
Eurographics Workshop on Visual Computing for Biology and Medicine (2015)
K. Bühler, L. Linsen, and N. W. John (Editors)

Instant visualization of secondary structures of molecular
models

P. Hermosilla1,2 & V. Guallar2 & A. Vinacua1 & P.P. Vázquez1

1Universitat Politècnica de Catalunya, Spain
2Barcelona Supercomputing Center, Spain

Figure 1: The results of our algorithm. On the left, the the basic ribbons visualization for secondary structures generated with
our adaptive method. The high framerates let us include additional effects, namely Ambient Occlusion (middle) and silhouettes
(right), that enhance the perception of shapes while still maintaining realtime rendering times.

Abstract
Molecular Dynamics simulations are of key importance in the drug design field. Among all possible representa-
tions commonly used to inspect these simulations, Ribbons has the advantage of giving the expert a good overview
of the conformation of the molecule. Although several techniques have been previously proposed to render rib-
bons, all of them have limitations in terms of space or calculation time, making them not suitable for real-time
interaction with simulation software. In this paper we present a novel adaptive method that generates ribbons in
real-time, taking advantage of the tessellation shader. The result is a fast method that requires no precomputation,
and that generates high quality shapes and shading.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In many fields such as pharmacology, researchers are inter-
ested in the visualization of molecular simulations for ex-
ample for drug design. Commonly, these simulations hap-
pen offline in high profile systems such as the Anton ma-
chine [DDG∗12]. Nowadays, the simulation times of Molec-
ular Dynamics software are still not realtime, but they are
getting close. Thus, in order to better understand the pro-
cess, the visualization of the results in realtime is becom-
ing more and more important. Among the many rendering
modes, ribbons lets the user easily understand the confor-

mation of the molecules because it provides a higher abstrac-
tion for two types of structures inside the proteins: α-helices
and β-sheets. These structures are visualized using a stan-
dard representation that consists of ribbons (thus originating
their name) possibly with arrows. These ribbons are gener-
ated when concrete combinations of atoms are close to each
other. As we will see later, these are complex geometries
that change over time. Therefore, rendering such elements
requires continuous changes over time that are not easy to
handle. Previous techniques mainly use precomputed data.
Other, more recent approaches generate the ribbons on-the-
fly on the GPU [KBE08, WB11]. Despite its good results,

c© The Eurographics Association 2015.

DOI: 10.2312/vcbm.20151208

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vcbm.20151208


P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

unfortunately, this strategy does not scale well, and may not
be fast enough for large proteins.

In this paper we present an adaptive system that generates
high quality shapes using the tessellation shader, with the
following advantages:

• No preprocess: We generate the ribbons at each frame,
without any precomputed data.

• Adaptive geometry generation: The geometry is generated
with only the required detail, view dependently.

• Fully hardware accelerated: The geometry is completely
generated in the GPU.

• High frame rate: Due to the previous two points, we
achieve faster frame rates than other methods.

We achieve this by using a novel algorithm that makes
intensive use of tessellation shaders. Our contributions are:

• A fast algorithm that uses the tessellation shader for the
generation of ribbons.

• An adaptation of a previous Ambient Occlusion algorithm
that generates high quality shading in real-time.

The rest of the paper is organized as follows: In Section 2
we give a brief introduction to biochemistry and analyze the
related work. We describe our technique in Section 3 and in
Section 4 we describe how the algorithm is implemented on
modern GPUs. Section 5 deals with the ambient occlusion
algorithm. We conclude the paper in Section 6 with a dis-
cussion of the results and in Section 7 with the conclusions
and future work.

2. Background

2.1. Biomolecular Background

Protein are large biomolecules crucial for life as they carry
out a large number of functions on the organism. Proteins
replicate the DNA, catalyze metabolic reactions, transport
molecules from one location to another and so on. They are
composed by one or more chains or sequences of amino acid
residues —figure 2. These amino acids are connected be-
tween them by peptide bonds and the order, type and length
of the residue chains define the characteristics of the protein,
as they are unique.

There are 23 types of amino acids which are part of the
proteins and all of them have a common structure —H, N,
Cα, C and O in figure 2— and a residue that is different for
each type of amino acid —R in figure 2. The atoms of the
common part of the amino acids on a protein are known as
backbone, as they connect one amino acid to the next in the
chain.

The peptide bonds between amino acids are not rigid and
they can fold. This tridimensional structure may cause two
non-consecutive amino acids to create a hydrogen bond be-
tween them leading to characteristic structures. These struc-
tures are known as secondary structures and the most com-
mon are:

Figure 2: Protein basics, amino acid chain structure.

• α-helix: A part of the backbone acquires a form of an he-
lix.

• β-sheet: Two distant parts of the backbone are intercon-
nected in parallel.

2.2. Related Work

Molecular visualization is a relevant topic in visualiza-
tion, as it helps researchers to understand the molecular
processes. There are many representation methods used in
molecular visualization. The most important are Space Fill-
ing [TCM06a, HOF05], where the molecule is represented
at atom level using spheres for each one; Ball & Sticks
[TCM06a, HOF05], similar to Space Filling, but where the
bonds are represented with cylinders; Surfaces [PTRV12,
SAMG14, SKR∗14, LBH14], which try to highlight the ac-
cessible areas of the molecule to a small atom or molecule;
and Ribbons representation. We address the reader to the
state of the art presented by Kozlikova et al. [KKL∗15] in
molecular visualization to have a more accurate description
of these rendering techniques.

The Ribbons representation method was popularized by
Richardson [Ric81] and it was used later in molecular visu-
alization as an elegant way to visualize the secondary struc-
tures of the molecules. Two main approaches have been used
to visualize the secondary structures in ribbons mode, us-
ing geometry and using impostors. The method developed
by Carson [Car91] to generate the ribbons is the most com-
monly used to extract the 3D information from the molecule,
as it is fast to compute and produces a smooth represen-
tation. He used a B-Spline to interpolate the positions of
the backbone and extract the representation from it. This
work was extended by Halm et al. [HOF04] by adaptively
triangulating the generated 3D geometry depending on the
user point of view. Despite the number of triangles used
in this representation is reduced considerably, all the com-
putations are performed on the CPU and it still requires a
big data transmission between CPU and GPU. Zamborsky et
al. [ZSK09] proposed a method to reduce the amount of data
stored for a molecular dynamics animation by interpolating

c© The Eurographics Association 2015.

52



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

the backbone and then using a predefined segment represen-
tation for each segment. A method to reduce the data trans-
mission between CPU and GPU was described by Krone et
al. [KBE08], where the calculation of the final geometry was
performed by the geometry shader. Wahle et al. [WB11] also
proposed a method to perform the generation of the Ribbon
structure on the GPU, but they only use the basic features to
be able to execute it in old systems.

A completely different approach was developed by Bajaj
et al. [BDST04], where they used ray-casting of implicit sur-
faces to represent the secondary structures. Despite it is a fast
visualization method, the resulting quality is not as good as
that obtained with previous methods. Other similar method
was proposed by Bagur et al. [BSN12], where they used im-
postors to visualize molecules using different representation
methods.

Two works related with ribbons visualization, but not with
their generation, are the ones published by Weber [Web09]
and by Van Der Zwan et al. [VDZLBI11]. Weber [Web09]
developed a framework to visualize ribbons using illustrative
rendering, and Van Der Zwan et al. [VDZLBI11] proposed a
continuous transition between different visualization modes.

In spite of all the available algorithms to visualize Rib-
bons in real-time, commercial packages –as PyMol, RasMol
or VMD– calculate the 3D geometry of the representation in
a pre-process step and store it into main memory to render it
later. Although this method is able to run in old computers,
it is not suitable for large and/or dynamic simulations.

3. Algorithm

Figure 3: Protein visualized using Ribbons mode. α-helices
are colored in red, β-sheets are colored in yellow and the
parts of the backbone that do not belong to any type of sec-
ondary structure are colored in blue.

Popular molecular rendering packages as VMD [HDS96]
or Maestro [Rel15] have different modes to visualize the
secondary structures of a protein, but the most commonly
used is the Ribbons mode. In this mode the α-helix sec-
ondary structures are represented by a ribbon helix, the β-
sheet secondary structures are represented by a flat arrow
and the parts of the backbone that do not belong to any type

of secondary structure are represented by a tube. The figure
3 shows an example of a protein represented using this ap-
proach.

In order to obtain this smooth representation, we use a
B-Spline to model the backbone of the protein. This algo-
rithm was proposed by Carson [Car91], where he defined the
control points of a B-Spline segment as the positions of the
Cα atoms of four consecutive residues in the protein back-
bone, see Figure 5. To determine the orientation of the sheets
we define a vector d for each control point as in [KBE08].
This vector is the direction between the Cα atom and the O
atom of each residue. We use this approach instead of the
the hydrogen bond direction, as they are virtually equal but
the first one can be easily computed from the atoms of each
aminoacid [CB86]. Using these vectors as the orientation of
the segments can lead to flips in the resulting sheets if two
of these consecutive directions have an angle greater than
90 degrees between them. In that case we flip one of them
to avoid visual artifacts. We also define another vector n for
each control point as the vector perpendicular to the spline
direction and the d vector.

Figure 5: Segment of the B-Spline. Control points are il-
lustrated in blue, with their vectors used to align the sheet
in green and the interpolated B-Spline segment is illustrated
with the red curve.

With this information —Figure 5— for each segment of
the backbone we are able to generate the geometry needed
to represent the protein secondary structures. We have de-
signed a unified algorithm for all the secondary structure
types based on rectangular patches. Each segment of the
backbone is represented by two rectangular patches with op-
posite orientations —see figure 4. These patches are aligned
with the backbone segment and oriented using the d and n
vectors calculated previously. Then, they are subdivided ac-
cording to the distance to the observer. The B-Spline is used
to determine the new position of the vertex along the seg-
ment and the d and n vectors are interpolated using the B-
Spline too. The new vertex is then displaced by the interpo-
lated d and n vectors to its final position —see figure 7. This
algorithm produces a round sheet that follows a smooth path
along the backbone of the protein.

Despite this algorithm generates the geometry for the α-
helices, we also need to generate the geometry for the β-
sheets and the rest of the backbone, the arrows to represent
the β-sheets and the tubes to represent the backbone. To do

c© The Eurographics Association 2015.

53



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Figure 4: Geometry used to represent a segment of different secondary structure types. α-helix on the left, β-sheet on the center
and simple backbone segment on the right.

so, we introduce a little modification on the algorithm: we
modify the distance used to displace the vertex along the d
vector for each type of secondary structure. Thus, we can
generate sheets of different widths and, in the case of the
backbone, we can generate tubes. These tubes are generated
defining the displacements along the d vector equal to the
displacement along the n vector, giving as a result a prism
that represents the backbone —see figure 4-right.

The arrows are a bit more complicated to generate, since
the displacements along the d vector have to be different
along the same patch. These arrows have to be rendered in
the last segment of each β-sheet, so we have to identify these
last segments and define their displacement as a linear func-
tion. Figure 6 shows the plot of this function and the relation
with the final geometry.

Figure 6: Function used to determine the displacement on
the end segments of the β-sheet secondary structures.

At this point the algorithm is able to generate the geome-
try for each type of secondary structure, but we still have to
define how to generate those segments where each endpoint
belongs to a different type of secondary structure. At these
segments a linear interpolation is performed in the colors
and displacement distances used by the algorithm, creating a
smooth transition between consecutive secondary structures
—see figure 3.

4. Implementation

We have implemented this algorithm fully on the GPU in
order to meet our requirements, reduce the amount of in-
formation to transfer between CPU and GPU and generate
geometry with adaptive resolution for the current point of
view. An overview of the process is shown in figure 8.

Figure 7: Patch deformation to obtain the ribbon represen-
tation. The vertices of the patch are displaced using the d
and n vectors of the B-Spline segment.

We have divided the tasks in the four different stages in
such a way that none of them requires a complex algorithm.
In the following, we describe those stages in depth.

4.1. Tasks distribution

We describe here how the load is distributed into the differ-
ent tasks. Note that we generate a rendering from scratch for
each new position of atoms that is computed by the Molec-
ular Dynamics software. We call each of these positions
frame. The Molecular Dynamics software also provides the
identification of the secondary structures to be rendered, also
for each frame.

CPU

When the first frame arrives to our visualization software
a vertex buffer and an index buffer are created. In the vertex
buffer we store a vertex for each residue of our protein. A
vertex in the buffer has the following information: Cα atom
position, the direction of the d vector —see section 3, and
an integer that encodes the type of secondary structure the
residue belongs to. In the index buffer, we store four indexes
for each segment of the B-Spline, which are the four control
points used to evaluate the B-Spline at this segment. Note
that only the vertex buffer has to be updated with new infor-
mation for the next frames as the protein backbone structure
remains the same.

With this information on the buffers the algorithm gen-

c© The Eurographics Association 2015.

54



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Figure 8: Rendering pipeline: the load is balanced among the different stages of the algorithm. The CPU creates the data
buffers, the vertex shader determines the colors, the tessellation stage is in charge of calculating the subdivision level required,
and performing the tessellation, and finally, the fragment shader recomputes normals to provide a better shading effect.

erates a patch for each segment of the backbone, but each
segment has to be represented also by another one oriented
in the opposite direction. To avoid introducing extra logic
into the shaders we send the patches again with the order of
the control points inverted, so that the algorithm automat-
ically generates the patch with the new orientation. These
new indexes are pushed at the end of the index buffer so all
the patches can be rendered with a single drawcall.

Although this is a good and simple solution for the orien-
tation problem, it introduces a new one, for now we cannot
identify the end segments of the β-sheets where we ought to
draw an arrow. The sense of direction is lost as now some
segments are following one direction and the others are fol-
lowing the opposite. To solve this, we add an extra float for
each control point that increases its value along the back-
bone, so the shader can determine the original direction of
the backbone and which is the last segment of every β-sheet.

These buffers are sent to the graphics pipeline where each
segment is interpreted as a patch of four vertexes.

Vertex shader

A vertex shader is executed for each vertex of the patch.
The main duty of this stage is to pass all the information
to the next stage and determine the color used to render the
vertex. To do so, the vertex shader obtains the vertex color
from an array using the secondary structure type as an index.
The array holds the color chosen for each secondary struc-
ture type. The colors we have chosen to render the secondary
structure types are red for α-helices, yellow for β-sheets and
blue for the rest of the backbone —figure 4.

Tessellation control shader

The main task of this stage is to determine the tessellation
level used to subdivide the patch.

The shader first calculates a tessellation factor for each
vertex of the segment, Ci and Ci+1. These tessellation factors

are in the range [0,1], where 0 is the minimum tessellation
level and 1 is the maximum, and are calculated using the dis-
tance from the points towards the camera with the following
equation:

Tess(C) =
distance(C,camera)−min_distance

max_distance

The result of this formula is clamped to the range [0,1].
We have tested several distances to define the minimum and
maximum tessellation factors and we found that 160Å and
10Å respectively produce good results without visual arti-
facts.

Figure 9: Configuration of a tessellated patch on the GPU.
The tessellation control shader determines the tessellation
level for each edge of the patch.

Hardware tessellated patches have a configuration as the
one illustrated in figure 9, and the subdivision level is con-
figured by the inner and outer tessellation factors. The outer
tessellation factors define the subdivision level of the edges
of the patch –a1, a2, a3 and a4 in figure 9– and the inner tes-
sellation factors define the number of internal subdivisions
of the patch –a5 and a6 in figure 9. Figure 10 shows an ex-
ample of a possible patch subdivision. These factors are de-
fined int the tessellation control shader using the following
formulas:

c© The Eurographics Association 2015.

55



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Figure 10: Subdivided patch with 5 as tessellation factor
for the edges a2 and a4, 6 for the edges a1, a3 and a6, and
8 for the edge a5.

Tess(a1) = max (Tess(Ci) ,Tess(Ci+1))∗SMax+SMin

Tess(a2) = Tess(Ci+1)∗SST Maxi+1 +SST Mini+1

Tess(a3) = max (Tess(Ci) ,Tess(Ci+1))∗SMax+SMin

Tess(a4) = Tess(Ci)∗SST Maxi +SST Mini

Tess(a5) = max (Tess(Ci) ,Tess(Ci+1))∗SMax+SMin

Tess(a6) = max (Tess(a2) ,Tess(a4))

SMax and SMin are used to define the maximum and min-
imum subdivision level of the B-Spline, which in our case
are 12 and 2. However, for the segments that generate the
arrows of the β-sheets, the tessellation level of the B-Spline
is always the maximum. If an adaptive tessellation level is
allowed on these segments visual artifacts will appear, as the
arrow will be changing its shape with the geometric resolu-
tion.

The values SSTMax and SSTMin are used to define the
maximum and minimum subdivision level of the patch in the
d direction. These values are different for each type of sec-
ondary structure, since their displacement is different. The
maximum and minimum subdivision level for α-helices and
β-sheets are 8 and 2 respectively and for the rest of the back-
bone both are set to 2. These values have been chosen em-
pirically as they produce good results for all the tested view
distances. Note that with this subdivision scheme there are
no discontinuities between two consecutive patches as the
secondary structure type of the corresponding vertex is used
to subdivide the edges of the patch.

Besides the tessellation level calculation, the tessellation
control shader also calculates the n vectors used to displace
the new generated vertexes. These values are calculated by
the cross product between the d vectors and the segment di-
rection. To avoid discontinuities, the n vector for the control
point i is calculated using the direction of the segment i− 1
and the segment i, and then averaged.

Figure 11: Effect of the progressive tessellation. Note the
different geometric resolution between near and far sec-
ondary structures —this effect has been exaggerated in this
image in order to show the difference.

Tessellation evaluation shader

The tessellation shader executes two important tasks:
the evaluation of the resolution level required, and the ac-
tual subdivision of the geometry. The tessellation evaluation
shader is executed for each new vertex created by the tessel-
lation pipeline. With every execution a pair of coordinates
are available which indicate the position of the new vertex
inside the patch. Using these coordinates we move the new
vertex to its corresponding position as described in section 3.
The x coordinate is used to evaluate the B-Spline and inter-
polate the d and n, and the y coordinate is used to move the
vertex along the interpolated vectors d and n as in figure 7.

As a result, we have different subdivision levels for the ge-
ometry that is close, and the geometry that is far from the ob-
server. This has the main benefit of preserving the scalability
of the algorithm. We show the different levels of subdivision
in Figure 11. To provide the close view we have exaggerated
in this case the subdivision levels, so that the different levels
appear at closer distances than in normal operation of the al-
gorithm. Note how our system allows changing the number
of triangles depending on the depth. In order to illustrate the
effect of the adaptive tessellation in a real case, we also pro-
vide a comparison of a fully tessellated representation and an
adaptive one in Figure 12. The image on the right contains
only triangles, that are really small since all the ribbons are
created using the level that ensures they are correctly visible
for near views. On the contrary, the left image shows how
we save a lot of geometry with our adaptive method.

Fragment shader

The last stage of the pipeline, the fragment shader, is in
charge of performing the lighting calculations to shade the

c© The Eurographics Association 2015.

56



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Figure 12: Triangle reduction thanks to our adaptive tessellation –left– versus the regular tessellation that would guarantee
correct images upon zooming –right. Note how the number of triangles is reduced in the left figure.

surface of the sheet, but to avoid artifacts produced by the
adaptive tessellation of the geometry, we calculate the nor-
mal also on this stage at pixel level. If the interpolated vertex
normal is used instead, the lighting at the borders of the sur-
faces would change with the movement of vertexes carried
out by the tessellation evaluation shader.

5. Ambient occlusion

Ambient occlusion is an algorithm that simulates the ambi-
ent light that arrives to a certain point from the rest of the
scene.

There are many real-time approximations that can be di-
vided in two types, the ones that approximate the ambient
occlusion factor in screen-space and the ones that approxi-
mate it in object-space. The first ones [ESH13] are fast to
compute since they only take into account the visible in-
formation, but they are not very accurate and suffer from
artifacts with the movement of the camera —the informa-
tion used to compute the ambient occlusion factor differs
from one frame to another. In contrast, algorithms that work
on object space [SGG15, GKSE12, TCM06b] are more ac-
curate, as they take all the scene information into account
to perform the ambient occlusion factor approximation. The
problem with these algorithms is that their complexity grows
with the size of the scene. We prefer to use an object space
algorithm since it does not produce visual artifacts with the
movement of the camera, which can be distracting to the sci-
entists, and is more coherent with the geometry of the scene.

Our algorithm is based on a previous work of the same au-
thors of this paper [HGVV15]. We give here a brief descrip-
tion of it for completeness. This algorithm was designed to
approximate the ambient occlusion factor for molecules ren-
dered using the space-filling or the ball & stick methods. The
algorithm works as follows:

• First we create a coarse representation of the scene that is
stored as an occupancy pyramid. Each level of this pyra-
mid is a voxelization of the scene at a different resolu-
tion that stores an approximation of the occupancy of each

voxel. This occupancy pyramid is updated at every frame
—using the compute shader— by performing an inter-
section test between the scene primitives —spheres and
cylinders— and the voxels and approximating the overlap
between them.

• In a second pass the ambient occlusion factor is calcu-
lated for each pixel using the voxel cone tracing algo-
rithm [CNS∗11] through the occupancy pyramid.

To adapt this algorithm to our scene we approximate the
ribbons geometry by a set of boxes —3 for each segment—
with different sizes, and then compute their overlap against
all levels of the occupancy pyramid. An intersection test is
performed between the box volume and the volume of the
voxels —approximated by spheres— and the overlap with
each voxel is then estimated as in the original paper. Since
we have a more sparse scene, we scale this overlap approxi-
mation by a factor that can be modified by the user in order
to adjust the intensity of the generated shadows. Attempting
to approximate each segment by a variable number of boxes
—as the geometry of the segments is adaptive too— would
be counter-productive, since it would lead to visible popping
artifacts on the shadowed areas.

We show an example of our implementation of ambient
occlusion for ribbons models in Figure 13.

6. Results

In this section we provide some results for the rendering of
different molecules and compare with other methods.

We run a series of tests for molecules occupying a central
part of the screen (we call it far or F) and with a zoom-in
of the same molecule (called Near, or N) —where the max-
imum tessellation level is achieved by the near geometry—
to see the effect of the screen coverage. All these tests have
been executed on a Intel Core i7 PC, running at 3.5GHz,
with 16Gb of RAM, and a GeForce 770 GTX, and render-
ing in a 1280 × 720 viewport. The different molecules go
from a simple molecule of 249 residues to a large example of

c© The Eurographics Association 2015.

57



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Figure 13: Extra effects added to the typical molecule shad-
ing in order to improve the perception of its elements. On the
left, the molecules is shaded using only Phong shading and
silhouettes. The right image also incorporates ambient oc-
clusion to the Phong shading and silhouettes.

Mol name A 1CWP 3IYJ 3IYN
#residues 249 29220 171720 749340

NoAO 2582.18 726.41 244.17 70.01
AO 436.83 340.64 117.18 35.06

Table 2: Performance measured in frames per second for
different molecules without ambient occlusion (NoAO) and
with it (AO). Note that even with ambient occlusion acti-
vated, our system is able to render complex molecules in
realtime. Even molecules whose size exceeds what is com-
monly needed for the pharmacological simulations we deal
with.

749K residues —figure 15. Note that the latter case is excep-
tionally large, orders of magnitude larger than the ones used
in the pharmacological simulations we are addressing. We
can see in Table 1 how the framerates we achieve are larger
than the method that uses the geometry shader to create the
secondary structures –Figure 14. Note how we achieve re-
altime framerates even with the largest molecule. Moreover,
the method scales very well with the size of the molecule.
There is also hardly any difference between the version that
uploads the buffers to the GPU at every frame —shown as
U— and the method that does not —NU in the table, as the
data transmitted from CPU to GPU consists only of the back-
bone information.

We also provide a comparison of the performance of
our algorithm when adding ambient occlusion. Roughly, the
framerates decay to half —except for the first model, that
was actually so fast to render that the AO calculation dom-
inates the cost—. In Table 2 we can see those framerates.
Note that we still maintain real-time framerates for the most
complex molecules.

Figure 14: Visual comparison of our method (top) with the
method proposed by Krone et al. [KBE08] (bottom).

Figure 15: Far view of the molecule 3IYN with 749K
residues. With this complex molecule, with far more atoms
than the required for common pharmacology simulations, we
still obtain framerates of around 50 fps.

7. Conclusions and Future work

We have presented an algorithm capable of generating the
secondary structure geometry of very complex proteins on-
the-fly using the tessellation stage of the GPU. While other
existing algorithms use the GPU to generate the geometry
on-the-fly, ours is capable of generating only the geometry
needed for the current point of view, allowing the interaction
with bigger molecules in real-time and the use of other ren-
dering effects in order to increase the visual quality of the

c© The Eurographics Association 2015.

58



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Molecule name A 3EXG 1CWP 3IYJ 3IYN
#residues 249 10781 29220 171720 749340
VBO update NU U NU U NU U NU U NU U

Our
N 2594.21 2504.29 1198.53 1059.86 760.75 667.96 246.47 198.72 68.98 48.41
F 3596.47 3388.34 2375.83 2093.71 1330.46 1078.64 290.35 222.94 72.51 50.19

[KBE08]
N 1531.91 1388.87 263.57 254.99 86.84 85.44 14.48 14.31 3.52 3.36
F 1946.81 1838.98 287.75 274.18 90.06 89.51 14.46 14.56 3.54 3.39

Table 1: Performance measured in frames per second for different molecules (N)ear the camera (where the near geometry has
the maximum tessellation level) and (F)ar from the molecule (where all the geometry has the minimum tessellation levels).
Ambient occlusion has been computed at the highest quality (nine cones per point). “Our” indicates the performance measured
with our method and “ [KBE08]” are the frames per second measured with the method proposed by Krone et al. [KBE08]
–using 5 segment for each curve section and 6 edges of the tube’s front and back faces. Framerates have been measured without
uploading the buffers to the GPU (NU) and uploading them (U).

Figure 18: Close view of the molecule 3IYJ with 171K residues. The rendering framerates are well above 200 fps for the
regular views, and closer views oscillate between 198 and above for the different configurations.

Figure 16: Molecule 1S3S with 2940 residues.

rendering. We have also adapted an existing method to cal-
culate the ambient occlusion factor in object space, obtaining
real-time frame rates even for macromolecules.

As future work we are planning to carry out a formal user
study to determine which is the most useful render method

for the scientists and also to compare our method to other
approaches. We are also planning to explore adapting this
method in order to improve the rendering in other areas of
scientific visualization. The algorithm used to represent the
parts of the backbone that do not belong to any secondary
structure could be used to represent high quality lines and
brain fibers.

Acknowledgements

This work has been supported by the projects TIN2013-
47137-C2-1-P and TIN2014-52211-C2-1-R of the Spanish
Ministerio de Economía y Competitividad, and the project
2014-SGR 146 from the Catalan Government.

References
[BDST04] BAJAJ C., DJEU P., SIDDAVANAHALLI V., THANE

A.: Texmol: Interactive visual exploration of large flexible
multi-component molecular complexes. In Proceedings of the
conference on Visualization’04 (2004), IEEE Computer Society,
pp. 243–250. 3

[BSN12] BAGUR P. D., SHIVASHANKAR N., NATARAJAN V.:

c© The Eurographics Association 2015.

59



P. Hermosilla & V. Guallar & A. Vinacua & P.P. Vázquez / Instant secondary structures

Figure 17: Molecule 3EXG with 10781 residues. Molecules
with this complexity level are rendered with our algorithm
at framerates between 1000 and 2000 fps, even when using
ambient occlusion, like in this example, the framerates are
above 400 fps.

Improved quadric surface impostors for large bio-molecular vi-
sualization. In Proceedings of the Eighth Indian Conference on
Computer Vision, Graphics and Image Processing (2012), ACM,
p. 33. 3

[Car91] CARSON M.: Ribbons 2.0. Journal of Applied Crystal-
lography 24, 5 (1991), 958–961. 2, 3

[CB86] CARSON M., BUGG C.: Algorithm for ribbon models of
proteins. J.Mol.Graphics, 4 (1986), 121–122. 3

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive indirect illumination using voxel cone
tracing. Computer Graphics Forum 30, 7 (2011), 1921–1930. 7

[DDG∗12] DROR R. O., DIRKS R. M., GROSSMAN J., XU H.,
SHAW D. E.: Biomolecular simulation: a computational micro-
scope for molecular biology. Annual review of biophysics 41
(2012), 429–452. 1

[ESH13] EICHELBAUM S., SCHEUERMANN G., HLAWITSCHKA
M.: PointAO - Improved Ambient Occlusion for Point-based
Visualization. In EuroVis - Short Papers (2013), Hlawitschka M.,
Weinkauf T., (Eds.), The Eurographics Association, pp. 013–017.
7

[GKSE12] GROTTEL S., KRONE M., SCHARNOWSKI K., ERTL
T.: Object-space ambient occlusion for molecular dynamics.
In Pacific Visualization Symposium, 2012 IEEE (2012), IEEE,
pp. 209–216. 7

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: VMD:
visual molecular dynamics. Journal of molecular graphics 14, 1
(1996), 33–38. 3

[HGVV15] HERMOSILLA P., GUALLAR V., VINACUA A.,
VÁZQUEZ P.: High quality illustrative effects for molec-
ular rendering. Computers & Graphics (2015), –. URL:
http://www.sciencedirect.com/science/
article/pii/S009784931500120X, doi:http:
//dx.doi.org/10.1016/j.cag.2015.07.017. 7

[HOF04] HALM A., OFFEN L., FELLNER D.: Visualization of
complex molecular ribbon structures at interactive rates. In In-
formation Visualisation, 2004. IV 2004. Proceedings. Eighth In-
ternational Conference on (2004), IEEE, pp. 737–744. 2

[HOF05] HALM A., OFFEN L., FELLNER D. W.: Biobrowser:
A framework for fast protein visualization. In EuroVis (2005),

Brodlie K., Duke D. J., Joy K. I., (Eds.), Eurographics Associa-
tion, pp. 287–294. 2

[KBE08] KRONE M., BIDMON K., ERTL T.: Gpu-based visuali-
sation of protein secondary structure. TPCG 8 (2008), 115–122.
1, 3, 8, 9

[KKL∗15] KOZLÍKOVÁ B., KRONEY M., LINDOW N., FALK
M., BAADEN M., PARULEK J., HEGE H.-C.: Visualization of
Molecular Structure: The State of the Art. In EuroVis 2015 State
of the Art Reports (2015). 2

[LBH14] LINDOW N., BAUM D., HEGE H.-C.: Ligand excluded
surface: A new type of molecular surface. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (2014), 2486–2495.
2

[PTRV12] PARULEK J., TURKAY C., REUTER N., VIOLA I.:
Implicit surfaces for interactive graph based cavity analysis of
molecular simulations. In Biological Data Visualization (BioVis),
IEEE Symposium on (2012), IEEE, pp. 115–122. 2

[Rel15] RELEASE S.: 1: Maestro. Schrödinger, LLC, New York,
NY (2015). 3

[Ric81] RICHARDSON J. S.: The anatomy and taxonomy of pro-
tein structure. In Advances in Protein Chemistry, C.B. Anfinsen
J. T. E., Richards F. M., (Eds.), vol. 34 of Advances in Protein
Chemistry. Academic Press, 1981, pp. 167 – 339. 2

[SAMG14] SARIKAYA A., ALBERS D., MITCHELL J., GLE-
ICHER M.: Visualizing validation of protein surface classifiers.
Computer Graphics Forum 33, 3 (2014), 171–180. 2

[SGG15] STAIB J., GROTTEL S., GUMHOLD S.: Visualization of
Particle-based Data with Transparency and Ambient Occlusion.
In Computer Graphics Forum (2015). 7

[SKR∗14] SCHARNOWSKI K., KRONE M., REINA G.,
KULSCHEWSKI T., PLEISS J., ERTL T.: Comparative vi-
sualization of molecular surfaces using deformable models.
Computer Graphics Forum 33, 3 (2014), 191–200. 2

[TCM06a] TARINI M., CIGNONI P., MONTANI C.: Ambient
occlusion and edge cueing for enhancing real time molecular
visualization. IEEE Transactions on Visualization and Com-
puter Graphics 12, 5 (Sept. 2006), 1237–1244. doi:10.1109/
TVCG.2006.115. 2

[TCM06b] TARINI M., CIGNONI P., MONTANI C.: Ambient oc-
clusion and edge cueing for enhancing real time molecular visu-
alization. Visualization and Computer Graphics, IEEE Transac-
tions on 12, 5 (2006), 1237–1244. 7

[VDZLBI11] VAN DER ZWAN M., LUEKS W., BEKKER H.,
ISENBERG T.: Illustrative molecular visualization with contin-
uous abstraction. Computer Graphics Forum 30, 3 (2011), 683–
690. 3

[WB11] WAHLE M., BIRMANNS S.: Gpu-accelerated visualiza-
tion of protein dynamics in ribbon mode. In IS&T/SPIE Elec-
tronic Imaging (2011), International Society for Optics and Pho-
tonics, pp. 786805–786805. 1, 3

[Web09] WEBER J. R.: Proteinshader: illustrative rendering of
macromolecules. BMC structural biology 9, 1 (2009), 19. 3

[ZSK09] ZAMBORSKY M., SZABO T., KOZLIKOVA B.: Dy-
namic visualization of protein secondary structures. In Proceed-
ings of the 13th Central European Seminar on Computer Graph-
ics (CESCG) (2009), pp. 147—-152. 2

c© The Eurographics Association 2015.

60

http://www.sciencedirect.com/science/article/pii/S009784931500120X
http://www.sciencedirect.com/science/article/pii/S009784931500120X
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2015.07.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2015.07.017
http://dx.doi.org/10.1109/TVCG.2006.115
http://dx.doi.org/10.1109/TVCG.2006.115

