Smart Tools and Applications in Graphics
–
Eurographics Italian Chapter Conference

Cagliari (Italy)
17 – 18 November 2022

Conference Chairs
Gianmarco Cherchi, University of Cagliari (Italy)
Riccardo Scateni, University of Cagliari (Italy)

Program Chairs
Daniela Cabiddu, CNR-IMATI (Italy)
Teseo Schneider, University of Victoria (Canada)

Posters Chairs
Dario Allegra, University of Catania (Italy)
Chiara Eva Catalano, CNR-IMATI (Italy)

Thesis Award Committee
Luca Cosmo, University of Venice (Italy)
Alberto Jaspe-Villanueva, KAUST King Abdullah University of Science and Technology (Saudi Arabia)

Web Chair
Vittoria Frau, University of Cagliari (Italy)

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)

In cooperation with the Eurographics Association
Table of Contents

Table of Contents ... iii
Preface .. v
International Program Committee ... vi
Author Index ... vii
Keynotes ... viii

Software and Datasets

A Computational Tool for the Analysis of 3D Bending-active Structures Based on the Dynamic Relaxation Method .. 1
Iason Manolas, Francesco Laccone, Gianmarco Cherchi, Luigi Malomo, and Paolo Cignoni

A Graphical Framework to Study the Correlation between Geometric Design and Simulation 11
Daniela Cabiddu, Giuseppe Patané, and Michela Spagnuolo

GIM3D: A 3D Dataset for Garment Segmentation ... 21
Pietro Musoni, Simone Melzi, and Umberto Castellani

Geometry Processing

PC-GAU: PCA Basis of Scattered Gaussians for Shape Matching via Functional Maps 29
Michele Colombo, Giacomo Boracchi, and Simone Melzi

Topological Initialization of Injective Integer Grid Maps .. 41
Marco Livesu

Nearly Smooth Differential Operators on Surface Meshes .. 49
Claudio Mancinelli and Enrico Puppo

Outside-in Priority-based Approximation of 3D Models in LEGO Bricks 57
Filippo Andrea Fanni, Elisa De Rossi, and Andrea Giachetti

Rendering and Visualization

Accurate Molecular Atom Selection in VR ... 69
Elena Molina and Pere-Pau Vázquez

Enforcing Energy Preservation in Microfacet Models ... 81
Davide Sforza and Fabio Pellacini

Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance 89
Mahmoud Zeidan, Christoph Peters, Tobias Rapp, and Carsten Dachsbacher
Table of Contents

Optimizing Placements of 360° Panoramic Cameras in Indoor Environments by Integer Programming 99
Syuan-Rong Syu and Chi-Han Peng

Posters

Creating Adaptive and Interactive Stories in Mixed Reality ... 107
Vittoria Frau, Sergio Serra, and Lucio Davide Spano

Deep Tracking for Robust Real-time Object Scanning ... 111
Marco Lombardi, Mattia Savardi, and Alberto Signoroni

Floor Plan Exploration Framework Based on Similarity Distances .. 115
Chia-Ying Shih and Chi-Han Peng

Multiple Scattering Approximation for Real-time Underwater Spectral Rendering 119
Néstor Monzón, Derya Akkaynak, Diego Gutiérrez, and Adolfo Muñoz

MUSE: Modeling Uncertainty as a Support for Environment ... 123
Marianna Miola, Daniela Cabiddu, Simone Pittaluga, and Marino Vetuschi Zuccolini

ProMED: Production Optimization for Additive Manufacturing of Medical Devices 127
Marco Attene, Tiziano Berti, Daniela Cabiddu, Antonio Garosi, Marco Livesu, Zsolt Pasztor, Daniel Petrovszki, and Andrea Ranieri

Machine Learning for Graphics

SPIDER: SPherical Indoor DEpth Renderer .. 131
Muhammad Tukur, Giovanni Pintore, Enrico Gobbetti, Jens Schneider, and Marco Agus

CAD 3D Model Classification by Graph Neural Networks: A new Approach based on STEP Format 139
Lorenzo Mandelli and Stefano Berretti

An Interactive Tuning Method for Generator Networks Trained by GAN 151
Mengyuan Zhou and Yasushi Yamaguchi
Preface

The Smart Tools and Applications in Graphics (STAG) conference is the annual international conference organized by the Italian Chapter of the Eurographics association. The aim of the conference is the dissemination of research activities and novel ideas on both theoretical and application oriented aspects of Computer Graphics, bringing together researchers and practitioners from both national and international scientific community to share their latest developments.

In the 2022 edition, the conference solicited contributions (both research, software and dataset) on ways to solve real problems, clever solutions to either optimize or otherwise improve known techniques and algorithms for real-world applications, systems and workflow papers with documented impact on real-world applications. The general aim has been to create a good opportunity for displaying and discussing ideas, and to foster research activities in all areas of Computer Graphics, Computer Vision, Visual Computing, Human-Computer Interaction, and related disciplines.

Organized by the University of Cagliari, STAG 2022 was held on November 17-18, 2022. After a few years of the coronavirus pandemic, we were delighted to restart the conference in person and it was pleasant to meet up again.

This year, we received 23 submissions: 17 full papers and 6 posters; 14 full papers and 6 posters have been accepted. Each submission was peer-reviewed by three members from the International Program Committee. The IPC included 41 members from different countries, who have valuable expertise in Computer Graphics, Computer Vision, Computer-Human Interaction and related disciplines. For each submission, the reviewers were selected by the chairs according to their expertise and conflicts. The final decision about acceptance has been made by the program co-chairs after on-line discussions, based on the reviewers’ recommendations and the individual reviews.

STAG 2022 had the pleasure to invite as keynote speakers Marcel Campen, professor at Osnabrück University, Germany, heading the Graphics & Geometric Computing group, and Sybren A. Stüvel, senior developer in the Blender Foundation. Marcel Campen gave a keynote talk titled “Aspects of Algorithmic Reliability in Geometry and Graphics”, which described recent successful advances in the field of mesh parameterization, specifically focusing on formal guarantees of validity, quality and reliability. Sybren A. Stüvel gave a keynote talk titled “Simpler, Better, Faster, Stronger: distributed rendering with Flamenco” on distributed rendering with the Flamenco v3.

STAG 2022 would not have been possible without contributions by many people. We thank all the submitters, and the members of the International Program Committee, who provided high-quality reviews and precious comments for authors to improve their contributions. We also thank all the session chairs and the local organizers.

Last but not least, these proceedings result from the invaluable contribution of Stefanie Behnke from Eurographics, who tirelessly worked with the paper and poster co-chairs on the proceedings production.
International Program Committee

Marco Agus, University of Hamad Bin Khalifa
Marco Angelini, University of Sapienza Rome
Marco Attene, CNR-IMATI Genoa
Stefano Berretti, University of Florence
Silvia Biasotti, CNR-IMATI Genoa
Umberto Castellani, University of Verona
Gianmarco Cherchi, University of Cagliari
Massimiliano Corsini, CNR-ISTI Pisa
Giovanni Gallo, University of Catania
Fabio Ganovelli, CNR-ISTI Pisa
Valeria Garro, Blekinge Institute of Technology
Andrea Giachetti, University of Verona
Daniela Giorgi, CNR-ISTI Pisa
Enrico Gobetti, CRS4 Cagliari
Goswami Prashant, BTH Sweden
Iuricich Federico, University of Clemson
Alberto Jaspe, King Abdullah University Kaust
Marco Livesu, CNR-IMATI Genoa
Andrea Loddo, University of Cagliari
Katia Lupinetti, CNR-IMATI Genoa
Luigi Malomo, CNR-ISTI Pisa
Fabio Marton, CRS4 Cagliari
Simone Melzi, University of Milano Bicocca
Michela Mortara, CNR-IMATI Genoa
Elia Moscoso Thompson, CNR-IMATI Genoa
Alessandro Muntoni, CNR-ISTI Pisa
Paolo Pingi, CNR-ISTI Pisa
Gianni Pintore, CRS4 Cagliari
Ruggero Pintus, CRS4 Cagliari
Enrico Puppo, University of Genoa
Andrea Raffo, University of Oslo
Guido Reina, University of Stuttgart
Andreas Scalas, CNR-IMATI Genoa
Riccardo Scateni, University of Cagliari
Alberto Signoroni, University of Brescia
Lucio Davide Spano, University of Cagliari
Marc Stamminger, University of Erlangen-Nürnberg
Pere-Pau Vázquez, Polytechnic University of Catalonia
Bolun Wang, King Abdullah University Kaust
Pietro Zanuttigh, University of Padua
Jiang Zhongshi, New York University
Author Index

Agus, Marco 131
Akkaynak, Derya 119
Attene, Marco 127
Berretti, Stefano 139
Berti, Tiziano 127
Boracchi, Giacomo 29
Cabiddu, Daniela 11, 123, 127
Castellani, Umberto 21
Cherchi, Gianmarco 1
Cignoni, Paolo 1
Colombo, Michele 29
Dachsbacher, Carsten 89
Fanni, Filippo Andrea 57
Frau, Vittoria 107
Garosi, Antonio 127
Giachetti, Andrea 57
Gobbetti, Enrico 131
Gutiérrez, Diego 119
Laccone, Francesco 1
Livesu, Marco 41, 127
Lombardi, Marco 111
Malomo, Luigi 1
Mancinelli, Claudio 49
Mandolas, Iason 1
Melzi, Simone 21, 29
Miola, Marianna 123
Molina, Elena 69
Monzón, Néstor 119
Musoni, Pietro 21
Muñoz, Adolfo 119
Pasztor, Zsolt 127
Patané, Giuseppe 11
Pellacini, Fabio 81
Peng, Chi-Han 99, 115
Peters, Christoph 89
Petrovszki, Daniel 127
Pintore, Giovanni 131
Pittaluga, Simone 123
Rossi, Elisa De 57
Savardi, Mattia 111
Schneider, Jens 131
Serra, Sergio 107
Sforza, Davide 81
Shih, Chia-Ying 115
Signoroni, Alberto 111
Spagnuolo, Michela 11
Spano, Lucio Davide 107
Syu, Syuan-Rong 99
Tukur, Muhammad 131
Vázquez, Pere-Pau 69
Vetuschi Zuccolini, Marino 123
Yamaguchi, Yasushi 151
Zeidan, Mahmoud 89
Zhou, Mengyuan 151
Abstract

A characteristic of numerous problems and tasks in Computer Graphics in general and Geometry Processing in particular is the existence of not only one, but an entire space of acceptable solutions, possibly differing in quality or other details. Often, what makes a result acceptable is defined by hard requirements on the one hand, and soft desiderata on the other hand. One could distinguish these as aspects of result validity and result quality, respectively. Not rarely, algorithmic methods in our field address these two aspects in a combined manner, for instance using optimization formulations that simultaneously aim for high quality and validity. There are many examples where this leads to (minor or major) reliability issues in the sense that not even validity of results can be strictly guaranteed in general. This question, to what extent success can be guaranteed and expected properties be assured, however, is an aspect of strongly increasing importance, in industrial, academic, and personal applications alike, as ever larger amounts of data are to be handled in increasingly automated contexts. In this talk, based on a variety of recent successful advances, benefits of a dedicated distinct consideration and treatment of validity and quality aspects will be discussed. By first focussing dedicatedly on establishing validity, before then taking care of quality on top, reliability gaps can more easily be avoided and formal guarantees be provided. We will look at examples that illustrate this principle, including a novel reliable approach to a classical broadly relevant problem from the field of mesh parametrization.

Short Biography

Marcel Campen is a professor at Osnabrück University, Germany, heading the Graphics & Geometric Computing group. Previously he was a researcher at New York University, USA, after receiving his PhD from RWTH Aachen University, Germany. His research concerns meshing, mapping, and related geometric and algorithmic problems, in 2D and 3D, with a particular focus on aspects of reliability and robustness. His scientific contributions have been recognized by the Eurographics Association with a Best PhD Thesis Award and the Young Researcher Award 2020. He is a Eurographics Junior Fellow and serves as Associate Editor of Computer Graphics Forum.
Invited Speaker

Simpler, Better, Faster, Stronger: distributed rendering with Flamenco

Sybren A. Stüvel
Blender Foundation

Abstract

Distributed rendering has become an important issue for users in need of an efficient high-quality rendering services. To address this need, the Blender Foundation has released in Summer 2022 Flamenco v3. Aimed at simplicity and interactivity, this render management software is now considered to be featured and stable enough that anyone can use it in their production. In this talk, Dr. Sybren A. Stüvel, chief designer of the project, will show how to get it working for various situations, from simple use at home to the setup used by Blender Studio for their current production.

Short Biography

Hi, I’m Sybren A. Stüvel. I work as Blender developer, where I oversee the Animation & Rigging module, and work on pipeline tooling, the dependency graph, and the integration of various file formats. Apart from my work on Blender, I also develop various other Open Source projects, such as Python-RSA and Skyfill.