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Abstract
The decomposition of solids is a problem of interest in areas of engineering such as feature recognition or manufacturing
planning. The problem can be stated as finding a set of smaller and simpler pieces that glued together amount to the initial
solid. This decomposition can be guided by geometrical or topological criteria and be applied to either surfaces or solids
(embedded manifolds). Most topological decompositions rely on Morse theory to identify changes in the topology of a manifold.
A Morse function f is defined on the manifold and the manifold’s topology is studied by studying the behaviour of the critical
points of f . A popular structure used to encode this behaviour is the Reeb graph. Reeb graph-based decompositions have proven
to work well for surfaces and for solids without inner voids, but fail to consider solids with inner voids. In this work we present a
methodology based on the handle-decomposition of a manifold that can encode changes in the topology of solids both with and
without inner voids. Our methodology uses the Boundary Representation of the solid and a shape similarity criteria to identify
changes in the topology of both the outer and inner boundary(ies) of the solid. Our methodology is defined for Morse functions
that produce parallel planar level sets and we do not consider the case of annidated solids (i.e. solids within other solids). We
present an algorithm to implement our methodology and execute experiments on several datasets. Future work includes the
testing of the methodology with functions different to the height function and the speed up of the algorithm’s data structure.

CCS Concepts
• Computing methodologies → Shape analysis; Volumetric models; Mesh models;

1. Introduction

The decomposition of a piece into smaller and simpler pieces is
a problem of interest in many applications related to computer
graphics: collision detection [MG09], feature detection [TTF04],
real time animation [KS00], surface matching [LGQ09], manufac-
turing planning [GXZ*23], amongst others. Many decomposition
(also called segmentation) algorithms, specially for surface-based
models, are found in literature (see surveys in [APP*07; HW18]).
A possible cause for this proliferation of approaches is that algo-
rithms are tailored to the specific needs of the target application
and there is no universal solution to the problem.

A decomposition algorith is characterized by its decomposi-
tion criteria, that is a common trait shared by all the subsets that
make up the initial set (this is known as the common base do-
main [KZW12]). For most applications this common base can be
of geometrical, functional or topological nature. Geometrical de-
compositions proceed considering only the geometric characteris-

† Corresponding author. E-mail: jcpareja@vicomtech.org

Figure 1: Example of the decomposition of a piece into smaller and
simpler constituent pieces.

tics of the model and decompose the model into geometrically sim-
ilar components. For the case of surfaces, common examples are
the planarity-based and curvature-based segmentations [SSGH01;
WY11]. Functional (also called meaningful) decompositions divide
the model into meaningful components [HC*12], that is subsets
that have a special significance in the interpretation of the model
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(e.g. the decomposition of the human body into head, torso, legs,
arms). Topological decompositions divide the model by consider-
ings its topological features [MG21; SJ17]. These approaches usu-
ally study the changes in the topology of a collection of level sets
defined by a real-valued function f : M → R on the piece M and
rely heavily on Morse theory. Common examples of the topological
approach are the methods based on the Reeb graph decomposition
[SJ17; HDL16]. These methods are well defined for surface-based
models but literature regarding solid models (specially when there
is more than one boundary component) is rather scarce. We will
examine these methodologies in the next section.

In this work we present an approach to a topological decomposi-
tion of solids (embedded three-dimensional manifolds with bound-
aries) with and without inner voids. Our methodology is defined
for Morse functions that produce parallel planar level sets and we
do not consider the case of annidated solids (i.e. solids within other
solids). We must, however, first examine the principles of Morse
theory on manifolds to show that current methods are unsuitable to
deal with the decomposition of solids with more than one boundary
component.

2. Morse theory on manifolds

Let M be a smooth manifold and f : M → R a smooth function
defined on M. We have the following definitions:

Level sets: The level set of f on M at a value a ∈ R is {p ∈
M : f (p) = a}. We denote the level set of f at value a as Π f ,a.
Connected parts of a level set are called level set components.

Critical points and values: A critical point of the function f is
a point p where dF(p) = 0. A real c is called a critical value of f
if the pre-image f−1(c) contains a critical point of f . Additionally,
a critical point is said to be non-degenerate if it’s Hessian is non-
degenerate.

Morse functions: Function f is said to be a Morse function if it
satisfies the following conditions:

1. all critical points of f are non-degenerate.

∀p ∈M :∇M f (p) = 0→ det(HM f (p)) ̸= 0 (1)

2. for all pairs (p,q) of different critical points of f , f (p) ̸= f (q).

Morse lemma: Assume p to be a non-degenerate critical point
of f . There is a local coordinate system {X1, . . . ,Xn} on a neigh-
borhood Np of p, such that on Np:

f (X1, . . . ,Xn) =−X2
1 −·· ·−X2

k +X2
k+1 + · · ·+X2

n (2)

In this formulation, k is called the index of f at p. The Morse
lemma introduces a way to classify critical points of a Morse func-
tion defined on a manifold and therefore opens the door to the clas-
sification of the manifold itself by studying the evolution of these
critical points. In the case of two-dimensional manifolds (surfaces),
the Morse lemma classifies the critical points of a Morse function in
three kinds: minimum (k = 0), saddle (k = 1) and maximum (k = 2).
See Figure 2. A three-dimensional manifold has four types of non-
degenerate critical points: minimum (k = 0), 1-saddle (k = 1), 2-
saddle (k = 2) and maximum (k = 3). Critical points (and their in-
dex) can be identified by their effects on the level set sequence of

Figure 2: Local shapes of the critical points of a Morse function f
on the standing torus closed surface.

f : minimum points create contours ex nihilo, saddle points join or
separate contours and maximum points eliminate contours.

In Figure 2, if we were to consider the standing solid torus (an
embedded 3-manifold with boundary) instead of its boundary sur-
face intuitively we notice that the points of interest (those where
topology changes) are still located on the boundary surface of the
solid, at least for the height function f (x,y,z) = z. This fact opens
the door to analyze solids by considering only their boundary com-
ponents and the relationships between them.

2.1. Handle decomposition of manifolds

Simply put, a compact manifold can be expressed as a sum of sub-
manifolds called handles [Boh19]. Let M be a smooth manifold
and f : M→ R be a Morse function defined on M. We define the
following:

Lower level sets: The lower level set Mt of f in M at value t is
the set Mt = {x ∈M : f (x)≤ t}.

Theorem 1: For two reals a,b with a < b if f has no critical
values in the interval [a,b], then the manifolds Ma and Mb are dif-
feomorphic.

The previous theorem implies that the topology of Mt does not
change as parameter t passes through regular (non-critical) values
of f .

Theorem 2: Let p be a critical point of f and f (p) = t be its
critical value. Let ε be a number small enough so that f does not
have critical values in [t− ε, t + ε]. The manifold Mt+ε can be ob-
tained by gluing a handle (a contractible smooth manifold) to the
manifold Mt−ε.

The previous theorem implies that the topology of Mt changes
as t passes through a critical value of f . This change can be cap-
tured and incorporated into Mt by gluing a new piece called handle.
Since a Morse function defined on a compact manifold admits only
finitely many critical points [BGSF08], the topology of Mt changes
a finite number of times and can be therefore decomposed by track-
ing the handles glued to the manifold as parameter t increases:
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Figure 3: Handle decomposition of the standing torus closed sur-
face.

Handle decomposition: A handle decomposition of a compact
manifold M is a finite sequence of manifolds W0, ...,Wl such that:

1. W0 = ∅,
2. Wl is diffeomorphic to M,
3. Wi is obtained from Wi−1 by attaching a handle.

The necessary handle to obtain Wi = Mt+ε from Wi−1 = Mt−ε

depends on the topological change that took place in the inter-
val [t− ε, t + ε]. In the case of closed surfaces this classification
is straightforward as the handles are dictated by the values of the
index of the critical point p with critical value t ∈ [t− ε, t + ε]. This
means that to decompose a surface we only need to consider the
attachment of 0-handles, 1-handles and 2-handles in a given se-
quence. See Figure 2 and 3 for an example. As we will detail later,
the case for solids is not as simple. The reason for this is that, in
the case of solids embedded in R3, changes in topology arise from
both changes in the number of connected components in a level set
and changes in the topology of the level set itself (i.e. changes in
the genus of isosurfaces).

Most algorithms that effectuate a handle decomposition on
closed surfaces exploit a data structure known as the Reeb graph.
The Reeb graph represents the critical points of f and their indexes
to encode the topology of a manifold. In the next section we briefly
review the Reeb graph principles and its approaches to surfaces be-
fore dealing with the case of solids.

2.1.1. Reeb graphs

Reeb graph: Two points p,q ∈M are equivalent if they belong to
the same connected component of f−1(c) with c = f (p) = f (q).
The Reeb Graph of f , R( f ) =X∼, is the quotient space defined by
this equivalence relation.

The nodes of the Reeb graph correspond to the critical points
of f on M. Since f is Morse, every critical point of f with index
1 or 2 gives rise to a degree 1 node and every saddle of f gives
rise to a degree 3 node. The nodes of R( f ) are points in which the
topology of M changes. The arcs of R( f ) correspond to regions of
M in which the topology of M does not change. See Figure 4.

In simple terms, Reeb graphs are obtained by contracting ev-
ery level set component to a point and establishing the connec-
tivity as dictated by the changes in the number of level set com-
ponents between consecutive level sets. Numerous methodologies
exist for the extraction of Reeb graphs of manifolds [TPT14]. Al-
gorithms for the extraction of Reeb graphs in surfaces can be found

(a) (b)

Figure 4: Reeb graph of the standing double torus. (a) Manifold
M. (b) Reeb graph of manifold M.

in [SK91; BP12; CEH*03; Bia04; HR20]. The most efficient al-
gorithms complexity-wise can be found in [Par12; HWW10]. Reeb
graphs are popular tools to decompose a surface into its handle con-
stituents [HDL16].

2.1.2. The case of solids in R3

In the case of the handle decomposition of solids, there are two
distinct situations that require distinct treatments: solids with one
boundary component and solids with more than one boundary com-
ponent. Solids with more than one boundary component are said to
have voids.

Let M be a solid (3-manifold with boundary) without voids in
R3 and fM : M→R a Morse function defined on M. Consider only
functions f that do not possess critical points in the interior of the
solid. Let function g be the restriction f |∂M of f to the boundary
of M. If f is the height function, we get the scenario depicted in
Figure 5. In this case, for every non-critical value t the level sets
Π f ,t and Πg,t are closely related. The level set components of Πg,t
consist of closed curves on the boundary ∂M. These curves on ∂M
bound regions of M that match with the level set components of
Π f ,t . This means that the number of level set components in Π f ,t
and Πg,t is the same and therefore the topology of M can be studied
by studying the topology of its boundary ∂M.

(a) (b)

Figure 5: Relationship between solid level sets and boundary level
sets for a solid without voids. (a) Solid level sets. (b) Boundary level
sets.

This unequivocal relationship between the solid level sets and
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the boundary level sets is used to produce decompositions of a solid
by considering its boundary surface [DN11; TSK98; ACA*19;
BGSF08]. Some problems may arise when the solid has tunnels
with axis not parallel to the slicing plane. This is resolved by [SJ17]
by combining the Reeb graph defined on the boundary surface with
the Reeb graph defined on the volume itself. With this approach
they are able to obtain a decomposition of the solid into solid han-
dles.

(a) (b)

Figure 6: Relationship between solid level sets and boundary level
sets for a solid with voids. (a) Solid level sets. (b) Boundary level
sets.

Now consider M to be a solid with voids as the one depicted
in Figure 6. In these solids there are critical values at which the
topological genus of the isosurface changes without modifying the
number of connected components in the level sets [BGSF08; SJ15].
Let fM : M→ R be a Morse function defined on M. Let function
g be the restriction f |∂M of f to the boundaries of M. Notice that
in this case the boundary ∂M of M is composed by two distinct
surfaces: an interior boundary and an exterior boundary, which we
will denote as ∂Mi and ∂Me respectively. Consider now any non-
critical value t and the solid level sets Π f ,t and the boundary level
sets Πg,t . The level set components of Πg,t (curves on the bound-
ary) do not bound a level set component of Π f ,t in a one-to-one
correspondence. Notice that both components of Πg,t bound the
same component of Π f ,t , one from the inside and the other from
the outside. This means that the unequivocal component to com-
ponent relationship between the solid level sets and the boundary
level sets is lost and therefore additional information is required to
study these phenomena.

Some authors build Reeb-like graphs for these kind of solids by
considering two orthogonal Morse functions defined on the solid
and augmenting the Reeb graph with additional information regard-
ing the topology of each level set [SJ15]. This approach, however,
does not produce a decomposition of the solid into submanifolds.

If M is a solid without voids then it can be decomposed by con-
sidering the handle decomposition of its boundary surface. M can
be reconstructed by attaching together solid versions of the 0-, 1-
and 2-handle manifolds defined for 2-manifolds. The presence of
genus-related critical values means that if M is a solid with voids
then to produce a handle decomposition of M we need to augment
the set of possible handles with pieces that consider such genus-
related transitions. In this work we present an approach to the de-

composition of solid with and without voids by considering the
Boundary Representation (B-Rep) of the solid with voids.

3. Methodology

In the same fashion as in Section 2.1, the problem of the handle
decomposition of solids can be stated as:

Solid decomposition: Given a solid M (embedded 3-manifold
with boundary) and a slicing function f defined on M, find the se-
quence of manifolds W0, ...,Wk such that

1. W0 = ∅,
2. Wk is homeomorphic to M,
3. Wi is obtained from Wi−1 by attaching a solid handle,
4. Each solid handle attached incarnates a critical point of f in ∂M.

The stated problem requires us to find the sequence of solid han-
dles such that attached together they form a solid that resembles the
topological structure of the solid M. Notice that the problem state-
ment requires that the critical values of f are unique (i.e. only one
topological change is allowed between consecutive level sets). This
means that for any two critical points p,q of f then f (p) ̸= f (q).
Therefore, it is always possible to order the critical points of f in
ascending order f (p0)< ... < f (pk). To approach this problem we
must first define the set of solid handles that materialize topological
transitions between level sets.

3.1. Solid handles and level set operations

Figure 7 shows the set of solid handles that represent topological
changes on the level set sequence of a solid. Figure 8 shows the
effect of these handles on the level sets component population. The
shape of these handles is dictated by the local shape of the function
f near its critical points.

Consider the external boundary surface ∂Me and an internal
boundary surface ∂Mi of the solid M. The solid 0-, 1- and 2-handles
(Figures 7a, 7b and 7c respectively) are the volume versions of the
local shape of the critical points on surface ∂Me. The void 0-, 1-
and 2-handles (Figures 7d, 7e and 7f respectively) are the volume
versions of the local shape of the critical points on surface ∂Mi.
The solid and void 1-handles shown in Figure 7, considered from
bottom to top, perform the union operation. These handles can be
considered upside down to perform the inverse operation (sepa-
ration). When this is the case, we call them the inverse 1-handle
(solid or void). This fact is important because the decomposition
sequence must be able to tell apart union 1-handles from separa-
tion 1-handles.

With this set of handles we characterize the possible Morse tran-
sitions between consecutive level sets. Notice that these handles are
related exclusively to the shape of the critical points on the bound-
aries of M, therefore allowing us to characterize the topology of
M by studying the evolution of contours both on the external and
internal boundary surfaces.

3.2. Algorithmic approach

In this section we present the pseudocode to identify and classify
solid handles from a level set sequence. Consider a solid M (pos-
sibly with voids) with external boundary surface B0 and possible
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(a) (b) (c)

(d) (e) (f)

Figure 7: Solid handle set. (a) Solid 0-handle. (b) Solid 1-handle.
(c) Solid 2-handle. (d) Void 0-handle. (e) Void 1-handle. (f) Void
2-handle.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Solid handle effect on the level sets component popula-
tion.

internal boundary surfaces B1, ...,Bk. The methodology to materi-
alize the solid handle decomposition of M goes as follows:

1. Define a slicing: Set a function f on B0, ...,Bk to obtain a se-
quence of level sets Π. Notice that each individual level set Πi
can have contours coming from one or more boundary surfaces
B0, ...,Bk.

2. Define inclusion relationships: build a forest Fi for level set Πi
such that first-level nodes are contours Ci ∈ B0 coming from
the external boundary B0 and second-level nodes are contours
Ci ⊂ Bk coming from internal boundaries B1, ...,Bk.

3. Calculate contour mappings: match every contour Ci ∈ Πi in
a level set to a 2D similar contour Ck ∈ Πi+1 in the next level
set. If a contour in Ci ∈ Πi cannot be mapped to a contour in
Πi+1, or viceversa, a contour to void mapping is produced. If
two contours Ci,C j ∈ Πi are matched to the same contour in
Πi+1 (double mapping), a topological event took place.

4. Event classification: the apparition of contour to void mappings
or double mappings means a topological change took place (a
contour disappeared, appeared ex nihilo or merged with a nearby
contour). These cases are further processed to determine which
solid handle can correctly model the change that took place.

5. Decomposition of the solid: once the topological events have

been correctly identified with a solid handle, a decomposition
of the solid is produced.

3.2.1. Contour orientation and inclusion

The slicing function f defines a level set sequence Π that contains
contours (curves) from boundary surfaces B0, ...,Bk. Additionally,
the slicing should record the information about the origin of each
contour (whether it comes from an internal or an external surface).
This is straightforward (by storing the normal vector with respect to
the surface) if the Boundary Representation is well defined. In the
fashion of [MRC*20], the orientation of each contour is defined
by the projection of the surface normal vector to the slicing plane.
Consider the slicing plane intersects a triangle t ∈M, then:

n⃗xy(t) = Pro jxy(⃗n(t)) (3)

A connected component of a level set f−1(c) can be: (i) a closed
1-manifold (closed curve), (ii) a 0-manifold (point) or (iii) a 2-
manifold region (the triangle itself when it coincides with the slic-
ing plane). In the degenerate cases (ii and iii) no orientation can
be produced and these components can be safely ignored as they
will appear in a non-degenerate case in following level sets. Every
contour must have coherent normal behaviour if the mesh is well
defined (i.e. all projected normal vectors must point outwards or
inwards with respect to the polygon defined by the closed curve of
the contour). The contour forest Fi for a level set Πi should be con-
structed from an algorithm like Algorithm 1. This contour forest
contains the information about the inclusion relationships between
contours.

Algorithm 1 Build contour forest Fi for every level set Πi

Πext ← external(C ∈Πi)
Πint ← internal(C ∈Πi)
Fi← new Forest
for all contour Ck ∈Πext do

Fi← addParent(Ck)
end for
for all contour Ck ∈Πint do

for all contour C j ∈Πext do
included← testInclusion(Ck,C j)
if included then

Fi← addChild(Ck)
break

end if
end for

end for

Algorithm 1 creates the contour forest of a level set assuming ex-
ternal contours as parent nodes (since no external contour can con-
tain other external contour) and internal contours as child nodes.
The inclusion test between two polygons (defined by their con-
tours) is a very well studied problem and numerous solutions ex-
ist [FTU95]. Every forest constructed this way will have depth no
larger than 1. This is because no internal contour can contain other
contour as we are not considering the case of annidated solid bod-
ies. Figure 9 shows an example of the contour forest of a level set
with several contours.
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(a) (b)

Figure 9: Contour forest Fi for level set Πi. (a) Example level set
Πi. (b) Resulting contour forest Fi.

3.2.2. Calculation of mapping groups

The mapping groups track the existence of contours as the func-
tion f evolves. This amounts to, given a contour Ck ∈ Πi, find a
contour C j ∈ Πi+1 that most resembles a feasible geometrical and
topological evolution of Ck. Algorithm 2 describes our approach.
We use the information from the contour forests from the previous
step to avoid unnecessary tests between contours and use a similar-
ity criteria to match two contours. Figure 10 shows an example of
a contour mapping. Notice that:

1. External contours in Πi need only be tested against external con-
tours in Πi+1. No external to internal match can exist.

2. Let C1 ∈ Πi be an external contour containing an internal con-
tour C2 ∈ Πi. Let Ca ∈ Πi+1 be the matching contour of C1 in
Πi+1. Internal contour C2 ∈Πi can only produce matchings with
contours that are contained by Ca. This reduces the number of
matching operations needed.

(a)

(b)

Figure 10: Example of contour mapping. (a) Level set sequence
(Πi,Πi+1). (b) Maps produced between the forests.

Algorithm 2 builds the contour mappings between consecutive
level sets. First, all external contours of level set Πi are tested

Algorithm 2 Calculation of mappings between Πi and Πi+1

Πext,i← external(C ∈Πi)
Πint,i← internal(C ∈Πi)
Πext,i+1← external(C ∈Πi+1)
Πint,i+1← internal(C ∈Πi+1)
for all contour C j ∈Πext,i do ▷ External matchings

match← False
for all contour Ck ∈Πext,i+1 do

match← testSimilarity(Ck,C j)
if match then

newMap(C j,Ck)
markAsMatched(Ck)

end if
end for
if not match then

newMap(C j,∅)
end if

end for
if any Ck ∈Πext,i+1 not matched then

newMap(∅,Ck)
end if
for all contour C j ∈Πint,i do ▷ Internal matchings

Cprnt ← getParentContour(C j)
Cm← getMatchInMap(Cprnt)
Πm,i+1← getChildrenContours(Cm)
match← False
for all Ck ∈Πm,i+1 do

match← testSimilarity(Ck,C j)
if match then

newMap(C j,Ck)
markAsMatched(Ck)

end if
end for
if not match then

newMap(C j,∅)
end if

end for
if any Ck ∈Πext,i+1 not matched then

newMap(∅,Ck)
end if

against external contours of level set Πi+1 and mappings are pro-
duced according to the similarity criteria (explained later). If a con-
tour in Πi can’t find a match in Πi+1 a contour to void mapping
is produced. Every time a contour in Πi+1 is added to a map it is
marked as already mapped. After all combinations are tested, any
contour in Πi+1 left unmarked is added to a void to contour map-
ping. For every internal contour in Πi, we seek the parent external
contour in Πi and find its correspondent external contour in Πi+1.
Then the internal contour in Πi is tested against the children of the
correspondent external contour in Πi+1.

The core of the mapping algorithm is the shape similarity test.
The goal of this test is to calculate the degree of geometric resem-
blance between two contours. This is done by considering the or-
thogonal projection of the contours to a common plane and calcu-
lating a similarity index (Figure 11). Consider contours C j ∈Πi and
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Figure 11: Projection of contours to calculate the similarity index.

Ck ∈ Πi+1. Their respective orthogonal projections to a common
parallel plane are denoted as C j⊥ and Ck⊥. The similarity index is
calculated as:

similarity(C j,Ck)=min

(
Area

(
C j⊥∩Ck⊥

)
Area(C j⊥)

,
Area

(
C j⊥∩Ck⊥

)
Area(Ck⊥)

)
(4)

Two contours in consecutive level sets are said to have a real
relation if their projections intersect in a significant portion (more
than a threshold value). In Equation 4 two quantities are calculated:
the portion of C j inside Ck and the portion of Ck inside C j. The sim-
ilarity index is defined as the smallest of those two quantities. Some
authors define the similarity index as the largest of the two quanti-
ties [LSY*14] but this results in a less strict test and false positives
can be wrongly matched. The intersection approach has proven to
be stable and robust [RCG*05]. The canonical approach to estab-
lish connectivity between contours of subsequent level sets is the
distance criteria [SK91]. This approach establishes a weighted dis-
tance function between contours in different level sets and searches
for the maximum value of the function for each contour. The simi-
larity approach advantages the distance criteria because the it is in-
dependent of the distance between the level sets d(Πi,Πi+1). This
independence is important to preserve the robustness of the match-
ing when changing the slicing density.

In this case, the selected function is the height function
f (x,y,z) = z. This choice results in perfectly planar and parallel
level sets. Other choices for the Morse functions might produce
non-planar level sets. Since our methodology relies on the orthog-
onal projection of the contours to a parallel plane, the proposed
algorithm will fail to correctly grasp the geometry of non-planar
level sets.

3.2.3. Solid handle decomposition

The calculated mapping groups are used to classify topological
transitions between contours (Figure 8). When there is no topolog-
ical change between level sets Πi and Πi+1 all the contours in both
level sets are present at most in one mapping group and there are
no void mappings. When a topological change took place between
Πi and Πi+1 one (and only one) of the following situations is true:

1. A contour to void map is present.
2. A void to contour map is present
3. A contour in Πi or Πi+1 is present in more than one map.

The presence of a contour to void map means that a contour

disappeared in the transition between Πi and Πi+1. If the contour
affected is a solid contour (i.e. coming from the external bound-
ary of the solid) then this transition can be modeled by the solid
2-handle (Figure 7c). If it is a void contour (i.e. coming from an
internal boundary of the solid) then this transition can be modeled
by the void 2-handle (Figure 7f). This same reasoning applies to
the case of a void to contour map that denotes the creation ex ni-
hilo of a contour. This transition can be modeled either by the solid
0-handle (Figure 7a) or the void 0-handle (Figure 7d). If a contour
is present in more than one map between the same pair of level sets
it means a 1-handle transition took place and it can be modeled by
the solid (Figure 7b) or void (Figure 7e) 1-handle or their inverse
handles.

In our approach we execute a bottom to top sweep of the level set
sequence to look for mappings that reveal topological changes and
we record the identity of the solid handles. The resulting sequence
of handles is a valid decomposition of the solid. For each identified
pair of level sets (Πi,Πi+1) in which a topological transition took
place, a handle distance d is chosen and the surface containing the
transition contours is cut (parallel to the level sets) at a distance d
and −d from the level sets (Πi,Πi+1). After this, a simple flood-
ing algorithm retrieves the decomposition both on the internal and
external boundary surfaces. We make sure this chosen distance d
is small enough so that it does not contains another pair of critical
level sets.

4. Time complexity

To have a meaningful measurement of the complexity of the pro-
posed algorithm let us look into the theoretical complexity of each
one of its components. Our approach can be divided in four differ-
ent processes: (a) slicing, (b) forest build, (c) contour matching, (d)
surface retrieval. We will only consider the time complexity of the
forest build algorithm and the contour matching algorithm as the
other two processes are standard and well studied and their theoret-
ical time complexity has been widely reported.

Consider Algorithm 1 with K being the number of level sets in
the model, N being the maximum number of internal contours in a
single level set and M the maximum number of external contours
in a single level set. The worst-case complexity of Algorithm 1 is
O(K ∗N ∗M). In Algorithm 2, we have a worst-case complexity of
O(K(M2 +N2)). Therefore, the overall worst-case complexity of
the algorithm in terms of the number of contours and level sets is:

O(K(NM+M2 +N2)) (5)

We believe it is more meaningful to consider complexity with re-
spect to the number of contours and the density of the slicing than
with respect to the size of the mesh given that the slicing reduces
the mesh (whatever its size) to a number of contours that repre-
sent the topological changes of the solid and therefore its handle
decomposition. Additionally, this consideration allows us to assess
the algorithm’s performance for applications in which the contour
population does not come from a mesh (e.g. CT scans).
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5. Experiments

In this section we present the experiments done to validate our ap-
proach. We tested our decomposition algorithm in Boundary Rep-
resentations of several solids both with and without solids. Fig-
ure 12 shows the application of our methodology to solids without
voids. We show that our methodology produces valid decompo-
sitions of these simple solids without voids similar to those pro-
duced by surface-based methodologies. Additionally, we present
the equivalent solids of these datasets. The equivalent solids are
the aggregation of all identified handles. By tracking the identi-
fied solid handles it can be seen that these solids are topologically
equivalent to the dataset solids.

(a) (b)

(c) (d)

Figure 12: Solid handle decomposition of solids without voids. (a)
Solid bunny dataset. (b) Solid bunny’s equivalent solid. (c) Solid
man dataset. (d) Solid man’s equivalent solid.

Figures 13 and 14 show examples of the solid handle decomposi-
tion for solids with voids based on the CADNET dataset [MBM21].
These solids are pieces of interest in manufacturing applications
and their handle decomposition is an important information nec-
essary to optimize their additive manufacturing planning scheme.
We show the cross-sectional views of the solid to highlight the fact
that they have internal voids that need to be encoded in the de-
composition. See, for example, handles 6 and 7 in Figure 13 and
handles 4 and 5 in Figure 14: these handles encode the presence of
an internal void in the solid. Figure 15 shows the application of our
methodology to the vertebrae dataset. Figure 15c shows the result-
ing decomposition of the vertebrae with a detail on the inner void
decomposition and their effect on the partition of the outer bound-
ary.

An important disclaimer is that handle decompositions are sensi-
tive to the choice of the Morse function used to obtain the level sets.

(a) (b) (c)

Figure 13: Solid handle decomposition of solids with voids. (a)
Void bracket dataset. (b) Cross-sectional view of the bracket. (c)
Bracket’s equivalent solid.

Changes in the orientation of the slicing produce different decom-
positions of the solid. The analysis of the validity and performance
of our method with different Morse functions (e.g. distance from
center of mass) is still to be done. Despite this limitations, our main
advantage with respect to other very fast and robust approaches to
other decomposition methods (such as the one in [PSBM07]) is the
adequate consideration of inner voids in the decomposition of the
pieces.

(a) (b) (c)

Figure 14: Solid handle decomposition of solids with voids. (a)
Void engine block dataset. (b) Cross-sectional view of the engine
block. (c) Engine block’s equivalent solid.

6. Conclusion and Future Work

The decomposition of solids is a problem of interest in manufactur-
ing and shape analysis. The problem can be stated as finding a set of
smaller and simpler pieces that glued together amount to the initial
solid. This decomposition can be guided by geometrical or topolog-
ical criteria and be applied to either surfaces or solids (embedded
manifolds). In this manuscript we reviewed the topological decom-
position approaches which rely on Morse theory, in particular the
Reeb graph-based ones. We show that Reeb graph-based decompo-
sitions have proven to work well for surfaces and for solids without
inner voids, but fail to consider solids with inner voids. In this work
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(a) (b) (c)

Figure 15: Solid handle decomposition of solids with voids. (a) Vertebrae dataset. (b) Level set representation of vertebrae. (c) Decomposition
of the vertebrae.

we present a methodology based on the handle-decomposition of a
manifold that can encode changes in the topology of solids both
with and without inner voids. Our methodology uses the Boundary
Representation of the solid and a shape similarity criteria to identify
changes in the topology of both the outer and inner boundary(ies)
of the solid. We present an augmented set of solid handles that al-
lows the inclusion of internal voids in the encoding of the solid’s
topology. We describe an algorithm to implement our methodol-
ogy and execute experiments on several datasets, including solids
both with and without voids. The results show that our methodol-
ogy can produce valid handle decompositions for solids both with
and without inner voids. Our approach, however, as all approaches
guided by Morse theory, are sensitive to the choice of the function
f that defines the critical points in the manifold. Future research
should include: (i) the evaluation of our method’s viability and per-
formance with Morse functions other than the height function, (ii)
analysis of performance with bigger and more complex data, (iii)
robustness to noise analysis.
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