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Abstract
We present a multi-scale morphological model of scalar fields based on the analysis of the spatial frequencies of the underlying
function. Morphological models partition the domain of a function into homogeneous regions. The most popular tool in this
field is the Morse-Smale complex, where each region is spanned by all integral lines that join a minimum to a maximum, with
the integral lines departing from saddles as region boundaries. Morphological features usually occur at very different scales,
from noise and high frequency details up to large trends at the lowest frequencies. Without some form of multi-scale analysis,
only the morphology at the finest scale is visible and explicit in such a model. The most popular approach in the literature is
the filtration provided by persistent homology, a method that combines the amplitude values of critical points with the topology
of the sublevel sets of the function. We propose the adoption of an alternative filtration method, based on the analysis of the
deep structure of the linear scale-space of the function. To retrieve an adequately fine-grained ranked sequence of pairs of
critical points that vanish through the scales, we adopt a continuous representation of the scale-space that overcomes the limits
of discrete scale-space approaches. This sequence provides a progressive simplification of the Morse-Smale complex, resulting
in a progressive multi-scale model of the morphology that always refers to the geometry of the original function, which is not
changed by our model. We apply our method to digital elevation models, with results providing a multi-scale representation of
the network of ridges and valley lines that joins peaks, pits and passes and divide the land into mountains and basins.

1. Introduction

According to Morse theory [Mil65], the morphology of a scalar
function f can be characterized by its critical points together with
two partitions of its domain into stable and unstable submanifolds
that are centered at maxima and minima of f – mountains and
basins in the bivariate case. Under proper conditions, the overlay of
such partitions forms the Morse-Smale complex, whose cells have
their vertices at the critical points of f and their edges at separatri-
ces connecting them – ridges and valleys in the bivariate case.

Approaches based on Morse theory have found applications in
several domains, such as geosciences, medical imaging, computa-
tional fluid dynamics, material sciences, chemistry, just to mention
a few. However, real data are usually noisy, with a large number of
spurious critical points. Several methods have been proposed in the
literature, which try to analyze the input at different scales to extract
the important features that characterize the underlying function.

One popular approach is based on topological persistence: the
sublevel sets of the function are analyzed, and their topological
changes, which occur at the critical points, are tracked. Eventually,
a ranked sequence of pairs of critical points is obtained, which can
be used to select the most relevant features, and also to simplify the
Morse-Smale complex describing the morphology of the function

[ELZ02, EHZ03]. Broadly speaking, topological persistence oper-
ates on the amplitude of the signal, since it analyzes its sublevel
sets. In spite of its popularity, this kind of analysis can be prone
to noise; in particular, impulse noise consisting of isolated outliers
with large amplitude may corrupt the results [RKG∗11]. Here, we
overcome the limitations of this approach by performing an alter-
native analysis, which works on the frequency of the signal.

The scale-space is an approach to the multi-scale analysis of sig-
nals, originally developed in the image processing literature and
used in several low-level tasks in computer vision [Lin94]. In this
case, the initial function f undergoes a diffusion process, provid-
ing a family of progressively smoother functions, called the scale-
space. The deep structure of the scale-space encodes the morpho-
logical structure of the functions in this family at the different
scales. In particular, tracking the critical points through the scales
provides another ranked sequence of pairs, which is similar in na-
ture, but different from the one generated with topological persis-
tence. In this case, the analysis occurs in the frequency domain,
resulting more robust to noise. However, the critical points drift
across the domain while the function undergoes diffusion, hence
tracking them may also be problematic [RKG∗11]. Here, we over-
come the limitations of the classical layered model of the scale-
space, by adopting a continuous model.
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In summary, we propose a method for simplifying the Morse-
Smale complex of a scalar function, which is based on the analysis
of the deep structure of its scale-space. We rely on a continuous,
piecewise-linear model of the scale-space [RP13], which supports
a robust tracking of the critical points through the scale, and a rank-
ing of pairs of critical points that annihilate together. Such ranking
is then used, akin to [EHZ03], to progressively simplify the Morse-
Smale complex computed on the original function. This provides
a fine-grained hierarchy of complexes that are faithful to the mor-
phology of the original terrain, and can be efficiently queried at any
desired scale. We present applications to topographic maps, provid-
ing a multi-scale representation of the network of ridges and valleys
that join peaks, pits and passes. The method is rather general and
can be directly applied to bivariate functions in other contexts. Ex-
tensions to higher dimensions are also possible.

2. Related work

Morse theory [Mil65] is a classical mathematical theory that re-
lates the topology of the domain of a function to its critical points;
see [Mat02] for a modern account. Morse and Morse-Smale com-
plexes have been long used to describe the morphology of discrete
scalar fields in a variety of applications; see [BDF∗08] for a survey.
There exist two main approaches to the computation of such com-
plexes from sampled data: in the piecewise-linear setting, the un-
derlying smooth function is approximated with a piecewise-linear
signal defined on a simplicial complex, which discretizes the do-
main of the function [EH10]; in the discrete Morse theory [For98],
the domain is also discretized with a simplicial complex, but just
the incidence graph of cells is considered, and discrete gradients
are associated to its arcs. Both approaches have advantages and
disadvantages. In this work, we adopt the piecewise-linear setting.

Scale-space theory was proposed independently by Koenderink
[Koe84] and Witkin [Wit83], thoroughly studied and formalized
later on by Lindeberg [Lin94], and used in countless applications in
image processing and computer vision; see [Pri23] for an annotated
bibliography. The most recent developments of the scale-space the-
ory address its application to the design of neural networks [Lin22].

The scale-space is a one-parameter family of functions, built by
applying a diffusion process to the input function. The deep struc-
ture of the scale-space encodes the evolution of the critical points of
the function through the different scales, together with the topolog-
ical structures that such evolution implies. See [GC95] for a sum-
mary of the morphological features encoded in the deep structure.
In particular, the graph of saparatrices computed at each scale is
equivalent to the Morse-Smale complex of the corresponding func-
tion, thus an analysis of the deep structure may provide an evolution
of such complex through the scales.

In most cases, a discrete version of the scale-space is assumed,
which consists of a sequence of layers, each filtered at a different
scale. Finding the deep structure in such a model may be hard: since
the diffusion process displaces the critical points, tracking each of
them through the scales is prone to errors and noise, and often
leads to false or broken trajectories [RKG∗11]. Rocca and Puppo
[RP13] proposed a continuous model, based on a piecewise-linear
discretization of the whole scale-space domain, which supports the

robust tracking of critical points through the scales; this approach
was applied successfully to the recognition of fiducial points on
range images of faces [DRP15], and to the automatic placement of
spot heights on topographic maps [RJP17]. In this work, we adopt
the same approach to drive our morphological simplification.

Persistent homology was proposed independently by Edelsbrun-
ner et al. [ELZ02] and by Frosini and Landi [FL99]. It provides a
method to rank the importance of critical points of a Morse func-
tion, by studying the evolution of the topology of its sublevel sets.
Similarly to tracking the critical points through the scale-space, per-
sistent homology also provides a ranked sequence of pairs of crit-
ical points. A pair in the scale-space contains critical points that
vanish together at some scale, and its ranking measures how long
such a pair “survives” through the scales (i.e., it is resilient to filter-
ing); while in persistent homology the pairing is related to the evo-
lution of the sublevel sets and the score of a pair is the difference in
amplitude of the function at the paired points. The two approaches
thus differ both in forming pairs and in ranking them.

Morphological simplification can be performed by using the
ranked sequence of pairs to simplify the Morse-Smale com-
plex by progressively merging adjacent cells [EHZ03]. We build
our multi-scale morphological model in a similar fashion, by
relying on the sequence generated from the scale-space. Sev-
eral other works follow a different approach, using topolog-
ical persistence as a guide to modify the input function di-
rectly, in order to obtain a function with a simpler morphology
[BS98, DDM∗03, DS18, FKM20, ID17, SFID21]. However, as the
function is modified, the separatrices describing its morphology
drift across the domain, thus describing a morphology that is no
longer referred to the original function in a metric sense. We rather
prefer to maintain the simplified morphology strictly referred to the
original function: our model is a hierarchy, in which a simplified
complex is bounded by a subgraph of the detailed morphology of
the original function; we just progressively discard less important
critical points and separatrices, by preserving the most representa-
tive features of the original function through the scales.

3. Background notions

Morse-Smale theory. LetM be a smooth manifold of dimension
d. A smooth function f :M−→ R is said to be a Morse func-
tion if all its critical points are isolated; this is equivalent to say
that its Riemannian Hessian does not vanish at critical points. In
the following, we will stick to d = 2; the theory holds for higher
dimensions too, but this is out of the scope of this work.

Let p ∈M be a minimum of f ; we define the unstable subman-
ifold (a.k.a, basin) of p as the locus of points of M that lie on
integral curves of f emanating from p; for d = 2, each such region
is bounded by a set of separatrices that are integral curves connect-
ing maxima and saddles. The unstable manifolds form a partition of
M. Similarly, the stable submanifold (a.k.a, mountain) of a maxi-
mum q is the locus of points that lie on integral curves converging at
q. The stable submanifolds form another partition ofM, and each
of them is bounded by separatrices that connect minima to sad-
dles. If the two partitions intersect transversally, then their overlay
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is called a Morse-Smale complex. Hereafter, we will assume f sat-
isfies this property. In the bivariate case, the Morse-Smale complex
is described by a planar graph, whose edges are the separatices that
connect saddles to maxima and saddles to minima. See [Mat02] for
a more thorough formal treatment of this subject.

Scale-space. Let f be a Morse-Smale function defined on a two-
manifoldM as above. The linear scale-space Ff (p, t) of f is de-
fined as the solution of the heat equation

∂

∂t
Ff = λ∆Ff ,

with initial condition Ff (p,0) = f (p), where ∆ denotes the
Laplace-Beltrami operator with respect to the space variable p,
and λ is a constant term tuning the speed of diffusion. So, the
scale-space is defined on a three dimensional domainMt =M×
[0, tmax], the first two dimensions referring to space. We will use in-
terchangeably the words scale and time referring to the third dimen-
sion. In general, the scale-space Ff is obtained through a diffusion
process starting at f . IfM is Euclidean, i.e.,M⊂ R2, the scale-
space can be obtained equivalently by convolving f with Gaussian
kernels of increasing variance.

A layer of the scale-space for a given time t̄ is the restriction
ft̄ = Ff |t=t̄ . Let p be a critical point of ft̄ . There exist a maximal
smooth trajectory γp : [tc

p, t
a
p] −→Mt, with t̄ ∈ [tc

p, t
a
p], such that

γp(t̄) = (p, t̄) and for all other values γp(t) is a critical point of ft
of the same type of p. Trajectory γp describes the evolution of crit-
ical point p through the scales; with abuse of notation, when the
scale is clear we will refer to p and γp interchangeably. The values
tc
p and ta

p are called the times of creation and annihilation of critical
point p, respectively. If tc

p = 0, then p is an original critical point
of the input function, otherwise it is called a newborn. Similarly, if
ta
p < tmax, then p vanishes at time ta

p, annihilating with another crit-
ical point; otherwise, it is a survivor at the largest scale. A creation
or annihilation of (pairs of) critical points is called a catastrophic
event. Each catastrophic event always involves a saddle and either
a minimum or a maximum. If we consider the Morse-Smale com-
plexes for all layers of Ff , we find that also separatrices sweep sur-
faces through the scales; and each separatrix will collapse and/or
originate at catastrophic events involving its endpoints. This evolu-
tion of the morphological structure of f through the scale is called
the deep structure of the scale-space. See, e.g., [FK00] for a more
thorough formal treatment of this subject.

4. Morphological simplification

We first describe the piecewise-linear scale-space together with the
algorithm to find catastrophic events in its deep structure, and their
use to pair and rank critical points (§4.1). Next, we describe the al-
gorithm to extract the Morse-Smale complex under the piecewise-
linear approach (§4.2). Finally, we describe how to use the ranked
set of pairs of critical points to obtain a progressive simplification
of the morphology of the input function (§4.3).

4.1. The piecewise-linear scale space

Let f0 be a Morse function sampled at a finite set of points inM,
and let f1, · · · , ftmax be progressively smoothed versions of f0, ob-

tained as described in §3. The collection ( f0, f1, · · · , ftmax) provides
a discrete representation of the scale-space Ff .

Following [RP13], we build a continuous piecewise-linear ap-
proximation of Ff . Let M be a triangular mesh approximatingM,
having its vertices at the points where f0 is sampled. The construc-
tion of M is out of the scope of this work; in our experiments,
we assume f0 sampled at the nodes of a regular grid discretizing
rectangle M = [0,w]× [0,h] and the mesh M is built trivially by
diagonally splitting each cell of the grid into two triangles; as a
consequence, each internal vertex of M has exactly six neighbors.

We take tmax + 1 copies of M, namely M0, . . . ,Mtmax and for all
i = 0, . . . , tmax we associate the values of fi to the corresponding
vertices of Mi. We extend fi to the triangles of Mi by linear interpo-
lation, thus obtaining a piecewise-linear bivariate function overM
interpolating fi at the sampled points. Such a function constitutes
a layer in the scale-space, which is now continuous in the spatial
domain, yet discrete in the time domain. See Fig.1 left.

In order to achieve continuity in time, too, we connect corre-
sponding triangles of consecutive layers to form triangular prisms,
in which we approximate Ff by bilinear interpolation (linear in the
space and time variables, respectively). See Fig.1 center.

Let τ be a triangle of M having vertices a,b,c, and let τi,τi+1
be the copies of τ in Mi,Mi+1, respectively. Let f a

i , f b
i , f c

i and
f a
i+1, f b

i+1, f c
i+1 be the values of the functions at a,b,c in layers i

and i + 1, respectively. We approximate Ff within the triangular
prism between τi and τi+1 with the following bilinear function:

f τ(α,β, t) = (1− t)(α f a
i +β f b

i +(1−α−β) f c
i )+

t(α f a
i+1 +β f b

i+1 +(1−α−β) f c
i+1)

where (α,β) are the barycentric coordinates of a generic point in
triangle τ and t ∈ [ti, ti+1] is the time variable. See Fig.1 right. Note
that for any i and for any time t̄ ∈ [ti, ti+1] the collection of functions
f ·(·, ·, t̄) form a piecewise linear function ft̄ on the triangles of M,
which provides a virtual layer of the scale-space Ff at time t̄.

Analysis of the deep structure. Given any layer ft , with t ∈
[0, tmax], its critical points are located at vertices of M and char-
acterized as follows:

• A point p is a maximum if ft(p) is larger than the value of ft at
all neighbors of p;
• A point p is a minimum if ft(p) is smaller than the value of ft at

all neighbors of p;
• A point p is a k-saddle if, when the neighbors of p are traversed

in cyclic radial order, the number s of times that the values of ft
at them alternate between smaller and larger values with respect
to ft(p) is larger than two. The index of the saddle is k = s/2−1
(in our experiments, since each sampling point has exactly six
neighbors, only 1- and 2-saddles may exist).

In all other cases, p is said to be a regular point. We are interested
in finding the time of creation and annihilation of all critical points,
and to pair those that are cerated/annihilated together.

Since the classification of a critical point p depends just on the
relation between its value and the values of its neighbors, relevant
events can occur only when one of such relations change. We say
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Figure 1: Scheme of the piecewise-linear scale-space. We approximate the domain with a triangle mesh, which is replicated at all layers
of the discrete model, obtaining a piecewise-linear representation at each layer (left); Triangles of subsequent layers are connected to form
prisms, approximating the volume of the scale-space domain (center); within each prism, the scale space Ff is approximated with a bilinear
function, which is linear in the space and time dimensions, respectively (right).

Displacement Annihilation Creation

(m, r) → (r,m) (m, s1) → (r, r) (r, r) → (m, s1)
(M, r) → (r,M) (M, s1) → (r, r) (r, r) → (M, s1)
(s1, r) → (r, s1) (m, s2) → (r, s1) (r, s1) → (m, s2)
(s2, r) → (r, s2) (M, s2) → (r, s1) (r, s1) → (M, s2)
(s2, r) → (s1, s1)
(s1, s1) → (s2, r)
(s2, s1) → (s1, s2)

Table 1: Possible transitions in the state of a pair of vertices con-
nected by a flipping edge, after [RP13]. r: a regular point; M: a
maximum; m: a minimum; s1: a 1-saddle; s2: a 2-saddle. Note that
for every event a specular one is also possible, for a total of 32 pos-
sible events. An example would be: (M,s2)→ (r,s1) is equivalent
to (s2,M)→ (s1,r).

that an edge pq of M flips at time t ∈ [ti, ti+1] if the relation between
fi(p) and fi(q) is different from the relation between fi+1(p) and
fi+1(q). Since the function ft evolves linearly along pq between ti
and ti+1, we can compute exactly the time of flip as

tflip =
fi(q)− fi(p)

fi(q)− fi(p)+ fi+1(p)− fi+1(p)
+ i. (1)

We identify all flips that occur within our piecewise-linear scale-
space and sort them by time. Note that a flip is a relevant event
only if it changes the labels of the endpoints of the edge; in this
case, we have three possible types of flip: displacements, which al-
low us to trace the evolution of a critical point through the scales;
annihilations, in which two critical points end their trajectories; and
creations, in which two newborn critical points start their trajecto-
ries. Table 1 reports the relevant transitions caused by edge flips.

The analysis of flips generates a set of critical points (either orig-
inal or newborn), where for each point p we record: the times tc

p of
its creation (possibly tc

p = 0 if p is original) and ta
p of its annihila-

tion (possibly ta
p = tmax if p is a survivor); and the critical points qc

and qa that are created and annihilated together with p, respectively
(possibly empty if p is original andl/or a survivor).
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survival

Figure 2: Critical points m,s are original while m′,s′ are newborn
together at time t; m annihilates with s′ at time t′ while m′ anni-
hilates with s at time t′′: the life of m is extended to [0, t′′] and it
is paired with s. Similarly, s1 is original while s′′,m′′ are newborn
together at time t′; m′′ annihilates with s1 at time t′′ while s′′ is
a survivor at time tmax: the life of s1 is this extended to [0, tmax]
making it a survivor.

Dealing with newborns. Eventually, we want to find a ranked
sequence of pairs, each consisting of two original critical points,
which are annihilated together; the ranking will be provided by the
time of annihilation. In this perspective, the birth of new critical
points represents a perturbation in the usual flow of displacements
and collapses, which should results in a steadily decreasing number
of critical points as the scale parameter increases. Most newborns
are ephemeral and can be safely discarded. However, a small but
sizable fraction of them does not disappear and survives arbitrarily
long through the scales. Moreover, some original critical points in
fact are annihilated together with newborn ones. It turns out that, in
most cases, these long-lived newborns in fact extend the life span
of pre-existing critical points of the same type, which disappear
shortly after the appearance of the newborn ones in their proximity
[RJP17].
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Consider the example in the left side of Fig.2. A minimum m
that was present in the original data is annihilated together with a
saddle s′ at time t′. If s′ is a newborn saddle that was born at time
t < t′ together with a minimum m′, which lives longer than t, we
interpret the collapse of m and s′ as a transition of the minimum
from m to m′. We thus extend the life of m until m′ is annihilated.
The life of m′ could later be extended by the same mechanism, thus
prolonging the life of m further, and so on. Fig.2 shows also another
example of an original saddle that becomes a survivor because of
this life extension.

The recovered life span is computed by following the sequence
of annihilation and creation events, checking and propagating the
timestamps along the way. The procedure stops when reaching ei-
ther is a survivor, or a critical point that annihilates together with an
original critical point. Eventually, we are left with two sets of orig-
inal critical points: the survivors that have a life span of [0, tmax];
and a sequence of pairs of points that are annihilated together at
some t < tmax; the latter sequence is ranked by this time t.

4.2. Extracting the Morse-Smale complex

We compute the morphology of the input signal at its most re-
fined scale, by considering the piecewise-linear function defined
by (M, f0), as described in the previous section. Broadly speaking,
a Morse-Smale complex is computed by tracing ascending and de-
scending paths of maximum steepness, starting at the saddles. From
a standard 1-saddle there exist two ascending and two descending
paths, and on a smooth Morse function all paths are separated, ex-
cept at their crossings, which occur just at critical points.

Ad discussed in [EHZ03, EH10], piecewise-linear functions do
not easily satisfy the Morse requirements for the presence of mul-
tiple saddles and collapsed paths. Since we bound the degree of
vertices to valence six in our meshes, there can indeed exist at most
2-saddles. While such saddles could be decoupled into pairs of 1-
saddles by small perturbations, we prefer to process our input un-
changed: we address 2-saddles as special cases, tracing all six paths
emanating from each such saddle.

Different ascending and descending paths leading to some max-
imum or minimum may collapse to the same path for a portion of
their route. This fact implies the presence of regular points where
multiple paths either split or join, which we call fork points. A no-
table example of fork point on a terrain is the location where a
tributary from a side valley joins a river in a main valley.

We trace ascending and descending paths from saddles by fol-
lowing the edges of M. Although this is not exact in terms of gra-
dients of the piecewise-linear function, it is simple to compute, it
provides an equivalent topology, and the numerical error is negli-
gible if the input is at high resolution (i.e., the size of triangles of
M is tiny with respect to the morphology of the function). Akin to
[EHZ03], each time an ascending or descending path hits a fork
point (i.e., a vertex traversed by a previously computed path), or a
saddle, we stop tracing it at that point. After this first step, each fork
point q has several incoming paths π

i
1, . . . ,π

i
k and just one outgoing

path π
o, which is either ascending or descending. In a second step,

we extend each path π
i
j incident at q, constrained by the other paths

crossing q: if π
i
j is of the same type of π

o, then it is extended with

π
o; otherwise, π

i
j has just one incoming path π

i
k of opposite type be-

side it in the radial order about q and we extend π
i
j with π

i
k taken in

reverse order. Different paths may travel together through multiple
fork points; the procedure above is repeated at all fork points until a
maximum or minimum is reached. Paths hitting saddles are treated
similarly. See [EHZ03] for further details. Whenever possible, we
follow the approach of [BEHP03] to disambiguate ascending and
descending paths that overlap by running them parallel, but sepa-
rated by at least a strip of triangles of M.

Eventually, we obtain complete paths that join each saddle to its
related maxima and minima. Such paths never cross, although they
may share some of their route with other paths.

4.3. Morphological simplification

We use the ranked list of pairs computed as in §4.1 to simplify the
Morse-Smale complex obtained as described in §4.2. The simpli-
fied complex at time t ∈ [0, tmax] is obtained by deleting all pairs of
critical points that annihilate at a time≤ t and updating the complex
accordingly.

Let (s,m) be a pair of critical points, where s is a saddle point
and m is either a maximum or a minimum that annihilates with s
at time t. Note that only 1-saddles can annihilate, while a 2-saddle
must undergo a transition into a pair of 1-saddles before it can hit a
catastrophic event; thus, s will have exactly two asecnding and two
descending incident paths. Let MSt be the complex simplified by
deleting all pairs that annihilate before time t. The annihilation of
(s,m) modifies MSt as follows:

• The two paths joining s with the extrema of type opposite to m
are deleted and their incident regions are merged;
• Saddle s is turned into a regular point, extremum m is turned into

a fork point, and direction of the path joining them is reversed;
• As a consequence, all paths leading to m are now extended to

paths that lead to the other extrema joined to s having the same
type of m.

5. Experimental results

We tested our method on two synthetic datasets and a real world ter-
rain. Statistics about the datasets and the construction of our multi-
scale model on each of them are presented in Table 2. Datasets
are all regular grids, meshed with a regular pattern of triangles, of
sizes between about 66K and 1M vertices. Following a custom-
ary approach in the scale-space literature, the levels of the discrete
scale-space have been computed by convolving the input function
with Gaussian kernels of variance increasing exponentially at each
level. All our graphs refer to the scale t in the scale-space, which
corresponds to the variance of the filter applied at such scale. Scales
between levels, where catastrophic events occur, are estimated by
rescaling the linear value of Eq.1 to the exponential scale.

The construction of our multi-scale morphological model re-
quires between about one second for the smallest datasets to over
twenty seconds for the largest one. Most of the time is spent in
building the scale-space, while the final construction of the multi-
scale model is negligible even for the largest dataset. The time
needed to build the scale-space seems to be dependent only on the
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Dataset Model Times (ms)

Name Grid size (Vertices) Levels in Regions in Merge Scale-space Base M-S Multi-scale Total
discrete s-s base M-S operations discrete PL complex model

CosCos 256×256 (65536) 14 96 79 293.7 546.8 3.6 1.6 845.7
CosCos-Spikes 256×256 (65536) 14 572 422 324.0 606.4 58.5 20.7 1009.5
CosCos-Bumps 256×256 (65536) 14 1044 1004 306.0 747.5 178.7 53.5 1285.6
GaussHills-1 400×400 (160K) 14 12 11 898.3 1464.8 0.9 0.2 2364.2
GaussHills-2 400×400 (160K) 14 56 51 916.0 1421.7 4.2 0.9 2347.4
GaussHills-3 400×400 (160K) 14 226 209 920.6 1476.4 15.7 5.9 2418.5
Graian Alps 1200×900 (1080K) 16 5139 4867 8300.9 11467.1 3428.7 153.0 23349.7

Table 2: Statistics for the results presented in Figures 3, 4, and 5. From the left: name and size of the dataset; number of levels in the
initial discrete scale-space, number of regions in the Morse-Smale complex at the finest scale, and total number of merge operations in the
multi-scale model; time to build the discrete and the piecewise-linear scale-space, including time to find and sort the sequence of catastrophic
events; time to compute the Morse-Smale complex at the finest scale; time to perform the morphological simplification and build the multi-
scale morphological model; total time to build the model.

size of the input, for a given number of levels of the discrete model;
while the (comparatively cheaper) following steps are also affected
by the complexity of the Morse-Smale complex, which we mea-
sure by the number of its regions. While the current implementa-
tion is non-optimized prototype code, the construction of the scale-
space could be optimized and also parallelized, possibly achieving
a speedup of one or two orders of magnitude. After the multi-scale
model has been built off-line, querying it on-line at a desired scale
is almost immediate; we do not report times for online queries, as
they are always compatible with interaction.

5.1. Datasets and analysis of results

Dataset GaussHills is a collection of three stochastic terrains: in
each of them, the final function is obtained by summing multiple
Gaussian functions with means, variances and positions randomly
sampled from different uniform distributions. In Fig.3, we present
experiments on the base dataset, created using only a few functions
at large means and variances; and on two additional datasets ob-
tained by adding on top of the previous dataset other sets of Gaus-
sian functions, created in greater quantities and sampled from pro-
gressively smaller ranges. The main structure, which is evident in
the filtered version of the clean dataset, also occurs roughly at the
same scale in every dataset, despite all the additional finer-scale
features. The geometric paths of the separatrix lines are more con-
voluted, but this is to be expected, as they have to navigate through
a rougher terrain. The main structure is well preserved at large scale
even in the most detailed dataset, which contains many features or-
ganized in a highly complicated morphology at the finest scale.

At the bottom of the figure, we report signature graphs, which
are built akin to the diagrams used in the literature on topological
persistence: each bullet represents a critical point; its horizontal po-
sition denotes the intensity of the signal at that point; while its ver-
tical position denotes the extent of its life in the scale-space. The
signature of the signal is given by the most representative points,
once those ones with a short life have been discarded. It can be
clearly seen that the three signatures are very close to each other by
filtering spurious points at a scale of about 29, preserving most of

the features of the base signal while discarding most of the noise
given by additional details.

In Figure 6 we show graphs of the number of regions in the
Morse-Smale complex as a function of the scale in our multi-scale
model. For the GaussHills datasets (left), it is clear how noise (or,
rather, high frequency detail) is filtered fast before scale 28, while
the clean dataset is resilient to filtering up to that scale; after a near-
plateau spanning scales about [27,29], a few features disappear at
progressively near scales up to 210, where the number of regions in
the three models becomes almost identical.

Dataset CosCos is a collection of three synthetic terrains: a clean
one, sampled from a sinusoidal function dampened with a Gaussian
centered at the origin, and two noisy versions of it. The original
function is symmetric with respect to both coordinate axes, and all
its critical points occur at the same frequency while having different
intensities because of the damping. In Fig.4, we present results on
the clean dataset, on a version perturbed with full-range impulsive
noise on 0.3% of the data, and on a version perturbed with bumps,
representing Gaussian noise at a frequency lower than the sampling
rate. All the main features – critical points and separatrices – of
the clean function are resilient to filtering in the scale space and
are well represented in the deep structure, as tracked by the multi-
scale Morse-Smale complex. The critical points at the boundary
are all connected to a virtual minimum outside the square domain
and are the first to be filtered out; then saddles that form an inner
frame close to the boundary are filtered together in a symmetric
pattern, as it can be seen in the filtered version of the clean dataset.
Both noisy versions of the dataset initially contain many more crit-
ical points, connected by a fine-scale network. Despite their pres-
ence, the structure of the original function clearly emerges in the
filtered versions, confirming its resilience in the multi-scale model.
All main critical points and their connecting lines are present and
the morphological structure is very well preserved in both noise
models. The geometrical position of features is mostly unaffected
by impulse noise while it shows an occasional tendency for a slight
displacement when perturbed with Gaussian bumps.

The signature graphs are less clear in this case. Note that, given
the high symmetry of the clean dataset, darker bullets represent
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Figure 3: Morse-Smale complexes of a collection of stochastic terrains. Top to bottom: input function; complex at the finest scale; com-
plex at a larger scale; signature plot. Left to right: low frequency only (dataset (dataset GaussHills-1); same with medium-scale features
added (dataset GaussHills-2); same with further addition of high frequency details on top of previous functions (dataset GaussHills-3).
Red/green/blue bullets represent maxima/saddle/minima; bullet size and line width in the M-S complex denote life extent in the scale-space.
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Figure 4: Morse-Smale complex of function e−
x2+y2

2π cosxcosy. Top to bottom: input function; complex at the finest scale; complex at a
larger scale; signature plot. Left to right: lean function (dataset CosCos); perturbed with impulse noise (dataset CosCos-Spikes); per-
turbed with Gaussian noise at a frequency lower than the sampling rate (dataset CosCos-Bumps). Red/green/blue bullets represent max-
ima/saddle/minima; bullet size and line width in the M-S complex denote life extent in the scale-space.
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more than one critical points, since symmetric points occur at the
same range and disappear at the same scale. Overall, the signatures
of the clean dataset and the dataset perturbed with impulse noise
are very similar from about scale 29. The signature of the dataset
perturbed with bumps is shifted a bit to the right because the bumps
were all added with a positive sign, causing an overall shift of the
range towards higher values. Except for that, the points present in
the signature beyond scale 210 are about the same as those in the
clean dataset, albeit sometimes with a different extent in the scale
space.

The graph of the number of regions as a function of scale (Fig.6,
center) shows that this number is nearly coincident at scales be-
tween 26 and 29, suggesting that the deep structure might represent
the same features at those scales. Beyond 29, catastrophic events
indeed involve the same points in the three datasets, but occur at
different scales: earlier in the version perturbed with bumps, later
in the version perturbed with spikes and in the clean version, which
has the longest lives for the most prominent features.

Dataset Graian Alps is a real terrain, derived from the SRTM
Nasa Mission[dF12]. The digital elevation model represents the re-
lief of the Graian Alps, roughly centered on the Mont Blanc Massif.
Results are presented in Fig.5. Natural data often presents features
at all scales and frequencies and no comparison with a “clean” ver-
sion is possible, nor meaningful. Our aim is to show that the multi-
scale morphological model obtained by refining the Morse-Smale
complex using the weighted sequence provided by our scale-space
analysis captures and correctly represents the relative importance
of ridge and valley lines in the terrain morphology, preserving the
most relevant ones as the scale parameter grows. It should be noted
that our analysis can consider only lines departing from saddles.
While all separatrices are either ridges or valleys, there may exist
local valley-like or ridge-like lines that do not end at critical points
and not correspond to separatrices. In rugged terrains, such lines
may be visually evident. This is a limitation of the Morse-Smale
complex, though, which is not related to our specific method.

The Graian Alps dataset contains a much higher number of crit-
ical points compared to the other datasets. Its graph of the number
of regions as a function of scale (Fig.6, right) exhibits an almost
perfectly linear decay of the number of regions through the scale,
which is clearly representative of the presence of features at all
scales.

5.2. Discussion

While we did not perform yet any direct comparison with methods
based on persistence, or methods based on surface simplification,
we may draw some conclusion from the reported results:

• Our method preserves the location of critical points, as well as
the shape of regions in the Morse-Smale complex, always refer-
ring to the graph of the input function. This is not possible with
methods based on surface simplification, which change the graph
of the input function and extract the Morse-Smale complex from
the simplified surface.
• Our method is robust to noise, including impulse noise, which

is likely to be problematic for methods based on persistence. In

fact, outliers added from input noise annihilate early in our scale-
space, while their persistence is likely to be high, possibly at
the same scale of the most relevant critical points in the clean
function.
• Signatures obtained by preserving just the critical points with

longer lives in the scale-space are representative of the main fea-
tures of the signal, and the Morse-Smale complex at the corre-
sponding scale provides a robust morphological characterization
of its graph.
• Application to terrain data shows that even a drastically simpli-

fied Morse-Smale complex is able to capture the major ridges
and valleys of a terrain, and to partition it into its constituent
land masses.

6. Concluding remarks

We have presented a progressive multi-scale morphological model
of scalar fields, based on scale-space analysis, and on a consequent
simplification of the Morse-Smale complex of the underlying func-
tion. This represents an alternative approach to the more popular
analysis based on topological persistence and to more common ap-
proaches that simplify the geometry of the input signal. The main
difference derives from the initial analysis occurring in the fre-
quency domain instead of the amplitude of the signal.

Preliminary results on synthetic data, with and without noise, as
well as on real terrain data suggest that our approach is promising,
it is resilient to noise, it and produces meaningful results. Further
investigation is needed to compare it to techniques based on persis-
tent homology. Both methods provide a ranked sequence of pairs
of critical points that guide the simplification of the Morse-Smale
complex starting at the finest scale. A theoretical analysis, though,
suggests that the two rankings might be intrinsically different. A di-
rect comparison could offer insights on their complementarity and
on their respective strengths and weaknesses.

Several other aspects will be the subject of our future work. Con-
cerning scale-space analysis, although our treatment of newborn
critical points seems to work well in practice, providing trajecto-
ries in the scale space that are much better than those obtained
with discrete analyses, the interaction between original and new-
born critical points is still unclear, and more investigation is needed
to better understand and better justify why some newborn points
can be considered as extensions of original points. Moreover, the
ranked sequence provided by the continuous scale-space analysis
seems to be always topologically correct for the datasets we have
tried so far (i.e., it never suggests the annihilation of two critical
points that are not directly connected in the Morse-Smale complex
computed up until that event). More work is needed to understand
if this is a guarantee or not, and if situations where this is not the
case might arise, and how they might be described. Concerning
the computation of the Morse-Smale complex, the piecewise-linear
approach has several corner cases that often occur with real data,
adding to the complexity of the underlying algorithms. An alter-
native approach based on the discrete Morse theory by Forman is
worth investigating, as it might give more stable results.
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Figure 5: Morse-Smale complexes of the Graian Alps dataset: input data (upper left); complex at the finest scale (upper right); and
complexes filtered at progressively larger scales (lower row). Red/green/blue bullets represent maxima/saddle/minima; bullet size and line
width represents life extent in the scale-space.
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Figure 6: Number of regions in the Morse-Smale complex as a function of the scale: GaussHills dataset, three variants (left); CosCos
dataset, three variants (center); Graian Alps dataset (right).
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