaque transfer func-
tion reducing the number of samples due to early ray termi-
nation. For the heart data set, the framerate decreased from
30 to 24 fps. For the mouse embryo data set, the customiza-
tion volume was applied to each of the three channels sep-
arately in maximum intensity projection (MIP), causing a
performance reduction from 15 to 9 fps. For the rendering
of larger out-of-core volume data sets, the bottleneck of the
rendering performance is the memory transfer of the vol-
ume data to the GPU and thus the performance impact of the
step in which the customization volume is applied becomes
negligible. It should be noted that, in addition to the num-
ber of samples, the computations necessary for the specific
customization have a significant influence on how the cus-
tomization step impacts the rendering performance. Chang-
ing the resolution of the customization volume between 323

and 1283 has no significant impact on the rendering perfor-
mance, although a higher resolution increases the computa-
tional complexity of the Voronoi diagram calculation and the
interpolation computations, thus diminishing interactivity in
adjusting the seed customization points. This problem, how-
ever, can be mitigated by choosing a lower resolution of the
customization volume for the interactive customization, and
a higher resolution for the actual volume rendering.

6. The User Interface

In our application setup (as shown in Fig. 6) a quad-view
consisting of a 3D rendering and three 2D slice views (one
for each of the main axes) and a list of properties for user
configurations are provided.
Each 2D view shows the position of all of the seed cus-
tomization points mapped to the current volume slice. A seed
customization point is visualized as a circle, if its position is
on the currently selected slice, or as a triangle with a small
number, indicating the direction and distance to the exact
voxel position of the seed customization point in 2D.
The 3D view visualizes each seed customization point at its
three-dimensional position. To overcome the problem of oc-
clusion in 3D rendering, e.g., in the direct volume render-
ing of an opaque object, the user can optionally render the
seed customization points in the foreground, despite their ac-
tual depth. Since this effect hampers the perception of the
exact position of the seed customization point, our inter-

Figure 5: Direct volume rendering of a CT scan of the human
heart. We have applied our technique to the opacity values of
the transfer function classification to fade out outer regions
of the volume, while modifying the color values in the region
of interest to highlight the stenosis.

face provides the option to visualize axis aligned orientation
lines from the seed customization point to the borders of the
bounding box, as depicted in Fig. 6b.
Two color schemes for the visualization of the seed cus-
tomization points can be selected by the user to accom-
modate the visualization to the current use case. The first
scheme is a mapping of one of the user-defined visualization
parameters to a heat map, providing an overview of the cus-
tomization values. The scheme is shown in Fig. 6a. To alle-
viate the cognitive load of matching the seed customization
points in the 2D and 3D representations, which might es-
pecially be difficult with larger numbers of seed customiza-
tion points, the second scheme colors the points according
to their unique identifier which corresponds to the order in
which the seed customization points have been created. This
scheme is depicted in Fig. 6b. It should be noted that all of
the points which belong to the same primitive (see Sec. 6.1)
are rendered using the same color.

6.1. Primitives as a Shortcut

To allow the quick customization of a visualization parame-
ter in a larger region using multiple points or to confine the
influence of a seed customization point (e.g., by surrounding
it by multiple points restricting its influence) the possibility
to specify simple primitives is provided to the user. Our im-
plementation supports the insertion of points, axis aligned
lines (2 points), axis aligned rectangles (4 points), and axis
aligned cuboids (8 points). Since all points of such a prim-
itive share the same configuration of visualization parame-
ters, this supports the simple modification of local regions
by placing one seed customization point in the center of the
region and a cuboid with the default value of the parameter
around it to confine the region.
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(a) The provided quad-view with one 3D and three 2D views.
The color of a seed customization point represents its value.

(b) In this representation, each seed customization point has a unique
color. Its properties can be defined on the right side.

Figure 6: Screenshots of the interface provided to define seed customization points in the data set.

6.2. Adding and Adjusting Points

The user can add new primitives and delete or disable ex-
isting primitives. Disabled seed customization points are ig-
nored during the computation of the customization volume,
but can be activated again. However, it should be noted that
this functionality is not provided for the fixed corner points.
The configuration is done via a property list (see Fig. 6b)
containing information about all of the seed customization
points, including the eight corner points. All of the attributes
for a selected primitive, such as its position, spatial extent,
or visualization parameters, can be adjusted. However, the
position and spatial extent of the corner points of the bound-
ing box are fixed. The user can specify a spatial extent for
each dimension separately. An extent of zero in each direc-
tion corresponds to a point, a non-zero extent in one direc-
tion to a line and so on.
Regardless of the number of associated points, the position
of a primitive is defined as its center. The position can be
specified in voxel coordinates or can be set via direct in-
teraction with the rendering views using the mouse. Due to
the difficulties related to the exact placement of points in a
3D view using a mouse as an input device, we have focused
our configuration input on the 2D views and use the 3D ren-
dering only for providing additional visual feedback. Each
update of the position will immediately trigger an update of
the customization volume as well as the visualization of the
seed customization points in all of the views, providing di-
rect visual feedback to the user during interaction to support
achieving the desired result.
Figure 5 shows an example where our approach has been
applied to a CT data set of the human heart. A cuboid has
been specified as a region of interest. The additional classifi-
cation step is used to lower the opacity values of the transfer
function outside of this region. Additionally, the color values

of the transfer function within the region are modified. This
allows to highlight the stenosis in the example, omitting oc-
clusion while still keeping the spatial context of the volume
which would be lost when using a simple clipping approach.

7. Conclusion and Future Work

In this paper we have proposed a novel approach for ex-
tending the classification of feature characteristics using a
transfer function in volume rendering applications by incor-
porating an additional step to allow an interactive position-
dependent customization of visualization parameters related
to the classification. We provide a simple user interface with
direct visual feedback and have shown examples to illustrate
the applicability of our system in practice. Our method can
easily be integrated into existing volume rendering pipelines,
particularly including the visualization of large volume data,
which is due to the configurability of the memory require-
ments of the additional customization volume. Although in-
corporating an additional step into the classification process
reduces the overall rendering performance, this effect be-
comes negligible compared to the required memory transfer
for rendering large volume data.
In future work, we plan to further refine the user interface of
our system to support the specification of non axis-aligned
primitives and extend the implementation to include more
sophisticated parameters such as color maps for the classi-
fication. Furthermore, we plan to evaluate the applicability
of our method to specific use cases emerging in medical and
biological research in direct collaboration with domain ex-
perts, and combine our approach with related methods rely-
ing on segmentation techniques for more flexibility. More-
over, we plan to apply our method to other stages of the
volume rendering pipeline such as gradient computation or
lighting calculations.
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