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Figure 1: Real-time screen-shot of an illustrative cross-section of the HIV virus surrounded by blood plasma. Our rendering
tool is directly integrated in the Unity3D game engine and is able to render datasets with up to 15 billion atoms smoothly at
60Hz and in high resolution. Because these datasets exhibit high visual complexity, we opted for an illustrative rendering style
to improve shape perception, inspired by the style of scientific illustrators.

Abstract

In this article we introduce cellVIEW, a new system to interactively visualize large biomolecular datasets on the
atomic level. Our tool is unique and has been specifically designed to match the ambitions of our domain experts
to model and interactively visualize structures comprised of several billions atom. The cellVIEW system integrates
acceleration techniques to allow for real-time graphics performance of 60 Hz display rate on datasets representing
large viruses and bacterial organisms. Inspired by the work of scientific illustrators, we propose a level-of-detail
scheme which purpose is two-fold: accelerating the rendering and reducing visual clutter. The main part of our
datasets is made out of macromolecules, but it also comprises nucleic acids strands which are stored as sets of
control points. For that specific case, we extend our rendering method to support the dynamic generation of DNA
strands directly on the GPU. It is noteworthy that our tool has been directly implemented inside a game engine.
We chose to rely on a third party engine to reduce software development work-load and to make bleeding-edge
graphics techniques more accessible to the end-users. To our knowledge cellVIEW is the only suitable solution
for interactive visualization of large bimolecular landscapes on the atomic level and is freely available to use and
extend.

c© The Eurographics Association 2015.

DOI: 10.2312/vcbm.20151209

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vcbm.20151209


Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

1. Introduction

Computational biology already offers the means to model
large structural models of cell biology, such as viruses or
bacteria on the atomic level [JGA∗14] [JAAA∗15]. Visu-
alization of macromolecular structures plays an essential
role in this modelling process of such organisms. The most
widely known visualization softwares are: VMD [HDS96],
Chimera [PGH∗04], Pymol [DeL02], PMV [S∗99], ePMV
[JAG∗11]. These tools, however, are not designed to ren-
der a large number of atoms at interactive frame-rates and
with full-atomic details (Van der Walls or CPK spheri-
cal representation). Megamol [GKM∗15] is a state-of-the-
art prototyping and visualization framework designed for
particle-based data and which currently outperforms any
other molecular visualisation software or generic visualiza-
tion frameworks such VTK/Paraview [SLM04]. The system
is able to render up to 100 million atoms at 10 fps on com-
modity hardware, which represents, in terms of size, a large
virus or a small bacterium. Larger bacteria, however, such
as the well known E. coli, made out of tens of billions of
atoms, which is two orders of magnitude bigger than what
the highest-end available solution is able to render.

According to our domain experts, responsive visual feed-
back is of a great value for the modelling process of such
organisms. However, none of the currently available solu-
tions are able to serve the ambitions of our domain experts,
which is to model large macromolecular structures such as
E. coli. Related works have already presented bleeding-edge
techniques that can render large datasets with up to billions
of atoms at interactive framerates on commodity graphics
hardware [LBH12] [FKE13] [LMPSV14]. However, to our
knowledge, the tools which implemented these techniques
were either not publicly available, or remained in the proto-
typing stage. Indeed, a very cumbersome task for researchers
is releasing and maintaining a usable version of the source
code once the article has been published. The presented tech-
niques are often a proof-of-concept that would require sub-
stantial software development work to ensure a maximum
degree of accessibility. Unfortunately, this is often omitted
because of a busy research schedule and is simply left in the
hand of interested third party developers. Consequently, if
this task remains unachieved, end-users are unlikely to use
state-of-the-art techniques in their work.

cellVIEW is a new solution that enables fast rendering
of very large biological macromolecular scene. Unlike Meg-
amol, which is designed for generic particle-data, cellVIEW
is primarily designed for large biomolecular landscapes, and
thus, exploits the repetitive nature of such structures to im-
prove the rendering performance. While the main function
of this tool is to assist our domain experts in their modelling
task, the visualization of these datasets could also serve an
educational purpose. By interactively showcasing the ma-
chinery of life in science museums, for instance, we could

Figure 2: An illustration of David Goodsell depicting a
cross section of a Mitochondrion. Given the complexity of
the scene the artist deliberately chose to render molecules
with highly abstracted shapes.

also improve the understanding of basic cell biology of the
laymen audience.

cellVIEW is built on top of state-of-the-art techniques,
and also introduces new means to efficiently reduce the
amount of processed geometries. The approach we demon-
strate in cellVIEW improves rendering performance com-
pared to related work by introducing efficient occlusion
culling and robust level-of-detail schemes. Our level-of-
detail scheme also abstracts the shape of macromolecules
efficiently, thus reducing visual clutter, as seen on the artis-
tic depictions of David Goodsell in Figure 2. We show-
case our tool with real, large-scale scientific data such as
the HIV virus and Mycoplasma bacterium, which were pro-
vided by our cooperating domain scientists. Their datasets,
not only contain information relative to the location of indi-
vidual macromolecules, but also provide the path of nucleic
acids strands, which is stored in the form of control points.
We additionally extend our method to procedurally gener-
ate DNA strands on-the-fly via the GPU tessellation shader,
thus reducing the modelling effort as well as GPU transfer
times and memory space. Our system is implemented using
a user-friendly and popular game engine. The ease of use of
the engine guarantees our tool a maximum degree of acces-
sibility, thus bridging the gap between bleeding-edge tech-
niques and actual use in real applications. Additionally, since
game engines are gaining in popularity among the visualiza-
tion community, we anticipate third-party users adopting our
tool, and thereby breaking the barriers caused by heteroge-
neous toolset usage across research departments.

2. Related Work

Large-scale Molecular Visualization Lindow et al.
[LBH12] have first introduced a method capable of quickly
rendering large-scale atomic data consisting of several bil-
lions of atoms on commodity hardware. Rather than transfer-
ring the data from CPU to GPU every frame, they store the
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structure of each type of molecule only once and utilize in-
stancing to repeat these structures in the scene. For each type
of protein a 3D grid structure containing all the atoms is cre-
ated and then stored on the GPU memory. Upon rendering,
the bounding boxes of the instances are drawn and individu-
ally raycasted, similar to volumetric billboards [DN09]. Sub-
sequently Falk et al. [FKE13] presented a similar approach
with improved depth culling and hierarchical ray casting for
impostors that are located far away and do not require a full
grid traversal. Although this implementation features depth
culling, their method only operates on the fragment level,
while they could have probably benefited from a culling
on the instance level too. With their new improvement they
managed to obtain 3.6 fps in full HD resolution for 25 billion
atoms on a NVidia GTX 580, while Lindow et al. managed
to get around 3 fps for 10 billions atoms in HD resolution
on a NVIDIA GTX 285. Le Muzic et al. [LMPSV14], intro-
duced another technique for fast rendering of large particle-
based datasets using the GPU rasterization pipeline instead.
They were able to render up to 30 billions of atoms at 10 fps
in full HD resolution on a NVidia GTX Titan. They utilize
tessellation shaders to inject atoms on-the-fly into the GPU
pipeline similar to the technique of Lampe et al. [LVRH07].
In order to increase the rendering speed they dynamically
reduce the number of injected atoms according to the cam-
era depth. To simplify the molecular structures they discard
atoms uniformly along the protein chain and increase the ra-
dius of remaining atoms to compensate for the volume loss.
This level-of-detail scheme offers decent results for low de-
grees of simplification, but it does not guarantee preserving
the initial shape of the molecules, resulting in poor image
quality with highly simplified shapes.

Occlusion Culling A key aspect when rendering large
and complex scenes is efficient occlusion culling. Grottel et
al. [GRDE10] presented a method to perform coherent oc-
clusion culling for particle-based datasets, which is closely
related to Deferred Splatting [GBP04] and relies on temporal
coherency. Their particle data is stored in a uniform grid, and
they operate the culling at two-levels: at the level of grid cells
first, and at the atomic level afterwards. Individual atoms
are rendered via 2D depth impostors, because they have a
much lower vertex count than sphere meshes for the same
results. At the beginning of each frame they render an early
depth pass with atoms that were visible during the previous
frame. This pass results in an incomplete depth buffer that
they utilize to determine the visibility of the remaining par-
ticles. For the coarse-level culling they determine the visibil-
ity of the grid cells by testing their bounding boxes against
the incomplete depth buffer via hardware occlusion queries
(HOQ). For the fine-level culling they test the visibility of
individual atoms in the final render using the well known
hierarchical Z-buffer (HZB) visibility technique [GKM93].
They construct the HZB from the incomplete depth buffer
beforehand, and during the final render, they discard frag-
ment operations from the vertex shader if the visibility test

fails, thus compensating for the lack of early fragment rejec-
tion with depth impostors.

Illustrative Molecular Visualization When rendering
large structures the speed of execution is not the only con-
cern. As the structures increase in size, they are also increas-
ing in complexity, and it is necessary to display the data
in the most suitable way. Ambient occlusion, for instance,
has been shown to play an essential role when dealing with
large molecular structures, as it provides important depth
cues which increase shape perception [GKSE12, ESH13].
But the rendering style is not the only means to define visual
encoding, geometric abstraction should be applied as well.
Parulek et al. [PJR∗14], demonstrated a continuous level-
of-detail scheme for molecular data. Their object-space ap-
proach offers detail-on-demand in the focus area while ap-
plying gradual shape simplification schemes elsewhere. At
the finest level of detail they were showcasing solvent ex-
cluded surface (SES) representation and abstracted molec-
ular shape for distant molecule. They introduced an inter-
esting abstraction approach, other than molecular surfaces,
based on union of spheres obtained via clustering methods.
Several common clustering methods are compared and eval-
uated.

Modelling of Nucleic Acids Chains DNA plays a key
role in cell biology, and thus is an important part of our
datasets. Therefore, as with protein data, we shall also pro-
vide the means for efficient rendering of this type of struc-
ture. There are several scientific modeling tools [MC98,
LO08, HLLF13] designed to generate DNA strands from a
simple set of control points. These techniques, however, are
all performed on the CPU, which means that geometry data
must be uploaded on the GPU prior to the rendering. Be-
cause of the cost of transferring data from CPU to GPU,
such approach would likely perform poorly when rendering
and animating long DNA strands. Therefore, we introduce a
new GPU-based approach which relies on dynamic instanc-
ing of DNA base-pairs along a curve. This approach is sim-
ilar to the work of Lampe et al. [LVRH07], who use the ge-
ometry shader to dynamically instantiate residues along the
protein backbone. The major difference here is the introduc-
tion of procedural building rules based on scientific data and
the use of the tessellation shader, which offer a much greater
bandwidth of injected primitives. Moreover, by changing the
building rules, our approach can also be extended and ap-
plied to fibres or repetitive objects that are present in cellu-
lar environment (actin filaments, microtubules, lipoglycane,
etc.).

Game Engines and Biomolecular Visualization Game
engines are becoming increasingly popular in the molecular
visualization community. Shepherd et al. [SZA∗14] have de-
veloped an interactive application to showcase 3D genome
data using a game engine. Their visualization is multi-
scale and is able to render a large amount of data thanks
to the implementation of a level-of-detail scheme. Various
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works on interactive illustration of biological processes have
also mentioned using game engines to interactively visu-
alize biomolecular processes in 3D, such as polymeriza-
tion [KPV∗14] and membrane crossings [LMWPV15]. Sim-
ilarly to our work, Baaden et al. [LTDS∗13] developed a
molecular viewer which offers artistic and illustrative ren-
dering methods based on the Unity3D game engine. Their
primary intention was to democratize biomolecular visual-
ization thanks to the use of a more intuitive and user friendly
framework. Their tool has managed to prove that game en-
gines are also useful in serious visualization projects. One
noticeable technical difference between cellVIEW and Uni-
tyMol, other than the scale of the supported datasets, is that
our tool is fully integrated in the "What you see is what you
get" (WYSIWYG) editor of the Unity3D engine. Thus, our
tool coexists with the engine toolset which provides a rich
set of functionalities that can be directly used to enhance the
quality of our visualization.

3. Efficient Occlusion Culling

The overwhelmingly increasing size of structural biology
datasets calls for efficient means for reducing the amount
of processed geometries. Our rendering pipeline is based on
the work of Le Muzic et al. [LMPSV14], which relies on the
tessellation shader to dynamically inject sphere primitives
in the pipeline for each molecule. However, without proper
occlusion culling, the injection of sphere primitives would
still be performed, even if a molecule is completely hidden
behind occluders. The presented occlusion culling method is
inspired by the work of Grottel et al. [GRDE10]. We have re-
visited their technique to provide efficient occlusion culling
for macromolecular datasets that are several orders of mag-
nitude larger than the ones showcased with their method.

3.1. Temporal coherency

We developed a custom visibility technique, implemented
with compute shaders and using the well-known hierarchi-
cal Z-buffer (HZB) occlusion culling. This solution has the
advantage to reduce GPU driver overhead compared to HOQ
used by Grottel et al. [GRDE10], since multiple queries can
be performed in a single call. The approach rely on the use
of an item-buffer to precisely determine the visibilty of the
molecules at the end of a frame. Then at the beginning of
the next frame, the previously visible molecules are firstly
drawn. This will result in an partially complete frame, in
case of eventual camera motion. The next step is to deter-
mine the remaining visible elements in order to complete
the frame. We generate the HZB from the partially complete
depth buffer and we compute the visibility information for
the remaining molecules. The remaining visible molecules
are finally drawn and we use the item buffer to determine
which molecules are present on the screen at the end of this
frame. The sequential steps of our occlusion culling method
for a given frame are laid down as follows:

Figure 3: Depth conservative sphere impostors, in order to
benefit from early depth culling for depth impostors we must
guaranty that the output depth will be greater than the depth
of the billboard.

1. Clear HZB and depth buffer
2. Draw visible molecules at the previous frame
3. Generate HZB from the depth buffer obtained in step 2
4. Compute HZB-visibility for the remaining molecules
5. Draw HZB-visible molecules from step 4
6. Find visible molecules via item-buffer for the next frame

3.2. Accelerating Texture Writes

Individual atoms are rendered via 2D sphere impostors, be-
cause they have a much lower vertex count than sphere
meshes for the same results. The depth of the sphere impos-
tors is corrected in the fragment shader in order to mimic a
spherical volume. Upon drawing the atoms, many of them
are actually occluded by other atoms of the same or sur-
rounding molecules. These atoms would normally be pro-
cessed, as a well-known limitation of graphics hardware, so
far, has been the lack of early depth fragment rejection for
depth impostors. Thanks to advances in graphics hardware
however, it is now possible to activate early depth rejection
when a fragment is modifying the output depth value. Hence,
thanks to this feature, we may now easily avoid fragment
computation for hidden atoms. This feature is called conser-
vative depth output. Once activated, in order for conserva-
tive depth output to work, we must output a depth which is
greater than the depth of the 2D billboard. This way the GPU
is able to tell if a fragment will be occluded beforehand by
querying the visibility internally. A description of the depth
conservative output sphere impostor is given in Figure 3. Ad-
ditionally, to limit the number of texture writes, we only out-
put the id of the molecules to the render texture upon render-
ing. The colors are fetched afterwards in post-processing by
reading the molecules properties from the id.

4. Twofold Level-of-Detail

Proteins are key elements of biological organisms, and thus
it is important to visualize them in order to understand how
these work. They are also present in fairly large quantities,
which is challenging to render interactively without proper
level-of-detail schemes (LOD). Additionally, their complex
shapes might cause a high degree of visual clutter, which
may render overly complex images. We propose a twofold
LOD scheme which provides rendering acceleration and of-
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Figure 4: Our level-of-detail scheme allows to reduce the
number of sphere primitives from 10182 to 50 while preserv-
ing the overall shape of the protein. From left to right, the
protein is shown with (i) full-atomic detail, (ii) only 15 per-
cent of the overall sphere count, (iii) 5 percent and (iv) 0.5
percent.

fers a clearer depiction of the scene using smoothly ab-
stracted shapes. Our technique also offer a seamless contin-
uum between the different levels of abstractions from highly
detailed to highly abstracted.

Our rendering pipeline is based on the work of Le Muzic
et al. [LMPSV14], where LOD was dynamically deter-
mined during the tessellation stage. To reduce the number
of spheres, atoms were periodically skipped along the pro-
tein backbone, and the radii of remaining atoms were in-
creased to compensate the volume loss. This technique, al-
though fully dynamic, offers poor results for highly deci-
mated molecules since it does not guarantee to preserve the
overall shape. We employ clustering methods instead, sim-
ilar to the technique of Parulek et al. [PJR∗14], to simplify
the shape of the molecules and reduce the number of prim-
itives to render. Atoms corresponding to one cluster are re-
placed by a single sphere with a radius that approximates
the size of the cluster. Clustering offers a very good decima-
tion ratio as well as accurate shape abstraction, because it
tends to preserve low-frequency details. With higher shape
accuracy we are also able to switch to simpler LOD proxies
closer to the camera, thus gaining in render speed without
compromising image quality.

The clustering of the molecules is precomputed and re-
sults in a set of spheres which are stored in the GPU memory.
We compute our LOD levels using a GPU-based K-means
clustering algorithm. In our tests, we deemed that four levels
were sufficient with our current datasets. The compression
factor of each level was manually chosen to obtain the best
performance/image quality ratio. The results of the cluster-
ing of our four levels is shown in Figure 4. These parameters
can be easily changed via the editor interface. A side-by-side
comparison between our illustrative LOD compared to full
atomic detail is provided in Figure 5.

5. Dynamic DNA Generation

Animating individual molecules is fairly straightforward be-
cause modifying the atomic structure may not be required.
In the case of DNA, the positions of the control points of
the DNA path highly influence its structure, namely the po-
sitions and rotations of the individual nucleic acids. As a

Figure 5: Side-by-side comparison of our illustrative LOD
compared with full atomic details. Our illustrative LOD pro-
vides smoother and elegant shapes, while also reducing the
processing load.

result, each modification of the control points of the DNA
path requires a new computation of the strand. Current ap-
proaches are only performed on the CPU, [HLLF13, LO08,
MC98] which means that the whole nucleic acids chain has
to be transferred to the GPU upon re-computation. While
this approach is viable for low to mid sized DNA strands, it
is likely to perform poorly for large and dynamic DNA paths
featuring a large number of control points.

We propose to use the dynamic tessellation to leverage the
generation of nucleic acid strands. So far we have only used
tessellation to instantiate data stored in the GPU memory.
However it is possible to include building rules characteris-
tic to the DNA’s well known geometry to procedurally gener-
ate a double helix structure simply based on control points.
Thus, data transfers as well as GPU memory space can be
dramatically reduced.

Similar to GraphiteLifeExplorer [HLLF13], our goal is
more illustrative than strict biomolecular modeling. There-
fore we privilege rendering performance over accuracy, and
we provide only a limited array of folding types. Although
the study of DNA structures has revealed many different
types of folding, requiring complex modeling algorithms,
the most commonly recognizable shape that of B-DNA that
exhibits a regular structure which is simple to model: a spac-
ing of 3.4Å and a rotation of 34.3◦ between each base. Based
on these rules we are able to procedurally generate B-DNA
strands based on path control points via GPU dynamic tes-
sellation. The workflow which we employ is described as
follow:
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1. Resample control points (on the CPU).
2. Compute smooth control point normals (on the CPU).
3. Upload control point data to the GPU
4. Draw all the path segments in one pass, one vertex shader

per segment
5. Read the control points and adjacent points needed for

smooth cubic interpolation. (In vertex shader, for each
segment)

6. Do uniform sampling along the cubic curve segment to
determine the positions of the bases. (In vertex shader,
for each segment)

7. Pass the position of the bases to the tessellation shader.
(In vertex shader, for each segment)

8. Compute normal vector of each base using linear interpo-
lation between the control points normals (In tessellation
shader, for each base)

9. Inject atom, then translate and rotate accordingly (In tes-
sellation shader, for each atom of each base)

10. Render sphere impostor from injected atom (In geometry
& fragment shader, for each atom of each base)

5.1. Smooth Normals Computation

A well known challenge when dealing with 3D splines is to
determine smooth and continuous frames along the whole
curve. Any twists or abrupt variation in frame orientation
would cause visible artifacts due to irregularities in the DNA
structure, which should be avoided at all costs. We perform
the computation of the smooth and continuous frames pri-
marily on the CPU. We first determine the normal direc-
tion for every control point of the path. Then, we sequen-
tially browse the control points and rotate the normal direc-
tion vector around the tangent vector in order to minimize
the variation in orientation compared to the previous control
point normal. The recalculated normals are then uploaded to
the GPU along with the control points positions. Then, dur-
ing the instantiation of the nucleic acids, we obtain the nor-
mal vector of a nucleic acid by linear interpolation between
the two normal vectors of the segment.

5.2. Double Helix Instancing

When instancing individual pairs of nucleic acids in the tes-
sellation shader, we first fetch the nucleic acid atoms, po-
sition them along the curve, orient them toward the normal
direction and then rotate then around the tangent vector in
order to generate the double helix. We always orient the first
base of a segment according to the normal direction only,
while the subsequent bases are all oriented towards the nor-
mal direction first and then rotated with an increasing angu-
lar offset of 34.3◦ around the tangent of the curve. The angu-
lar offset of a given base is defined as follows: α = i×34.3,
where i corresponds to the index of the base inside a seg-
ment. The last base of a segment must therefore always per-
form an offset rotation of (360− 34.3)◦ around the tangent
vector. This way it connects smoothly to the first base of the

Figure 6: Procedural generation of B-DNA structures via
GPU dynamic tessellation. In the first image we can see the
position of the individual bases. The color gradient high-
lights the individual segments. In the second image we draw
the smooth normals along the curve, the color desaturation
shows the direction of the vector. The third image shows the
rotation offset of the normal vector along the tangent, and
the last image shows the final result.

next segment, which is oriented towards the normal vector
only. The result of the procedural generation of B-DNA is
given in Figure 6 as well as a visual explanation of the dif-
ferent steps.

5.3. Control Points Resampling

Given that the bases of a segment must perform a revolu-
tion to connect smoothly to the next segment, it is trivial
to determine the number of bases per segment as follows:
n = 360÷ 34,3. From the number of bases per segment we
can easily deduce the required size of a segment as follows:
s = n× 3.4 Å, which results in a segment length of approx-
imately 35 Å . This constraint implies that all control points
be spaced uniformly with a distance of 35 Å. However, it
may be the case that control points obtained via modelling
software have arbitrary spacing. Therefore, we must resam-
ple the control points along the curve to ensure a uniform
spacing before uploading it to the GPU. Although we resam-
ple the control points according to the B-DNA build rules,
the length of the interpolated curve segments will always be
slightly greater because of the curvature. We did not find
this to be visually disturbing, mostly because consecutive
segments in our dataset did not showcase critically acute an-
gles, so the overall curvature of individual curve segments
remained rather low.

6. Results

We have tested our tool with several datasets of different na-
ture and sizes. The datasets were modelled with cellPACK
[JAAA∗15], a modelling tool for procedural generation of

c© The Eurographics Association 2015.

66



Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

Dataset Size Raw LOD O. Culling LOD + O. Culling
HIV 15M 80 130 110 140

HIV + blood plasma 60M 25 90 60 120
HIV + blood plasma x 250 15B <1 15 <1 60

Mycoplasma DNA 12M 70 n/a n/a n/a

Table 1: Performance comparison for each dataset used in our study. During our tests we have monitored the rendering speed
with various camera settings, from far-out to close-up and from many angles. The measured performance represents the slowest
render speed obtained, in frame per seconds at full HD resolution. The first column shows the size of the dataset in terms of
number of atoms, then from left to right: without optimizations, with LOD only, with occlusion culling only and finally with
LOD and occlusion culling.

Figure 7: The results of our rendering test, showing DNA from Mycoplasma on the left and HIV in blood plasma on the right.
The first dataset has approximatively 11 million atoms and the second one approximatively 15 billion

large biomolecular structures. cellPACK is developed and
used by our domain experts, it is publicly available and of-
fers to anyone the means for experimenting and creating
their own models. Our program reads the files that are gener-
ated by cellPACK and is able to reconstruct and display the
scene in a multiscale approach. The generated files comprise
of a list of elements with their properties such as name, posi-
tion, rotation, and PDB identifier that indicates the atomic
structure [SLJ∗98]. The structural data is directly fetched
online from the Protein Data Bank via the PDB identifier.
In case an entry is not present or refers to a custom PDB
file, we load the protein information from a dedicated repos-
itory provided by the domain experts. The generated files
also include control points for the linear or repetitive type of
structures such as DNA, unfolded peptide, lypoglycane, etc.

6.1. Use cases

HIV Virus + Blood Plasma The first dataset we showcase
is a combination of two datasets: the HIV virus [JGA∗14]
surrounded by blood plasma. The HIV is a retrovirus and
thus only contains RNA, which features much more com-
plex modeling rules than DNA and forbids dynamic pro-
cedural generation. For this specific case the atomic struc-
ture of RNA would have to be modelled ad-hoc with a third
party tool before being loaded in cellVIEW. Without the ge-
nomic information, the dataset comprises a total of 60 mil-
lions atoms consisting in 40 different types of molecules.

For the purpose of benchmarking, we periodically repeat this
dataset to reach an overall number of 15 billion atoms.

Mycoplasma To demonstrate the use of our dynamic
building rules for DNA, we use the data from Mycoplasma
mycoide, one of the smallest bacteria with a genome of
1,211,703 baise pairs. Mycoplsama has been widely stud-
ied by biologists, and was the first organism to be fully syn-
thetized. For this dataset we only showcase a preliminary
model built with cellPACK and containing only a quarter
of the total genome. This dataset comprises a set of 9617
control points defining the overall path of the DNA and the
PDB reference of the nucleic acid base pairs. The pairs are
instanced along the path resulting in an overall number of
11,619,195 atoms. We were able to procedurally generate
and render the entire dataset at 70 fps without any culling nor
LOD schemes. With this test we simply wanted to show the
raw computation time in order to demonstrate the efficiency
of our technique. Naturally, when using LOD and culling
schemes like with protein data, the performance would con-
siderably increase and would not impact the rest of the com-
putation. The results of the two datasets are shown in Figure
7, and a preliminary render of the Mycoplasma is shown in
Figure 8.

6.2. Performance Analysis

It is rather challenging to precisely evaluate the performance
of our tool, as the speed of execution depends on many fac-
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Figure 8: Preliminary results of the Mycoplasma model. The
model additionally features proteins, RNA and lycosomes.

tors, such as camera position or level-of-detail parameters,
and which are arbitrarily chosen. It is also worth mentioning
that available software solutions are not able to deal with the
amount of data presented in our largest datasets. Therefore
we did not perform a thorough comparison with available
software solutions and related work. We perform an intra-
performance evaluation instead, using our different datasets.

Table 1 provides a descriptive listing of the rendering
performance for each dataset, with and without our opti-
mizations. The rendering tests were performed on an In-
tel Core i7-3930 CPU 3.20 GHz machine coupled with a
GeForce GTX Titan X graphics card with 12GB of video
RAM. During our tests we have monitored the rendering
speed with various camera settings, from far-out to close-
up and from many angles. The measured performance repre-
sents the slowest render speed obtained, in frame per seconds
at full HD resolution. The LOD parameters were carefully
tuned in order to obtain the best ratio between performance
and image quality. From these results we can clearly see the
impact of the LOD in terms of performance for all datasets.
We can also observe that the culling greatly improves the
rendering speed when displaying a very dense dataset. Ad-
ditionally, our tool is able to render datasets which are equiv-
alent in size to the ones showcased in related work at higher
framerates (> 60fps).

It is worth mentioning that it would always be possible to
render larger datasets at more than 60 fps using more aggres-
sive LOD settings and thus trading image quality. However,
one could question the utility of this approach to display
datasets that would be one or several orders of magnitude

larger. Indeed, when viewing our largest dataset in its en-
tirety, the view starts to exhibit graining artefacts due to the
very small screen-size of individual molecules. These arte-
facts create unwanted visual clutter, and therefore another
type of approach rather than the particle-based one should
be considered in this case.

7. Expert Feedback & Discussion

Domain experts who have experimented with cellVIEW
have responded favorably and with great enthusiasm. One
of our domain experts, a core actor of the cellPACK project,
wrote:

Prior to cellVIEW, visualizing this type of data was cum-
bersome for the experts and as the scale increased, it was
often not possible to view large models with all structures
turned on with a standard computer. cellVIEW now provides
state-of-the-art techniques to accomplish this task. Some ex-
perts were dismayed that cellVIEW could not yet be imple-
mented in their lab’s preferred or homemade visualization
toolsets (i.e., not simply a python or C++ library they could
access), but most had some experience working with the
Unity 3D framework, so the transition to this standalone tool
was sufficient. For large biological structures, such as My-
coplasma mycoides, the cellPACK viewers are currently un-
able to visualize the complete models produced by the pack-
ing algorithm. Because cellVIEW can handle Mycoplasma
and larger models in atomic detail and with ease, it is evi-
dent that cellVIEW will become a critical tool for cellPACK
users who wish to explore multi-scale modeling extremes
such whole bacterial cells and ultimately whole mammalian
cells.

cellVIEW is open source, free to use, and available
online, as well as the datasets modelled with cellPACK
(https://github.com/illvisation/cellVIEW). With cellVIEW
we wanted to guarantee the maximum degree of accessi-
bility as possible. Therefore, we opted for a well-known,
generic, and universal development framework to encourage
third-party users to experiment and also to contribute to our
project, such as visualization scientists, scientific illustrators,
biologists or students. Although this solution might not have
been the most preferred one for our main users at first, the
ease of use of the tool has shown to be very valuable to them.
The main advantage to us is that the development and main-
tenance of the core platform is already taken care of. This
allows small teams of researchers to allocate their resources
more efficiently and to focus on developing the actual tech-
nologies more quickly. However, the engine also presents
a few drawbacks which would need to be addressed in the
future in order to become a stronger contender as a visual-
ization framework. Firstly, the advanced GPU programming
features we use to develop cellVIEW are based on DirectX
11, which makes our tool only available to Windows plat-
forms, at least until Unity3D supports advanced GPU pro-
gramming with OpenGL. Another major drawback is that
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the source code of the core of the engine is not yet publicly
available, which may be critical in case a missing core fea-
ture would need to be manually coded.

8. Conclusions and Future Work

We have introduced cellVIEW, a tool for real-time multi-
scale visualization of large molecular landscapes. Our tool
is able to load files generated by cellPACK a powerful mod-
eling tool for representing entire organisms at the atomic
level. cellVIEW was engineered to work seamlessly inside
the Unity3D game engine, which allows us to prototype and
deploy quickly and to leverage performance via advanced
GPU programming. The method which we presented also
features notable improvements over previous works. We pro-
vide the means for efficient occlusion culling, which is cru-
cial when dealing with such large scale datasets. We also
implemented a level-of-detail scheme, which allows both ac-
celeration of rendering times and provides a clear and accu-
rate depiction of the scene. Finally, we demonstrated the use
of dynamic tessellation to generate biolmolecular structures
on-the-fly based on scientific modeling rules.

In future work we would like to tighten the collaboration
with domain experts and achieve interactive viewing of more
complex organisms and bacteria such as E. coli. As the scale
increases the view exhibits highly grainy results due to the
very small size of molecules. In the future we would like to
focus on better representation for this case, and perhaps find
new semantics that could be integrated in our level-of-detail
continuum. We also would like to use our rendering to ex-
periment with in-situ simulations as a visual exploration tool
for scientists, and also as an educational tool to showcase the
machinery of life to a lay audience.
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