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Abstract

In Computer Graphics and Computer Vision, shape co-segmentation and shape-matching are fundamental tasks with diverse ap-
plications, from statistical shape analysis to human-robot interaction. These problems respectively target establishing segment-
to-segment and point-to-point correspondences between shapes, which are crucial task for numerous practical scenarios. No-
tably, co-segmentation can aid in point-wise correspondence estimation in shape-matching pipelines like the functional maps
framework. Our paper introduces an innovative shape segmentation pipeline which provides coherent segmentation for shapes
within the same class. Through comprehensive evaluation on a diverse test set comprising shapes from various datasets and
classes, we demonstrate the coherence of our segmentation approach. Moreover, our method significantly improves accuracy
in shape matching scenarios, as evidenced by comparisons with the original functional maps approach. Importantly, these en-
hancements come with minimal computational overhead. Our work not only introduces a novel coherent segmentation method
and a valuable tool for improving correspondence accuracy within functional maps, but also contributes to the theoretical
foundations of this impactful field, inspiring further research.

CCS Concepts
e Computing methodologies — Shape analysis; * Theory of computation — Computational geometry; * Mathematics of

computing — Functional analysis;

1. Introduction

In Computer Graphics and Computer Vision, the shape-matching
task plays a crucial role in several applications, from statistical
shape analysis to human-robot interaction, among many others.
The solution to this problem usually consists of a map associat-
ing each point in the discretization of one of the shapes to the cor-
responding point, for some semantic, on the second shape. Since
2012, the functional maps framework (FMAP) [OBS*12] has pro-
vided an efficient and valuable alternative to standard procedures.
FMAP exploits the functional representation of the point-wise map.
FMAP has given rise to a plethora of shape-matching algorithms
during the last decade. Given for each of the involved shapes, a
functional basis and a set of functions for which the correspond-
ing functions on the other shape are known, FMAP consists of an
optimization problem that results in the matrix which translates the
functional encoding of a signal defined on the first shape to the en-
coding of the corresponding signal on the second shape. In this pa-
per, we focus on defining a new set of corresponding functions that
determines the optimization problem in FMAP, namely the probe
functions. Frequent choices of probe functions consider point-wise
descriptors [SOG09; ASCI11], corresponding regions [DMB*17]
and landmarks. While descriptors arise from unsupervised proce-
dures, corresponding regions and landmarks should arrive as input
in the FMAP and, in most cases, from the supervision of a user.
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In our work, as in the typical case, we consider a given small set
of landmarks and propose a novel way to segment the two shapes
consistently. Then, we inject these segments as probe functions in
FMAP. Our procedure involves the well-known eigendecomposi-
tion or spectrum of the Laplace Beltrami operator [PP93], which
is already necessary in the FMAP pipeline to define the functional
basis, thus without requiring any additional computation. For this
reason, we refer to our approach as a spectral method. The final
segmentation arises from a first step that removes all the tiny el-
ements and details of the geometries through the mean curvature
flow procedure [KSB12], making the shapes more similar, espe-
cially from the spectral point of view. Then, a differential analysis
of the geometry is adopted to define the centers of the segments,
and an intrinsic Voronoi diagram (iVd) [LLOO] generates the final
region on the shape. Finally, by exploiting the input landmarks, we
associate the corresponding regions on the two shapes by aligning
their centers, removing eventual regions without correspondence.
In our evaluation, we compare the performance of the most adopted
FMAP algorith [NO17] and the same pipeline that also utilizes
our corresponding segments as probe functions, showing how they
can improve the accuracy of the estimated correspondence without
additional supervision and with minimal additional computational
cost. We experiment with different settings in the quality of the
input landmarks, showing how robust our method is to these vari-
ations. We consider different test sets, proving that our coherent
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Figure 1: A visualization of the proposed pipeline and its main application. On the left of the dashed line, we describe our pipeline to obtain
the coherent segmentation independently for three different input shapes X, Y, and Z. On the right, we depict the necessary steps to exploit
the obtained segmentation as constraints in the functional maps optimization to estimate a correspondence among shapes.

segmentation procedure applies to different classes of shapes and
that FMAP can benefit from our method in several scenarios. Last
but not least, with our work, we not only provide a valuable in-
strument to improve the accuracy of the estimated correspondence
in FMAP, but we also offer a novel theoretical analysis that could
give rise to further research in this impactful field. To summarize
our contributions are:

e We study the role of conformalized mean curvature flow to re-
move geometric details and make shapes from a given collection
more similar from the spectral perspective.

e We identify the singularities of the Fiedler vectors as good candi-
dates to define centers for Voronoi regions to generate a coherent
segmentation of shapes belonging to the same class.

e We foster our segmentation in the context of functional maps
by exploiting the given input landmarks to align the regions and
obtain the consistent segmentation that is injected as probe func-
tions in the FMAP optimization.

2. Related work

In our work, we cover different aspects of geometry processing:
spectral shape analysis, shape segmentation and functional shape
matching. Covering the waste literature on all these topics is an
ambitious objective and is out of the scope of our work. Instead,
in this Section, we briefly overview the most relevant and related
literature on these three prominent topics in geometry processing.

2.1. Spectral analysis

Spectral shape analysis is a fundamental branch of geometry pro-
cessing that utilizes spectral properties of geometric data for shape
analysis and manipulation [Tau95; Lev06; VLOS8]. The term spec-
tral refers to mathematical quantities extracted from the eigenval-
ues and eigenvectors associated with certain differential operators,
typically the Laplacian operator or its variants [PP93; MDSBO03;
ARACI15; CSBK16; MRCB18], applied to a geometric shape or its
representation. These spectral quantities capture important shape
characteristics and provide a spectral representation of the shape.
For this reason, they play a pivotal role in spectral shape analysis by
offering a compact and informative representation of shapes that is
invariant to rigid transformations and isometric deformations, mak-
ing them suitable for various shape analysis tasks such as shape
retrieval [RWPO06], shape correspondence [LHO5], and shape de-
formation [RCGO8]. These features have also been instrumental in
solving problems related to mesh processing [LZ10], surface pa-
rameterization [MTADO8], and mesh segmentation [RBG*(09].

2.2. Shape segmentation

Shape segmentation [Sha08] is a crucial task in geometry pro-
cessing, which aims to partition intricate 3D shapes into non-
overlapping, semantically meaningful regions, often organized hi-
erarchically. This process yields valuable insights into shape ge-
ometry and part semantics, playing a fundamental role in object

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.



C. Mancinelli & S. Melzi / Spectral-based segmentation for functional shape-matching 49

recognition, shape comprehension, and 3D modeling across diverse
domains, including computer-aided design (CAD), medical image
analysis, and computer graphics.

Various techniques have emerged for shape segmentation,
encompassing clustering-based methods [FSKR11; ZZWCI12;
MLDT23], graph-based strategies [ZLXHO8; BAT12], spectral
solutions [JWQ18; TYPC20], and deep learning approaches
[SQX*16; HHF*19; SYW#*22]. In this paper, our primary focus re-
volves around spectral approaches, aligning with the spectral shape
segmentation paradigm that harnesses the spectral properties of
geometric data, primarily the eigenvalues and eigenvectors of the
Laplacian operator.

Eigenvectors corresponding to low-frequency eigenvalues often
serve as a foundation for shape segmentation, encapsulating global
shape information. Clustering techniques, such as k-means cluster-
ing or spectral clustering, leverage these eigenvectors to group ver-
tices into segments based on their spectral properties [RBG*(09].

In more challenging scenarios, where pairs or collections of 3D
shapes share similarities, the task extends to achieving coherent or
consistent segmentation. Coherent segmentation implies that the
segments in both shapes are identical, while consistent segmen-
tation requires knowledge of the correspondence among these re-
gions [GF09; SvKK*11; GTOG16; DMB*17; KO19]. This intro-
duces a higher level of complexity, demanding innovative tech-
niques to achieve meaningful and coherent shape segmentation
across similar 3D shapes. We refer to the survey of Rodrigues and
colleagues [RMG18] for thorough review on the subject.

2.3. Functional shape-matching

The main goal of shape-matching is to establish meaningful rela-
tionships between elements in different shapes by finding corre-
spondences between points belonging to different geometries. In
this Section, we restrict our overview to the existing solutions that
exploit the functional approach. All these procedures are founded
on the functional map framework [OBS*12] (FMAP). For other
shape-matching methods, we refer to the survey [VZHC11].

The core idea of FMAP is to focus on the functional space de-
fined over each of the shapes involved in the matching for esti-
mating a correspondence between functions and then extracting a
point-wise map from it. This significantly differs from previous ap-
proaches, which directly attempt to estimate the point-wise. Start-
ing from a small set of landmarks (usually 5-10 landmarks), FMAP
formulates the shape-matching query as an optimization problem
that involves linear functional constraints, where the unknown is
a matrix C that represents the mapping in the functional setting.
These constraints are given by the preservation of the correspon-
dence between the known landmarks and other corresponding func-
tions such as segments or descriptors. Commonly used descriptors
are the heat [SOGO09] or the wave kernel signature [ASC11]. With
our method, we provide the FMAP pipeline with a set of corre-
sponding segments that can be used in conjunction with landmarks
and descriptors to improve the accuracy of the estimated pointwise
correspondence as we assess in Section 6.

Other constraints have been proposed to improve the quality of
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the estimated matrix C. The two main examples are the commuta-
tivity with the LB operator [OBS*12; RPWO19] and the preser-
vation of point-wise products proposed by Nogneng and Ovs-
janikov [NO17]. In our applicative experiments, we select the latter.
A plethora of alternative solutions have been proposed during the
last decade to improve map optimization [RPWO18], to solve sym-
metries [DCMO22], to improve the conversion of the functional
map [RMC15; RMC17; EB17] and to exploit the connection be-
tween functional and pointwise maps [MRR*19].

3. Setting and notation

‘We dedicate this section to introduce the notation and mathematical
background necessary to describe our method.

3.1. Mathematical background

Continuous setting In this paper, with the word “shape” we re-
fer to a connected and compact smooth 2-dimensional Rieman-
nian manifold M embedded in R3, while with the word “func-
tion” we will always mean a scalar field defined on M. We de-
note with dpq(+,-) : M X M — R the geodesic distance function
on M, which associates to every pair of points (x,y) € M x M
the length of the shortest curve on M connecting them. When this
does not cause ambiguity, we omit the subscript and simply write
d(-,-). Once we fix one point x € M, we can consider the function
dy(+) :== daq(x,-), which is a scalar field on M. We will refer to
dy(+) as the geodesic distance field sourced at x.

One can compute the derivatives of a scalar field on M using its
differential structure, extending thus the definition of the Laplacian
to the manifold setting. We refer to any introductory book of dif-
ferential geometry (e.g. [Sak97; dCar92]) for the details. Regarding
this paper, we just mention that we denote the Laplace-Beltrami op-
erator (LBO) on M with Ay, where again we omit the subscript
whenever ambiguity is avoided. The eigenfunctions of the LBO are
scalar fields on M, and they satisfy the equation

Ap =19,

where A and ¢ respectively denote the eigenvalue and the associated
eigenfunction of A 4.

Discrete setting We discretize M as a triangular mesh X =
(Vy,Fx), where Vi is the set of the 3D coordinates of its ny € N
vertices, which are assumed to be points of M, and Fy is the
set of triangles. We denote with 7y, x,x; the triangle having vertices
Xx1,x2,x3 € Vy. For every vertex x € Vy, we call its k-ring the set of
vertices that can be reached from x by moving at most k edges away
from it, while we call its star the set of al triangles incident to it. In
this setting, a scalar field F : M — R is discretized by sampling
its value at the vertices of X, i.e., it is an ny-dimensional vector
having at its i-th entry the quantity F (x;).

The LBO can be defined on a triangle mesh in several ways.
In this paper, we consider the widely-used cotangent Laplacian L,
introduced in [Mac49]. In a nutshell, L is ny X ny sparse matrix
that acts on discrete functions defined on X’ (hence, vectors), and
returns another function on X. For more details about the various
discretization of the LBO and the construction of the matrix L, we
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recommend the reader to the survey of Wardetzky and colleagues
[WMKGO07].

The eigenvectors of L can be thought of as a discretization of the
eigenfunctions of A 4. In this paper, we namely refer to the first
non-constant eigenfunction (eigenvector) of Ay (L) as the Fiedler
function (vector).

3.2. Functional maps

Given a pair of shapes, M and N/, which share a common global
structure, the goal of shape-matching is to find a pointwise map IT:
M — N, which assigns to each point x € M a point y € N'. Most
shape-matching solutions directly attempt to estimate the point-to-
point map II. The functional maps approach [OBS*12] claims a
change of paradigm based on the following observation. If the map
T : L*(M) — L*(N) is known, then, for each x € M, one can
consider the image through 7 of an indicator function f on M
which is equal to 1 at x and O everywhere else, and setting IT(x) =y,
where y € Vs is the only point satisfying g(y) = 1, where g = T'(f).
In this way, one can recover IT from 7.

Let now {0;}7° and {y;}72, be two basis for F(M) and
F(N), respectively. Then one has

1) =1 ( L0000 ) = £ 0004 (T0) 0 w5,
i ij —_—
Cij
where we denote with (-,-) o4 and (-,-) nr respectively the L? inner
product of L2 (M), and of L*(N'). Therefore, if the coefficients c; J
in the formula above are known, sois T.

If X and Y are a discretization of M and N as described pre-
viously, then usually one chooses the first ky eigenfunctions of
the LBO as a basis for the functions defined on X, and the first
ky eigenfunctions of the LBO as a basis for the functions defined
on ). In this setting, finding 7 boils down to solve for a matrix
C €M xky (R). Then, having C, it is possible to recover the point-
wise map IT by solving a nearest neighbour assignment problem. In
Section 6, we give some more details about how this is done. We
refer to [OCB*16] for a thorough overview of the functional maps
approach.

4. Method

We now describe our algorithm. The input consists of one shape
X discretized as a triangular mesh as described in Section 3. Our
purpose is to perform a segmentation of X which is meaningful,
coherent, and coarse. With “meaningful”, we mean that the com-
puted regions should have a semantic connotation and/or be rele-
vant from a geometrical point of view. With “coherent”, we mean
that two shapes of the same class (e.g., two human models), should
be partitioned roughly in the same way. With “coarse” we mean
that we desire the minimum number of segments but preserving
their semantic and geometrical value representing subparts of the
shape that can be recognized by human perception.

Our algorithm consists of three steps: (1) Streamlining the geom-
etry, (2) Detection of critical values, and (3) Voronoi region com-
putations. Referring to Figure 1, the first step is outlined in the dark

Figure 2: Comparison of the iVd’s obtained on the original meshes
(left) and the ones computed on X and Y and mapped back to the
original ones through yx and Yy (right). When working on the
original meshes, the Fiedler function has 38 critical points, while
in the other case, we have only 8 of them. Moreover, the differ-
ent poses make the regions incoherent when working on X and Y,
while working on their smoothed versions results in similar regions
centered at meaningful points (e.g. head, hands and feet).

blue box and consists in smoothing the input shape (light blue box)
and performing an isotropic remeshing (blue box). In the second
step (yellow box), we compute the Fiedler vector and its critical
values, while in the last step (pink box) we compute the Voronoi
regions centered at such points. These regions are the segments our
pipeline produces for the input shape.

Step (1) is crucial for two main reasons: first, the smoothed ver-
sion 2" of the input shape has a lower number of geometric features
(leading to a lower number of critical values). Second, the isotropic
remeshing makes the computation of the cotangent Laplacian more
robust. On the left of Figure 2, we show an example of how avoid-
ing such a step leads to a non-coarse and non-coherent segmen-
tation. In all the visualizations of our results, triangles having all
the vertices belonging to the same region are colored accordingly,
while boundary triangles (i.e. triangles having vertices belonging
to different regions) are colored with a different color. This choice
is just for visualization purposes and do not affect our pipeline by
any means.

We now describe every step of our algorithm in detail.

4.1. Streamlining the geometry

Smoothing The mesh 2" is generated using the Conformalized
Mean Curvature Flow (CMCF) algorithm [KSB12]. This choice is
justified by the fact that our smoothing procedure aims at remov-
ing as many extremities as possible, without creating singularities
in “central” regions. To fix ideas, we would like to collapse the fin-
gers of a human model without shrinking his arm. CMCF allows
extremities to collapse more quickly, allowing us to generate a hu-
man model without fingers or toes but with both arms and legs still
intact. In this way, we heavily reduce the number of critical values
of the Fiedler function and preserve the geometry of the mesh at
the same time. Three examples of meshes smoothed using CMCF
are shown in the cyan box in Figure 1.

Remeshing To construct X, we use an isotropic remeshing al-
gorithm based on Centroidal Voronoi Tessellation [LWL*09;
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YLL*09]. In a nutshell, the idea behind this algorithm is to con-
sider a Voronoi tessellation restricted to the surface at hand, and
then improve the quality of such tessellation by “moving” every
center towards the center of mass of its cell. The final result is then
retrieved by extracting the corresponding Delaunay triangulation.
Besides being robust and efficient, the fact that the Voronoi cells
are restricted to be on the shape in input ensures that the final result
is an optimal tessellation of 2. This allows us to define a corre-
spondence Wy between .2~ and X by mapping every vertex of the
former to the closest vertex of the latter. As it will be clear in the
following, we do not need Wy to be bijection. For this reason, in
all our experiments, we set the number of triangles of X to 15K.
In fact, since 2 is a smoothed mesh, it is unnecessary to adopt
a highly-tessellated mesh, since there are no low-scale features to
capture. In this phase, also the stiffness matrix L of the cotangent
Laplacian is built. The light-blue box in Figure 1 shows three ex-
amples of remeshing of smoothed shapes.

Geodesic solver In this section, we describe our method to com-
pute geodesic distance fields on X and how to compute the iVd.
The reader who is not familiar with algorithms to solve geodesic
queries on a triangle mesh is referred to [CLPQ20].

Graph-based methods are a class of algorithms to compute
geodesic distances on meshes, and they have been introduced by
Lanthier [Lan97]. The idea behind these methods is to construct
a graph that enriches the connectivity of the underlying mesh by
adding nodes and arcs. Then, the geodesic distances on X are
computed by navigating such graph using Dijkstra’s algorithm. In
our implementation, we use the graph proposed in [NPP22]. Such
graph has nodes at the vertices of the mesh and its arcs connect a
vertex x € Vy to its 1-ring and to every vertex in its 2-ring which
can be connected to x with a dual edge. Such a graph can be com-
puted once during a pre-processing phase and then navigated with
Dijkstra’s algorithm. In the following, we will denote with Gy the
graph constructed on the mesh X. somehow more resilient to the
lack of isometry. In fact, since X is an isotropic remeshing of a
smoothed version of X, it shrinks the bumps and cavities that may
change the geodesic propagation.

4.2. Detection of critical values

Let us denote with ¢ the (discrete) Fiedler function defined on
X, which is the first non-constant eigenvector of L. We determine
whether x € Vx is a critical value of ¢ using the following defini-
tions:

o If ¢(x) < ¢(y) for every vertex y in its 1-ring, then x is a local
minimum.

e If ¢(x) > ¢(y) for every vertex y in its 1-ring, then x is a local
maximum.

o If for at least four triangles fyy; in the star of x, we have that

min{¢(y), d(z)} < ¢(x) < max{¢(y),9(z)},

then x is a saddle point.
As shown in the yellow box in Figure 1, in the case of human

models, we always obtained 8 critical points near the hands, feet,
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shoulders, head and in the central part of the body. In general,
across different classes, these points typically arise in characteriz-
ing regions such as protrusions, cavities and saddles, making them
good candidates in order to satisfy the meaningfulness requirement
[ZHO04]. Moreover, if two shapes are isometric, such points arise at
similar locations on the two shapes. This is a direct consequence of
the fact that the LBO is invariant under isometries.

4.3. Voronoi regions computation

Let us denote with Sy the set of critical points of the Fiedler func-
tion on X. The final segments of our segmentation will be the cells
of the intrinsic Voronoi diagram (iVd) defined by the points in Sx.
We describe how to compute this diagram on X.

Let Sx = {ug,...,um}. We start by computing the geodesic dis-
tance field d,, sourced at ugy by navigating Gy, and by tagging all
the points with the tag 0, since at this stage the closest center is u.
Let p be the maximum value of dy,, i.e. the distance from u to its
farthest point. Let us put s := dy,. We then put s(u;) = 0, and we
start a new navigation of Gy from u;, which we stop as soon as we
reach a point far from u; more than p. During the propagation, we
update the value of s whenever we visit a node closer to u; than u,
and we change the tag of such node from 0 to 1. Once we stop the
navigation, s is such that

s(x) = min{dy,(x),du, (x)}, x€X.

We update the value of p by putting it to the maximum value of
s, i.e. the distance of the farthest point from both ug and u;. We
iterate this procedure until all the points in Sy has been considered,
obtaining thus a scalar field s on X that associates to every x € X its
distance from the closest u; € Sy, i.e. such that

s(x) = min{dy, (x),...,du,(x)}, x€X.

Therefore, since we updated the tag of every point we visited dur-
ing Dijkstra’s navigation for the computation of s, the iVd on X
will have as centers the points in Sy, and its cells are defined co-
herently with the tagging we performed during the navigations of
Gy. Examples of the segmentation obtained through our pipeline
are shown in the pink box of Figure 1.

5. Validation and Results

In this section, we validate our algorithm by presenting several ex-
amples and reporting the results of our experiments. We start with
the well-known and widely adopted FAUST dataset [BRLB14].
Such a dataset consists of 100 human models representing 10 sub-
jects all assuming the same ten different poses. All the meshes share
the same connectivity and have a consistent ordering of the vertices,
meaning that for each pair X', ) in the dataset, we know the ground
truth mapping Iy : X — ). Indeed, as a matter of fact, Ilgr is
the identity map, associating the i-th vertex of X to the i-th vertex

of V.

Even in the case of quasi-isometry, such as the same subject as-
suming two different poses, avoiding the smoothing and remeshing
steps could lead to unsatistying results. In fact, in the case of a hu-
man model (see, e.g, Figure 2) the CMCF procedure shrinks the fin-
gers and the toes leaving intact arms and legs, so the critical points
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Figure 3: Several segmentations obtained with our method on the
FAUST dataset. All models have been coherently subdivided 8 re-
gions, as all the human models in the FAUST dataset.

of the Fiedler function in this case arise on the hands, the feet, the
head, and between the legs. This directly translates into a coarse
segmentation, which is coherent with all the human models of the
FAUST dataset, as shown in Figure 3. In order to have a quantita-
tive estimation of the accuracy of our segmentation, we fixed one
shape Aj from FAUST, and we compare the segmentation obtained
working directly on the original mesh and using our method (i.e.
the approaches used respectively on the left and on the right in Fig-
ure 2). We then do the same thing with all the other models in the
FAUST dataset. Next, for each shape ) # X)) in the dataset, we
measure the coherence of its segments with the ones of A com-
puted with the two methods. To do that, we exploit the bijection
IIgr : YV — A that associates to every vertex of )) one vertex of
Xy. For every point y € ), after the segmentation, y belongs to a
segment that corresponds to a center u; € Sy. We check if Hgr(y)
and ITg7(u;) belong to the same region in the fixed segmentation
of Xy. We refer to the percentage of points for which the previous
check is positive as coherency. When considering the segments ob-
tained with our method we obtained 92% of coherency, while by
working directly on X we have a coherency of 68%.

Implementation details and computational cost The algorithm
described above has been implemented in Cinolib [Liv19], except
for the remeshing step for which we used GraphiteTree(https:
//github.com/BrunolLevy/GraphiteThree). The code
and the dataset produced will be released upon publication. We per-
form our experiment on a MacBook Pro equipped with a M1 Pro
chip and 16 GB of RAM. Concerning computational cost, the time
complexity of the steps of our pipeline is subdivided as follows:

CMCEF: 0.14s

Remeshing: 0.84s

Fiedler function + critical points + iVd: 0.36s
Pairing: 0.57s

The last one is an extra step which consists of retrieving a con-
sistent segmentation from a coherent one and it is described in Sec-
tion 6. Therefore, the total time to compute our segmentation is
1.34s. The above timings has been computed by averaging the time
complexity of 100 runs of our algorithm on the FAUST dataset,
where the initial shape X has ~ 14k triangles and X has 15k tri-

444
IRy

Figure 4: Examples of coherent segmentations from the TOSCA
and the FAUST dataset. Note that the segmentation of all the human
models is coherent with the upper body of the centaur, with the one
shown in the right of Figure 2 and the ones in Figure 3.

Figure 5: Two examples in which the lack of isometry between two
shapes affects our method. A different pose of the same animal may
lead to a non-coherent segmentation due to the variations of mutual
distances between the critical points (left), or to a different number
of critical points (right).

angles. Note that the third step includes the time to construct the
matrix L and the graph G.

6. Application to FMAP

We consider the coherent segmentation which arises from our
method a potentially good prior for shape-matching. Since the co-
herency of our method heavily relies on the assumption that the two

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.


https://github.com/BrunoLevy/GraphiteThree
https://github.com/BrunoLevy/GraphiteThree

C. Mancinelli & S. Melzi / Spectral-based segmentation for functional shape-matching 53

| N |

, RGO A A

Figure 6: A visualization of the estimated centers and relative seg-
ments on a pair from the FAUST dataset.

shapes are isometric (or nearly isometric), it seems natural to con-
sider the FMAP approach, in which the same assumption is made,
as a preferable setting for the matching application. The most com-
mon paradigm in the FMAP setting is to leverage some a priori
knowledge on the two shapes, in the form of probe functions, which
are known to match under the functional representation 7' of IT
(see Section 3). In other words, one starts with a set of scalar fields
fo,.-., fp defined on X and another one g, ...,gp defined on Y,
and exploit the fact that T(f;) = g;, Vi =0,..., p, to find IT. These
functions can represent descriptors such as Gaussian or mean cur-
vature, or multi-scale descriptors such as the heat or wave kernel
signatures. Alternatively, the knowledge of landmarks on the two
shapes that are supposed to match can be represented in this setting
as indicator functions of these points.

In this section, we show how our segmentation algorithm can im-
prove the accuracy of shape-matching through FMAP in different
experimental settings, starting from the knowledge of a few land-
marks on the shapes. We focus on the FAUST dataset introduced in
Section 5, fostering different scenarios, to highlight the properties
of our method. We start by describing how our method is intro-
duced in the FMAP pipeline.

6.1. Experimental set up
Segments as probe functions

We are now given two shapes X and Y and two n-uples of land-
marks {Xj,...,%,} C Vy and {3,...,¥a} C Vy such that

HGT()E]'):)_IJ', i=1,...,n

Using the notation of Section 4, let us first note that such informa-
tion can be transferred to X and Y in a trivial way: since CMCEF pre-
serve the connectivity, the landmark correspondence is preserved
when moving to 2, and we can use Wy to transfer it to X. Obvi-
ously, similar arguments hold for Y.

Our purpose now is to transform our coherent segmentation into
a consistent one (see Figure 6). In other words, we want to find a
correspondence between the segments in which we have subdivided
X and Y. The ultimate purpose is to look at these regions as probe
functions and use them to increase the prior knowledge of the two
shapes.

Distance field from landmarks We look for the correspondence
between the centers of the Voronoi cells (hence, between segments)
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by computing their geodesic distance from the landmarks, and pair-
ing the ones that have similar distances from every landmark on
their respective meshes. We thus need to compute the geodesic
distance field from every landmark. Since accuracy in this case is
crucial, we compute such fields using an exact method [CLPQ20],
rather than a graph-based one. In particular, we use the VTP algo-
rithm proposed by Qin et al. [QHY*16].

Pairing of the segments We now describe how the correspon-
dence between the critical points on X and Y is found. With a
slight abuse of notation, let us denote with {¥xy,...,%,} C Vx and
{F1,---,9n} C Vy the landmarks on X and Y, respectively. Let dg(
the geodesic distance field sourced at the landmark ¥;, and, simi-
larly, let dy be the one sourced at y;, Vi = 1,...,n. All of such fields
are computed using the VTP algorithm [QHY*16]. Let us denote
with Sy and Sy the set of critical values of the Fiedler function on
X and Y, respectively. Ideally, we aim at finding amap S : Sy — Sy
that associates to every x € Sx a point y € Sy such that x and y are
natural counterparts (e.g. both of them are on the right shoulder of
a human model). As discussed in Section 5, if X and ) are not
isometric (or nearly isometric), the cardinality of Sy and Sy may
be different. Moreover, even if the number of critical values is the
same, some of them may not have a natural counterpart on the other
shape (see Figure 5). Although the latter problem never arise in the
FAUST dataset, as it will be clear soon enough, it is convenient to
consider this case as well. W.1.0.g, we assume that #Sy < #Sy. For
every x € Sy, we look for y* € Sy that minimizes

Eu(y) = guds;(x) — ) g,

where || - ||g» denotes Euclidean norm in R". Intuitively, the value
Ex(y) measures the error introduced by the isometry represented
by pairing x with y [TBW#*11]. For what said above, it may happen
that the points xq ..., x; € Sy vote for the same y* as best matcher.
In that case, we keep the pair (x*,y*) where

x* = argminEx(y"),
xXESx

and we leave the other points without correspondence. Although
this is conservative choice (since one could associate the other
points with the second-best match, for example), we found out that
it is the most robust way of handling cases in which the critical
points of the Fiedler functions arise in different regions, see for ex-
ample the cases in the right of Figure 5, where not all the critical
points in Sy find a counterpart in Sy. At the end of this process,
we thus have a bijective map S : Uy — Uy, where Uy C Sx and
Uy C Sy.

Moving to the FMAP setting We now have two ¢-uple of probe
functions {f1,..., fi}, {g1,---,& } on both meshes, where t = n+
k, where k is the cardinality of Uy. The first n probe functions,
are indicator functions centered at the landmarks, while the other k
are indicator functions on the entire segments computed with our
method. These functions can be stacked in matrices F, G, whose
corresponding columns represent the pairs of functions expressed
in the Laplace-Beltrami bases.

Using the notations of Section 3, we now need to solve for the
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matrix C imposing that T(f;) = g; for i = 1,...,¢. Following the
approach proposed in [NO17], we do that by solving

t

C = argmin ||CF — G||* +&||AyC — CAx > + Y ||CF — GiC|%,
C i=1

(D

where Ay, and Ay are diagonal matrices of eigenvalues of the LBO,
o is a weight, and F; and G; are specific diagonal matrices obtained
from F and G. Entering the details of the above formula is out of
the scope of this paper, we limit ourselves to giving a high-level de-
scription of each term and refer to [NO17] for a more thorough ex-
planation. The first term indicates that the solution should preserve
the probe functions. The second constraint is associated with the
standard assumption that the sought map should be approximately
intrinsically isometric, and hence commute with the LBO. The last
term is the main contribution of [NO17], and essentially indicates
that C should satisfy the product rule, i.e. C(f-h) = C(f)-C(h).
In fact, the classical result states that any non-trivial linear func-
tional map C corresponds to a point-to-point map if and only if it
preserves pointwise products of functions.

We performed a substantial number of experiments on the
FAUST dataset, in which we solve Eq. 1 using just the indicator
functions centered at the landmarks, i.e. the standard FMAP, and
by adding to the matrices F' and G the indicator functions of our
segments.

Smoothing the probe functions Since indicator functions are just
C? continuous, using the LBO basis to express them does not give
an accurate representation (think about the Fourier transform of a
step function in 1D). We therefore increase the smoothness of these
functions using the wave diffusion [ASC11]. We inherit this oper-
ation from [NO17], that applies this step to the indicator functions
centered at the landmarks. In our implementation, we use the same
parameters used in [NO17]. In this section, we will use the follow-
ing notations:

STD indicates the standard FMAP setting, i.e. computing C as
done in [NO17] using the WKS and landmarks as probe func-
tions and ignoring our segments.

ASA stands for regions as-they-are, meaning that we compute C
as done for STD but adding our consistent segments as they are
as probe functions without smoothing them as described above.

DIFF means that we apply the wave diffusion smoothing to our
consistent segments and then add them as probe functions to es-
timate the C keeping the rest of the procedure fixed.

Accuracy evaluation Given two shapes X and ), the accuracy
of the estimated correspondence IT is computed by measuring the
geodesic error ey, defined for each vertex x € X as:

ex :=dy(I(x),gr(x)),

where IT(x) denotes the estimated correspondent point of x while
I (x) is the ground truth one. Then, for each pair, we take the
average geodesic error computed for all the points x € X'. For each
scenario, we consider 100 random pairs of models in the given
dataset and report the average results in Table 1.

® °

L)

BEST 6T FPS
Figure 7: The position of the landmarks in FAUST dataset accord-
ing to the three computations, visualized on a pair.

Figure 8: FPS performed on different shapes from the FAUST
dataset, some with the same pose, some from the same subject, and
others with different subjects in different poses. The only correspon-
dence that is given as input is for the blue landmark, which is the
seed for the FPS.

Test scenarios

In our experiments, we consider a wide range of possible scenar-
ios. Such a choice gives rise to interesting results about how much
different settings may affect the accuracy of FMAP. We describe
below the different scenarios of our experiments.

Landmarks selection All the results reported in Table 1 refer to
experiments in which the number of landmarks has been fixed to 5.
Nevertheless, we noticed that the position of such landmarks heav-
ily affects the accuracy of the matching. We therefore choose to
consider three different configurations:

BEST We fix the landmarks in meaningful regions (hands, feet and
head) and place them on all the shapes with the ground truth.
GT We select one shape at random. We choose as the first land-
mark a vertex on the head. We find the correspondent point on
the smoothed and remeshed version of the shape and then com-
pute on it the other four landmarks through Farthest Point Sam-
pling (FPS) as described in the Appendix A. Finally, we map
these landmarks on the original mesh and, as before, we place

them on all the shapes with the ground truth mapping.

FPS In this case, we select the same point on the head on all the
original meshes using the ground truth correspondence. Then we
apply the process described for the GT landmarks for each shape
independently, performing FPS on each smoothed and remeshed
version of the shapes. For this reason, with FPS selection only
the first landmark is ensured to be matched correctly.

We refer to Appendix A for the definition of FPS and how it
is implemented in our setting. Figure 7 shows the positions of
the landmarks computed using the three methods described above.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.



C. Mancinelli & S. Melzi / Spectral-based segmentation for functional shape-matching 55

| Scenario | STD | ASA | DIFF

FAUST BEST 0.027 | 0.027 | 0.020
FAUST GT 0.032 | 0.030 | 0.026
FAUST FPS 0.189 | 0.190 | 0.188

FAUST subj BEST | 0.018 | 0.018 | 0.014
FAUST subj GT 0.021 | 0.018 | 0.015
FAUST subj FPS 0.185 | 0.184 | 0.184

FAUST pose BEST | 0.021 | 0.020 | 0.014
FAUST pose GT 0.026 | 0.023 | 0.020
FAUST pose FPS 0.080 | 0.079 | 0.063

FAUST sym BEST | 0.027 | 0.026 | 0.020
FAUST sym GT 0.032 | 0.030 | 0.026
FAUST sym FPS 0.189 | 0.189 | 0.188

Table 1: Correspondence accuracy using different methods

Both for GT and FPS the fifth landmark is positioned in the back
of the models.

It is important to point out that the use of the FPS landmarks
is a stress test never considered in evaluation related to FMAP. In
fact, even on the same subject, using the same seed may not lead to
a consistent positioning of the landmarks (see the last two models
in Figure 8). On the other hand, it may happen that two different
subjects in two different poses have consistent positioning of the
landmarks, (see the third and the fifth model from left in Figure 8).

Shapes pairs policy The discussion made in Section 5 and the
constraint expressed by the second term of Eq. 1 makes clear that
isometry plays a decisive role in both our segmentation approach
and the FMAP setting. In order to highlight this, we choose three
different pairing policies in our experiments, with the purpose of
considering scenarios where the lack of isometry between all the
paired models was more or less evident.

The first pairing policy consists of choosing randomly all the
pairs. In Table 1, we indicate these pairs simply as FAUST accom-
panied with the name of the landmarks selection. The second pair-
ing policy pairs shapes representing the same subject in different
poses, and we indicate them as FAUST subj again followed by
the landmarks selection. Accordingly, FAUST pose considers pairs
consisting of different subjects in the same pose.

6.2. Experiments on FAUST

As shown in Table 1, the introduction of our segmentation approach
in the FMAP pipeline increase the accuracy of the matching in al-
most every scenario, and never worsen it.

Concerning the FAUST dataset, it is interesting to notice that,
whenever the position of the landmarks is optimal and consistent in
both shapes (i.e. in the BEST scenario), we increase the accuracy
of the standard FMAP approach by at least 20%, reaching 33%
in the FAUST pose scenario. In this latter case, we highlight that
our performances are the same of the FAUST subj, while FMAP is
slightly affected by the lack of isometry of the shapes (as expected).
Figure 9 shows a qualitative assessment of the increase in accuracy
w.r.t. the classical FMAP setting.
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Figure 9: A visualization of the estimated correspondence (top
row) and the geodesic error visualized with a heat map (bottom
row) for STD, ASA and DIFF (from left to right) for a pair from
FAUST BEST. On the right, we visualize the regions obtained by
our method for the same pair.

regions

Even when the positioning of the landmarks is not optimal, but
still consistent (GT), we still manage to increase the accuracy of at
least 20%. However, we clearly see how a non-optimal positioning
of the landmarks affects both approaches, performing always worse
than the BEST scenario. However, even in this case, the improve-
ment on FMAP is evident, as shown qualitatively in Figure 10.

As expected, when the positioning of the landmarks is neither
optimal and consistent (FPS), the accuracy drops. However, it is
not clear why, in this latter case, both FMAP and our approach per-
forms better in the FAUST pose case. Moreover, this is the only
case in which our approach increases the accuracy of FMAP by a
substantial amount (=~ 21%), while in all the other cases we have
similar performances. Figure 11 shows an example from this sce-
nario.

Furthermore, we tried to understand if the errors in the estimated
maps were due to symmetries, which are a well-known problem for
FMAP. We modify the the error evaluation as

ex :=min{dy (II(x),Mgr (x)),dy (I(x), Dgr (x/))},

where x’ is symmetric to x w.r.t to the left-right symmetry in human
bodies, and denotes the obtained results as sym. We do that in the
FAUST scenario varying the landmarks selection. We obtain the
exact same results.

Overall, we conclude that introducing our segments as probe
functions in the FMAP pipeline does not change the accuracy in
the worst-case, while improving it most of the times.

7. Conclusions

In this paper, we propose a novel method to construct a meaning-
ful, coherent and coarse segmentation of a given shape. As a main
application, we target shape matching, showing that, when used
as probe functions, our segments can improve the accuracy of the
point-wise map obtained through the FMAP.
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Figure 10: A visualization of the estimated correspondence (top
row) and the geodesic error visualized with a heat map (bottom
row) for STD, ASA and DIFF (from left to right) for a pair from
FAUST subj GT. On the right, we visualize the regions obtained by
our method for the same pair.
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Figure 11: A visualization of the estimated correspondence (top
row) and the geodesic error visualized with a heat map (bottom
row) for STD, ASA and DIFF (from left to right) for a pair from
FAUST pose FPS. On the right, we visualize the regions obtained
by our method for the same pair.

regions

In order to satisfy the three constraints mentioned above, our
pipeline involves several common geometry processing proce-
dures: eigendecomposition of the Laplace Beltrami operator, mean
curvature flow deformation, Voronoi tesselation, plus other small
differential and geodesic queries. Nevertheless, our method is very
efficient, and we test its robustness in different settings, spreading
light on its properties and limitations.

The latter are the ones we aim to focus on in future works since
we strongly believe that the questions and problems raised in this
work may open several research directions. For example, our pair-
ing algorithm is heavily affected by the lack of isometry and the
non-consistent placement of the landmarks. We think it is worth in-
vestigating the possibility of adding some further information (pos-
sibly extrinsic) in order to make this procedure more resilient to
these factors. Alternatively, it seems promising to consider a dif-
ferent way of segmenting the mesh instead of the iVd. In fact, the

example on the cat model in Figure 5 suggests that the geodesic dis-
tance may not be the best choice. Another direction with a tremen-
dous potential impact is to understand if we can solve the alignment
between regions without the help of the input landmarks, making it
completely unsupervised. We would like also to extend our work
by considering different datasets [MMR*19; DLR*20] and sce-
narios (e.g. partiality [CRB*16], topological noise [LRB*16] or
point clouds [MRMO20]) that we did not include in our evalua-
tion. It would be also interesting to test our method on non-organic
shapes such as CAD models, even if there are methods targeting
the specific case of CAD models [RRBF23]. Furthermore, we aim
to compare our method with existing alternatives, and in particu-
lar, the ones most related to spectral geometry processing such as
[RBG*09]. Finally, it is interesting to investigate whether our ap-
proach can be used in different applications as well. For example,
in shape recognition and classification.
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Appendix A: Farthest Point Sampling

Given a mesh X, Farthest Point Sampling (FPS) consists in deter-
mining a set P := {py,...,pm} C Vx of m+ 1 vertices that are far
apart from each other as-much-as possible. To do that, one starts
from a seed pg € Vx, and compute the geodesic distance field dp,
sourced at such seed. Then p; will be the farthest point from pg,
i.e. one puts
p1 = argmaxdp, (x).
xeVx

Using the notations of Section 4, it is clear that, in general, one has
that

pj+1 = argmaxs(p),
PEVX

where
s(x) =min{dp, (x),...,dp;(x)}, x€X.

In other words, determining the j-th point that needs to be added to
P boils down to pick the point at which the distance field s reaches
its maximum value, where s is computed as described in the case
of the iVd (see Section 4).
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