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Abstract

Classification of image regions is a crucial step in many image segmentation algorithms. Assigning a segment to a
certain class can be based on various numerical characteristics such as size, intensity statistics, or shape, which
build a multi-dimensional feature space describing the segments. It is commonly unclear and not intuitive, how-
ever, how much influence or weight should be assigned to the individual features to obtain a best classification.
We propose an interactive supervised approach to the classification step based on a feature-space visualization.
Our visualization method helps the user to better understand the structure of the feature space and to interactively
optimize feature selection and assigned weights. When investigating labeled training data, the user generates opti-
mal descriptors for each target class. The obtained set of descriptors can then be transferred to classify unlabeled
data. We show the effectiveness of our approach by embedding our interactive supervised classification method
into a medical image segmentation pipeline for two application scenarios: detecting vertebral bodies in sagittal
CT image slices, where we improve the overall accuracy, and detecting the pharynx in head MRI data.

1. Introduction

The task of medical image segmentation is to identify se-
mantically meaningful structures from images acquired us-
ing medical imaging techniques. While the detection of low-
level objects in form of small homogeneous regions can be
easily automized, assembling them automatically to higher-
level structures remains a challenge. Technically, a classifi-
cation process is involved that decides which low-level ob-
jects contribute to the target structure. The classification is
carried out by looking into properties (or features) of the
low-level objects such as location, geometrical attributes,
or local intensity statistics. Those properties form a multi-
dimensional feature space. Classification can be performed
by detecting clusters in the feature space, but it is typically
unknown which of the features are most descriptive to dis-
criminate objects of the target class from others or how to
weight the features in order to find the best classifier.

We propose a visual analysis tool that allows for the inter-
active inspection of the feature space to investigate the influ-
ence of features, to identify patterns, and to detect descrip-
tive features. Moreover, one can interactively define weights
to the features and describe a classifier in the weighted mul-
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tidimensional feature space. We obtain a supervised classi-
fication approach by, first, defining a classifier using our in-
teractive visual analysis tool for a labeled training set and,
second, applying the classifier to an unlabeled data set.

We embed our supervised classification approach into a
medical image segmentation pipeline and apply it to two
scenarios, namely, to detect vertebral bodies in sagittal CT
image slices and to detect the pharynx in head MRI data.
We show the effectiveness of our classification approach by
comparing our results to commonly used automatic classi-
fiers and evaluate our interactive visual tool by performing a
controlled user study.

2. Related Work

Several approaches for image segmentation have as a core
step the classification of image regions [Blal0]. Thus, part
of the segmentation process is to solve a classification prob-
lem defined in the feature space. This classification prob-
lem can be solved in an unsupervised manner by clus-
tering approaches specifically designed for segmentation,
e.g. [CMO02] or by supervised, semi-automatic approaches
that require training data.
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Semi-automatic systems for image segmentation may ex-
ploit the user domain knowledge in different ways [ZX13].
They can ask the user to manually specify seed points and/or
strokes in the image space to indicate groups of regions that
belong to the same class, e.g. [NZZW10], or they allow for
user intervention to guide and correct results, e.g. [SMH10].
The expert’s work load is reduced with the use of trained
classifiers, where his/her input is only required for a vari-
able amount of training data, and automatically transferred
to new data. However, interpreting the semantics behind a
trained classifier model is a complex task, as shown in re-
cent that attempts a statistical visual exploration of, in this
case, a Random Forest model [Ehr15].

While the typical goal in image analysis is to improve
the segmentation result, Schultz and Kindlmann [SK13]
use interactive visual tools to analyze the performance of
segmentation algorithms. Our approach follows a similar
idea, namely, using interactive visual analysis techniques
for an understanding of the relevant features. This knowl-
edge can help an expert to identify regions where segmen-
tation is problematic. For example, Von Landesberger et
al. [VLBK*13] try to analyze the results of different auto-
matic segmentation approaches to possibly improve the al-
gorithm. We use an interactive analysis of the feature space
to develop an effective supervised classification step in a
transparent and intuitive way. The interactive classification
step is directly embedded into specific segmentation ap-
proaches, as we demonstrate in sections 5 and 6.

3. Visual Analysis of the Feature Space

We present a visual analysis approach that allows for an
interactive investigation of the multi-dimensional feature
space of low-level homogeneous image regions. The first
step is to generate an oversegmentation of the given im-
age into low-level objects. To ensure a good classification
of the image regions, an edge-preserving segmentation like
the watershed transform on the gradient image [HP03] is ap-
plied to capture the individual structures present in the im-
age. To reduce over-segmentation, images are typically pre-
processed with a Gaussian or rank filter. Anisotropic diffu-
sion filters [SNS*98] are additionally used to enhance the
relative brightness of image borders before segmentation.

We characterize the detected image regions by a range
of descriptive features, as done in the literature [SCHH13].
In particular, we make use of the spectral distribution of
the enclosed pixels using standard statistical methods (e.g.
mean, standard deviation, upper and lower quartiles), shape
descriptors based on central image moments [BB09], and
distance-related features. To make the paper self-contained,
we briefly describe the features that will be used later on.
Regarding the region’s shape, there are many descriptors
available in literature [MIJO8]. One of the standard meth-
ods to compute shape features is based on central image
moments [BB09] of the binary mask of a region r, where

r(x,y) = 1 if the pixel (x,y) belongs to the region and
r(x,y) = 0 otherwise. The central image moments are de-
fined by:

Hpq(r) = ZZ(X—f)p(y—)_’)q"(xJ)»
Xy

where the size of the region is given by i, while (¥,¥) rep-
resents its center of gravity. Furthermore, one can perform
principal component analysis (PCA) on the pixel distribu-
tion of the region. Features such as the principal eigenvectors
and corresponding eigenvalues A; and A, can be computed
for the covariance matrix of r, which is defined as

cov(r) = | H200r) km(r)
ui(r)  poa(r)

The principal eigenvectors define the region’s orientation,
while the ratio of their corresponding eigenvalues measures
the region’s eccentricity by:

40 A
(M +2)%

Using this result, a best-fitting ellipse having the same area
as the given region can be determined, whose overlap with
the original shape determines the region’s compactness.
When describing orthogonal shapes, further features mea-
suring rectangularity and square fit can be extracted that
quantify the similarity of region r with its minimum bound-
ing rectangle (MBR):

eccentricity =1 —

. Yarea
rectangularity = VBR—
area

. MBRarea
squarelikeness =

2
MBReighi +MBR,iarn )
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Another class of shape features used in our experiments is
based on the distance transform. In particular, we computed
the Euclidean distance from each pixel inside the image re-
gion to the background such that the region border has min-
imum distance 0 and the center of gravity is the point with
the maximum distance. Then, for each segment, we com-
puted the max, mean, upper and lower quartiles as distance
statistics of pixels giving the geometry of the segment.

All these potentially descriptive features describe a multi-
dimensional space, where each low-level image region cor-
responds to a multi-dimensional point in that feature space.
As the numerical values of the features may have different
ranges, a normalization is applied. Now, the challenge is to
explore the space of potentially useful existing features in or-
der to determine which of them have a decisive contribution
to the classification and how they interact.

We propose an intuitive interactive exploration of the
multi-dimensional space using a star-coordinates widget. Di-
mensionality reduction methods are applied to map multi-
dimensional data to a low-dimensional space. Mapping to
a 2D or 3D space allows for a visual exploration of the
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Figure 1: Default configuration of star-coordinates wid-
get (a). The unit circle is shown in gray. Colors in the re-
sulting projected view of a training spine CT dataset (b) de-
fine samples belonging to different classes. A result of par-
tial decoupling of target samples (blue) from the rest (green)
is shown in (d). Red polyline denotes a user made selection
made. The corresponding projection matrix is shown in (c).

data distribution. PCA [Jol86] or multi-dimensional scal-
ing [BG10] are the most commonly used classical dimen-
sionality reduction approaches. The choice of an optimal
method is usually done by compromising between preserva-
tion of distances and good clusters segregation. Other crite-
ria include simplicity and efficiency of the approach. Since
our aim was to develop an intuitive system that allows for
interactive modification, linear projections are the most suit-
able choice, as they do not introduce much distortion and
keep computation costs low.

Any linear projection of the m-dimensional feature space
Q onto the 2-dimensional visual space U can be represented
in terms of a 2 X m matrix P. The columns of P consist of
the coordinates of the images in U of basis vectors from Q.
Since the image of the origin in Q is always the origin in U,
we visualize columns of P as axes of a star-coordinates sys-
tem [TMO3]. Thus, there is a one-to-one correspondence be-
tween the space of linear projections and the configurations
of basis vectors in the star-coordinates widget. The weights
of the individual features are given by the length and relative
position of the basis vectors. In the default configuration, all
basis vectors are distributed uniformly over the unit circle
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as shown in Figure 1a, which corresponds to the projection
matrix P:

P:( 1 cos(2n/m)

0 sin(2m/m)

cos(2n(m—1)/m) )
sinr(m—1)/m) |-

Given an initial linear projection, our exploratory system al-
lows the user to interactively manipulate the projection ma-
trix by changing the positions of the end-points of the ba-
sis vectors in the star-coordinates widget. Elements of P are
then recomputed and used for the new projection the multi-
dimensional feature data. Through this process, the user’s
interactions lead to immediate update of the projected data
thus providing real-time feedback. Placing the end of a ba-
sis vector to the origin leads to a vanishing corresponding
column of P, such that values of the selected feature do not
influence the resulting projection. Therefore, our approach
naturally and intuitively includes the means of analyzing fea-
ture subspaces. In particular, traditional 2D scatterplots are
obtained when only two orthonormal axes are active. How
the interactions are performed is best understood by looking
at the accompanying video.

4. Supervised Classification

When visualizing a training dataset, where the objects are
labeled, it is possible to encode the classes in the projected
view using one color per class, see Figure 1b. Commonly,
one is interested in a single target class, such that the bi-
nary decision of belonging to that class is encoded using
only two colors, which reduces the perceptional load. In gen-
eral, classes may be overlapping, i.e., it is not possible to
find a projection matrix that allows for a perfect separation.
Our goal is to find a configuration of the star-coordinates
widget, such that a representative subset of samples from
the target class is visually decoupled from the rest. In Fig-
ures 1c and 1d, one can see that the chosen configuration of
the star-coordinates widget creates a projected view that ex-
hibits a region with mainly blue samples. After having iden-
tified such a region, the classification step is executed inter-
actively by the user surrounding the region by a polygonal
line. The number of blue samples inside (or outside) the re-
gion compared to the overall number of blue samples gives
an immediate and intuitive understanding of how many true
(or false) positives are to be expected. Respectively, the num-
ber of green samples inside (or outside) the region compared
to the overall number of green samples gives an immediate
and intuitive understanding of how many false (or true) neg-
atives are to be expected. For our applications it was easy
to automatically remove obvious false negatives in a post-
processing step. With such knowledge, the user can select a
larger region to increase the number of true positives.

The selected area in conjunction with the recorded projec-
tion matrix represents our classifier, which can be applied to
new unlabeled data. In order to apply it, one maps the new
feature data using the recorded projection matrix and selects



14 V. Molchanov et al. / Visual Analysis of Medical Image Segmentation Feature Space for Interactive Supervised Classification

only those samples that fall into the selected region. The se-
lected samples are classified as positives (belonging to the
target class), while the others are classified as negatives.

For image segmentation purposes, our interactive feature
space exploration and classification tool gets complemented
by a linked view showing the classification result overlaid
with the medical images. Hence, one can immediately vali-
date (and possibly correct) the classification result.

5. Application to Spine Segmentation in CT Images

We illustrate the capacity of our approach by embedding it
into a segmentation pipeline for detecting vertebral bodies
in sagittal CT image slices. The task is to segment a class of
objects (vertebrae) with regular appearance, located in a spe-
cific spatial relation in the image space to form the spine. As
a segmentation task, this problem has been tackled by sev-
eral approaches, for either CT or MRI, which roughly con-
sist of two steps: First, the recurring structures are detected
(vertebrae [HCLNO9] or inter-vertebral disks [SSQWO07])
to estimate the spine position. Then, the spine is recon-
structed using various segmentation methods such as ac-
tive shape [TP11] and active appearance [KOE*(09], graph
cuts [KWZ*13], etc. The initial object detection is most of-
ten performed by first locating the object in the image space
and then segmenting. However, the reverse approach is also
possible: The image is first segmented and the regions be-
longing to the spine are detected by classification. This re-
duces the search space and supplies more information for
finding the vertebrae (such as the shape of segmented re-
gions). Yao et al. [YOS06] perform region-based vertebra
detection in axial slices but report significant leaks in the
segmentation.

Our approach is to detect segments that represent verte-
bral bodies in the sagittal plane, where they have rectan-
gular shape and a specific intensity profile. The segmenta-
tion approach first creates a watershed-based oversegmen-
tation [HPO3] of a region of interest that includes all the
bone structures obtained by thresholding and morphological
operations (Figures 2a,2e and 2b,2f). For the low-level im-
age regions, we build the multi-dimensional feature space,
which is analyzed by applying the proposed star-coordinates
widget to training data labeled by experts (Figure 1). Within
the interactive analysis, a classifier with very high specificity
that distinguishes vertebrae regions in the multi-dimensional
feature space is built (Figure 2c,2g). This classifier can, then,
be applied to classify unlabeled test data. After classifica-
tion, the spine is reconstructed using a model based on the
vertical alignment of the vertebrae and consistency over con-
secutive sagittal image slices (Figures 2d,2h).

We applied the proposed technique to 20 CT datasets,
each consisting of 21 saggital slices. The low-level image re-
gions were labeled by a domain specialist to identify which
belong to the spine for ground truth. On average, the total
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Figure 2: Segmentation steps: (a),(e) Original image and
ROL. (b),(f) Segmented regions. (c),(g) Vertebrae detected
by classification. (d),(h) Final segmentation.

number of segments is 6,664 £ 3,275 per dataset, of which
421 470 were classified as spine. Detailed information can
be found in Table 1.

For each segment we considered the following seven fea-
tures: squarelikeness, rectangularity, eccentricity, mean in-
tensity (mean), standard deviation (stdDev), upper quartile
of voxel intensities (upper_quartile), and world size, de-
scribed in detail in section 3. The classification by visual
analysis was evaluated by cross-validation in a controlled
user study. In a set of experiments, 19 of the 20 datasets
were used for training and one for evaluation. The users were
asked to find a layout of the star-coordinates widget such that
two classes are best separated in the projection and mark a
polygonal area containing a representative subset of posi-
tive samples. The goals of the user study were to investigate
how robustly users would find the best projected view and
how the interactively obtained classifier performs on the test
data. For the user study, we recruited eight subjects with no
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Table 1: Total number of segments and number of positive segments (that belong to spine) in each of the saggital CT datasets.

The average (AVG) and standard deviation (SD) are provided.

dataset 1 2 3 4 5 6 7 8 9 10 || AVG
all | 4251 | 4385 | 8,362 | 13,475 | 5,168 | 9,176 | 5,117 | 3,249 | 11,999 | 3,368 || 6,664
positive | 468 | 541 | 520 | 468 | 351 | 424 | 305 | 315 344 | 366 || 4209
dataset | 11 12 13 14 15 16 17 18 19 20 SD
all | 3432 | 5,181 | 6,473 | 8,154 | 4,786 | 5947 | 5.667 | 14,153 | 6,639 | 4301 || 3,275
positive | 435 | 536 | 410 | 381 346 | 454 | 393 | 483 443 | 435 || 7046

Segments classification before post-processing
Hmfalse positive W true positive

100%
80%
60%
40%
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12 3 456 7 8 9 10111213 14 1516 17 18 20
datasets

Segments classification after post-processing
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Figure 3: Relative number of false and true positive segments
resulting from the vertebrae classifier trained by two differ-
ent users for each dataset. Top - before, bottom - after post-
processing.

a priori domain knowledge and unaware of the underlying
segmentation task.

Each datasets was segmented using the classifiers built
interactively by two different observers. The results of the
vertebra classification (relative number or true/false pos-
itive segments) before and after post-processing are pro-
vided in Figure 3. The average precision for all data sets
obtained based on the interactively determined projections
was on average 89.05% and increased to 98.17% after post-
processing.

One randomly selected test configuration (corresponding
to the dataset No. 19) was performed by all users to assess
variability. The average precision obtained in this case was
83.06% before and 94.83% after the post-processing step.
The detailed results for each user are shown in Table 2.

The times spent by users to complete each experiment
(Table 2 - top) varies from 90 to 365 seconds with an aver-
age of 159 £ 101 seconds. This shows that finding a projec-
tion matrix using the star-coordinates widget and selecting
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a region of interest takes only a few minutes with minimum
training in case of seven features.

Figure 4: ROCs comparing the performance of different
classifiers on the spine datasets: red - Support Vector Ma-
chine, black - Random Forest, blue - Naive Bayes, yellow -
Neural Network.

Figure 5 shows projection matrices in form of star-
coordinates widgets, which were found by all eight partic-
ipants for the dataset No. 19. Note that the axes rotation
around the origin of the star-coordinates widget as well as a
simultaneous scaling of all axes do not qualitatively change
the resulting projection. Important are the relative size of the
axes and angles between them. Thus, to simplify the compar-
ison of results, we rotated all original images to get the dom-
inating axis labeled size pointing upwards. We can observe
that size was the most relevant feature to discriminate verte-
bral structures, followed by the shape features rectangularity
and squarelikeness and the standard deviation stdDev of the
intensity values. Overall, we noticed common patterns in all
solutions regarding the relative size and angles between the
feature axes. Considering this, it could be possible to derive
a probabilistic projection matrix with better score based on
outputs from a sufficiently large number of participants.

We compared our supervised classification results to the
output of four state-of-the-art classifiers whose ROC curves
are shown in Figure 4. For the vertebrae detection task, we
require a classifier with high precision. Our subjects were
able to detect on average 13.9% of the true samples while
including only 0.16% of the set of negative samples, sit-
uating us extremely close to the Y axis on the same plot.
Thus, our results are comparable to the performance of the
Random Forest, Naive Bayes, and Neural Network, outper-
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Figure 5: Final configurations of the projection matrix found
by all users for dataset 18.

forming the Support Vector Machine. For the automatic clas-
sifiers, however, additional interactive fine-tuning would be
required to adjust their acceptance threshold to obtain a high
precision. The choice of these thresholds is rather unintu-
itive, while the user interactions in our visual tool provide
an intuitive understanding of the choice made.

Our tool is not only able to support the generation of a
classifier, but it is also helpful to analyze the classification
process. For example, one can investigate the features of
false-negative segments to understand how they differ from

the selected area and why they were missed. The analysis al-
lows for a better understanding of how certain features dis-
criminate the target class. This information can be used to
improve automatic classification by adding additional fea-
tures or adjusting how current features are computed.

After the classification, an automatic post-processing step
based on domain knowledge was applied to reject false posi-
tives. Samples with too large or too small size or lying in the
upper 10% of the image which could represent other skele-
tal structures were eliminated. After post-processing the pre-
cision increased from 89.05% before to 98.17% . The re-
maining selected segments were used as seeds in a model-
based region-growing method to reconstruct the spine, fol-
lowing the work flow presented in [SCHH13]. Our final re-
sults reached an average Dice score of 0.899(40.069). For
the dataset processed by all participants we obtained an av-
erage Dice score 0.956(=£0.014). This result improves the
Dice score of 0.948 obtained in [SCHH13], where the initial
vertebrae seeds were obtain using a random forest classifier.

6. Application to Pharynx Segmentation in MR Images

Another application where we illustrate our supervised clas-
sification approach based on feature space visual analysis is
the detection of the pharynx in axial MR image slices. In
this setting, the pharynx regions have a less regular shape
and a more diverse appearance (Figure 7a), which makes
the problem of directly choosing the right combination of
features to distinguish the targeted regions more difficult
than in the case of the vertebrae. The large intensity vari-
ations in MRI make pharynx segmentation more challeng-
ing than in CT images. Existing semi-automatic segmenta-
tion approaches start from manually placed markers and per-
form a guided 3D image growing on a pixel level, such as
Ivanovska et al. [IDL*13] and Liu et al. [LUO*03]. How-
ever, operating exclusively on a pixel level the spatial re-
lation between the pharynx and other neighboring anatom-
ical regions is more difficult to establish, which is why
these approaches face difficulties in separating the pharynx
from the complete respiratory track. Our approach is to de-
tect segmented regions that represent pharynx cross-sections
in over-segmented axial slices. Again, we extract low-level
image regions using the watershed segmentation [HPO3]
and compute the following features: world size, eccentric-
ity, direction of the principal component of the object mask
(prime_axis_X, prime_axis_Y), mean intensity (mean), up-
per and lower quartiles of voxel intensities (upper_quartile,
lower_quartile), and statistics over the distance transform
of the region pixels to the background (distance_median,
distance_upper_quartile, distance_lower_quartile), as de-
scribed in section 3. The feature space is then analyzed using
the star-coordinates widget to define a classifier for the phar-
ynx samples from training data (Figure 6).

The classifier can, then, be applied to new data fully auto-
matically. The classification result can further be improved
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Figure 6: (a) Default configuration of star-coordinates wid-
get (a). Colors in the resulted projected view of a training
pharynx MRI dataset (b) define samples belonging to dif-
ferent classes. (c) Typical configuration of star-coordinates
widget. (d) Resulting projection of training data, the blue
and green samples belonging to the two classes. Red poly-
line denotes a selection made by the user.

in a post-processing step by exploiting alignment over con-
secutive axial slices.

We applied the proposed technique to ten MRI datasets,
each consisting of 45 axial slices with 2 x 2 mm? resolution.
Images were segmented and labeled by a domain specialist
to identify the pharynx. These data serve as the ground truth
in our experiment. The total number of segments per dataset
is on average 9,689 & 1132, out of which on average 21 +6
segments belong to the pharynx (see Table 3).

We performed a similar evaluation study with eight par-
ticipants who had no prior knowledge about the datasets,
target class, or the significance of the features. For cross-
validation, a series of experiments was set up where nine
datasets were used for training and the tenth for testing.
Overall every dataset was classified by two or three partici-
pants. The mean precision obtained was 59.29%(+15.27%)
and increased to 70.18%(£24.65%) after post-processing.
The relative numbers or true and false positives obtained by
each user per dataset are shown in Figure 8. The average
time for completion per experiment was 238 seconds and
decreased to about 2 minutes when the users got more expe-
rience with the feature space.
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Figure 7: (a), (d) Oversegmented MR images. Segments are
colored according to mean intensity from green = low inten-
sity values to red = high values. (b), (e) Our result shown
in red compared to ground truth (blue). (¢), (f) Zoomed-in
result.

A typical projection obtained after user’s explorative in-
teractions is shown in Figure 6c¢. All users discovered a high
positive correlation of three intensity features (mean, lower
and upper quartiles), see Figure 6¢. Other important features
are the shape.size and shape.eccentricity, whose axes usually
point to a direction nearly orthogonal to the intensity-related
axes.

Figure 7a illustrates the classification problem. The over-
segmented image is colored according to the mean intensity
of each region. By visual inspection, it is challenging for a
human observer to distinguish the pharynx segments using
only shape and intensity information. In contrast, the prob-
lem could be easily solved by visual exploration in feature
space. Our sample results highlighted in red color in Figures
7b and 7c are compared with the ground truth (blue).

7. Conclusion and Future Work

We have presented an interactive visual analysis tool for ex-
ploring image segmentation feature spaces. Our approach
allows for intuitive generation of classifiers represented as
a projection matrix and a selected area in the projected
view. The system serves to better understand the features’
roles, weights, and their interplay, in order to characterize
the structures to-be-detected. We have shown the potential
of our supervised classification approach when embedded in
real-world medical image segmentation problems, namely
detecting vertebral bodies in CT slices and the pharynx in
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Figure 8: Relative number of false and true positive segments
classified by two or three different users for each dataset in
the pharynx segmentation task, after post-processing.

MR slices. The classification results were comparable with
or better than those obtained with state-of-the-art classifiers,
even after fine-tuning their parameters. In future work, we
want to analyze results from a number of users to derive
projection matrices with better stability. Moreoever, the pro-
cess of finding the optimal projection matrix and a proper
selection area can be supported in an automated manner by
solving an optimization problem with an error functional re-
flecting the fraction of true-positive samples for the current
setting.
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Table 2: Statistics of experiments of vertebrae detection on saggital CT dataset No. 19. Shows for each user the time required for
training, the number of true positive (TP) and false positive (FP) samples obtained, as well as the precision (prec). The average
(AVG) and standard deviation (SD) over all users are provided.

user 1 2 3 4 5 6 7 8 AVG SD
time[s] 90 245 140 106 142 365 92 95 159 100.94
before TP 69 103 64 57 33 113 18 34 61.38 36.17
post- FP 12 23 1 4 16 26 7 6 11.88 9.82
processing prec. 85.19% | 81.75% | 98.46% | 93.44% | 67.35% | 81.29% 72% 85% 83.06% | 10.97%
after TP 69 103 64 57 33 111 18 34 61.13 35.69
post- FP 3 7 1 0 4 6 1 3 3.13 2.67
processing | precision 95.83% | 93.64% | 98.46% 100% 89.19% | 94.87% | 94.74% | 91.89% 94.83% 3.69%

Table 3: Total number of segments and number of positive segments classified to belong to pharynx in axial MRI datasets. The

average (AVG) and standard deviation (SD) are provided.

dataset

1

2

3 6 7 8 9 10 AVG SD
all 10,245 | 11,360 | 9,571 | 10,760 | 10,106 | 8,533 | 7,250 | 9,555 | 9,024 | 10,490 || 9,689 | 1,132
positive 26 12 12 21 17 21 22 21 27 211 6
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