STAG: Smart Tools and Applications in Graphics (2022)
D. Cabiddu, T. Schneider, G. Cherchi, and R. Scateni (Editors)

Versatile Geometric Flow Visualization by Controllable Shape and

Volumetric Appearance

M. Zeidan'2®, C. Peters' @, T. Rapp] , and C. Dachsbacher

IComputer Graphics Group, Karlsruhe Institute of Technology, Germany
2Faculty of Computer and Information Sciences, Ain Shams University, Egypt

Abstract

We present a novel visualization technique for geometry-based visualization of vector fields. Our approach generalizes and
combines several existing approaches in a flexible framework using a scalable GPU-accelerated implementation. We map
characteristic lines to a variety of glyphs. The user can define multiple cross-sectional shapes that will be used for extrusion.
Our system interpolates between these shapes as requested, either based on attributes of the vector field and the characteristic
lines or using global user-controlled parameters. Thus, a single characteristic line can use different cross-sectional shapes in
different parts to aid the visualization of different phenomena. Transitions can be smooth or discrete and we support highlighting
of silhouettes. Additionally, we track and visualize the rotation in the vector field and offer full control of the color mapping, the
opacity and the radii along the characteristic lines. Texture-based approaches such as 3D line integral convolution (3D LIC)
offer another avenue to vector field visualization. In 3D, they typically rely on sparsely placed seed points. We emulate their
appearance with our geometry-based approach through an approximation of the volume integral within our glyphs. Combined
with fast order-independent transparency, our GPU implementation achieves fast rendering, even at high resolutions, while

keeping the memory footprint moderate.
CCS Concepts

* Human-centered computing — Visualization systems and tools;

1. Introduction

A large variety of techniques for 3D flow visualization has been
developed over the last decades, categorized into direct, geometry-
based (e.g. streamlines or streamsurfaces), texture-based (such as
3D-LIC), and feature-based techniques [LHD*04].

Geometry-based techniques create many individual geometric
glyphs which can easily convey more information than just direc-
tion, e.g. rotation (streamribbons) or divergence (streamtubes). Dif-
ferent glyphs are suitable for the visualization of different phenom-
ena that often occur together in a single vector field. Therefore,
we propose to combine different methods by giving the user fine-
grained control of cross-sectional shapes along the characteristic
lines and by interpolating between them as needed. Other aspects
such as radii and colors are also controllable.

Texture-based approaches, which use volume rendering to gen-
erate the final images, offer another intuitive flow visualization. 3D
line-integral convolution (LIC) [FWO08] is a prominent example.
They convey directionality in the volume using transparency and
directionally smoothed texture features. However, volume compu-
tation and rendering are costly and do not scale well to high screen
resolutions, and the storage demands are non-negligible if the vol-
ume is not computed on-the-fly [FWO0S8]. Although dense visualiza-

© 2022 The Author(s)

Eurographics Proceedings © 2022 The Eurographics Association.

This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/stag.20221259

tions do not deteriorate performance further, sparse visualizations
are preferred to avoid excessive visual clutter.

We use our geometric glyphs to mimic the appearance of
sparse texture-based approaches. Traditionally, handling trans-
parency is challenging for geometry-based approaches. Our system
uses moment-based order-independent transparency [MKKP18]
for high-quality results at high performance. We also propose an
approximation for the transmittance through glyphs, which allows
us to mimic the volumetric appearance of 3D LIC.

Thus, our system generalizes a variety of geometry-based and
texture-based flow visualizations and enables users to combine
them as needed and to transition between them in a smooth fash-
ion. All steps rely on GPU-acceleration and rendering benefits from
rasterization hardware. Therefore, our method scales well to high
geometric complexity and large screen resolutions.

2. Related Work

Geometry-based flow visualization techniques [MLP*10] place
discrete geometry in the velocity field to visualize the behavior
of the underlying flow. In particular, Ueng et al. [USM96] dis-
cuss the efficient construction of streamlines, streamribbons, and

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

https://orcid.org/0000-0002-0618-6948
https://orcid.org/0000-0002-3939-6992
https://orcid.org/0000-0002-5436-5553
https://orcid.org/0000-0003-4690-3574
https://doi.org/10.2312/stag.20221259

90 M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance

streamtubes. Streamsurfaces [ELC*12] are another standard ap-
proach to explore flow behavior in 3D. To address increasingly
large and complex data sets, illustrative visualization [BCP*12]
aims at visualizing the data using effective visual abstractions sim-
ilar to handcrafted illustrations. View-dependent streamline selec-
tion and placement [MCHM10; GRT13] is another promising re-
search direction to visualize complex flows. Glinther et al. [GTG17]
propose a global optimization that balances occlusion and mean-
ingful geometry. These methods limit flow geometry exploration to
shading colors and opacity values.

Streamlines and streamtubes are widely used for diffusion MRI
visualization where streamline trajectories follow the main eigen-
vector of diffusion MRI data, and the cross-sectional shapes
along the streamlines encode the medium and minor eigen-
vectors [RBE*06]. In high-angular resolution diffusion imaging
(HARDI) visualization, a continuous placement of ellipsoidal
glyphs over streamlines is used [PPvA*11]. Vos et al. [VVL13]
use hyperstreamlines and streamribbons to visualize local orienta-
tion of MRI tracts. Wien et al. [WSSS14] use interpolation along
streamlines from circular to superquadratic cross-sections with
sharp edges to convey the ratio and orientation of the second and
third eigenvectors in diffusion MRI data. Our framework general-
izes such techniques as it allows interpolation between arbitrary
cross-sectional shapes in various ways.

The introduction of line integral convolution (LIC) [CL93]
spawned a lot of follow-up work [LHD*04; LEG*08]. Notably,
Wegenkittel et al. [WGP97] introduce oriented LIC (OLIC) to vi-
sualize the direction of flow in still images by using a sparse texture
of spots that is smeared in the direction of the local vector field.

LIC can be extended to 3D but it is computationally expensive
and causes perceptual and occlusion problems when displaying a
dense 3D volume. Interrante and Grosch [IG98] were the first to
apply LIC in 3D and emphasize the significance of sparseness in
3D. Suzuki et al. [SFCNO2] propose the use of a significance map,
to select interesting parts of the flow. Falk and Weiskopf [FWO08]
introduce output-sensitive 3D LIC, which tightly couples the LIC
generation with volume rendering to avoid unnecessary evaluations
of the LIC integral. This motivates us to present a fast way to vi-
sualize directional properties and volumetric appearance of vector
field streaks using a rasterization approach.

3. Geometry Generation

We propose a novel approach for visualization of characteris-
tic lines that enables a flexible and intuitive way to generate di-
verse geometric glyphs along characteristic lines. Fig. 1 shows an
overview of our vector field visualization pipeline. To encode lo-
cal attribute properties, our method offers a simple way to generate
arbitrary geometric structures along characteristic lines using 2D
cross-sectional glyphs (Sec. 3.2). Then, the user gets to choose in
which way cross-sectional glyphs are interpolated (Sec. 3.3). Fi-
nally, we allow the user to change the width of geometric struc-
tures along characteristic lines to efficiently visualize flow direction
(Sec. 3.4). The flexible generation of geometry naturally enables
us to reproduce techniques from geometry-based vector field vi-
sualization (e.g. streamribbons, and streamtubes), and also enables

us to mimic the appearance of texture-based/volumetric techniques
such as 3D LIC [FWO08]. We extensively rely on GPU acceleration
and implement all stages of geometry generation using NVIDIA
CUDA.

In Section 4, we present a rasterization approach to render ex-
truded geometric structures. In addition, our technique approxi-
mates volumetric absorption and composes semi-transparent geo-
metric structures along the view ray to convey volumetric appear-
ance using order-independent transparency techniques [YHGT10;
MKKP18].

3.1. Integration of Characteristic Lines

We generate characteristic lines by tracing independent parti-
cles through a vector field using a fourth-order Runge-Kutta
method [BDV*04]. Our current implementation places initial po-
sitions at stratified random locations inside the vector field, and
each particle trace stops when it reaches the boundary of the vol-
ume or a user-defined maximal number of integration steps. After
tracing, each characteristic line is represented as a sequence of 3D
points pg, p1,...,pn € R3, where each point has corresponding at-
tributes such as the magnitude of the velocity that can be used later
during geometry extrusion and final visualization. In order to keep
track of vector field local direction, we always trace two particles
at spatially equidistant positions perpendicular to the tracing direc-
tion [Tel07].

To generate characteristic lines in parallel, we bind the vector
field as a 3D texture to benefit from hardware-accelerated texture
filtering. We preallocate a GPU storage buffer for all lines to handle
the maximum number of integration steps. After particle tracing,
lines might have a different number of points. Thus, we perform a
parallel stream compaction [SHZOO07] on all lines. We compute ag-
gregate attributes for lines such as the number of points per line, the
length, or the curvature. Optionally, the user can define thresholds
for length and curvature to filter out uninteresting lines. Filtering is
followed by another stream compaction. Then, we prepare geomet-
ric buffers needed for shape extrusion and extrude cross-sectional
glyphs over line vertices in parallel.

3.2. Design and Placement of Cross-Sectional Glyphs

Transfer functions that map input attributes (e.g., velocity, pres-
sure, or heat) onto color and opacity play a crucial role in modern
visualization pipelines. However, transfer functions do not provide
a suitable way to encode local attributes such as local rotation or
global attributes such as flow direction. Our visualization method
provides an efficient way to encode local flow attributes by using
cross-sectional glyphs along characteristic lines, and directional at-
tributes using a longitudinal kernel. From now and throughout the
paper, we assume that input attributes are normalized to the range
from O to 1. We allow the user to place diverse 2D cross-sectional
glyphs along the attribute range. Each cross-sectional glyph is de-
fined by a closed polygon and fills a certain range of input at-
tributes. This closed polygon is extruded throughout each stream-
let that passes through the corresponding input range (see Fig. 2
and 3).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance 91

S —
Longitudinal

kernel
I
Vector field i §tream !ne N Geomgtry
i | integration extrusion

i

Transfer
function

Rendering

Output
image

Geometry generation

[Cross-sectional | Transmittance
L shapes)i LUT

Figure 1: An overview of our pipeline for vector field visualization. Data in green boxes is controlled by the user interactively. Data in blue
boxes is updated at run-time. All operations (black rectangles) are GPU-accelerated.

. - - " ;
Input

et P P
Output

Figure 2: Extrusion of cross-sectional glyphs using different
shapes. We use flat normals for triangle and quad glyphs, and
smooth normals for circle and ellipse glyphs. We use a constant
radius as shown in the kernel in the bottom right of top row.

Our framework offers the user a 2D glyph control panel to cre-
ate polygons defined by a fixed number of vertices. Additionally,
we provide commonly used standard shapes such as circles and
ribbons. Our GUI panel also supports basic 2D vertex editing oper-
ations using either a mouse pointer or a position attribute edit box.
Fig. 2 demonstrates an illustrative example of a characteristic line
with different cross-sectional glyphs.

3.3. Morphing Cross-Sectional Glyphs

To combine the strengths of different glyphs, our extrusion method
supports 2D shape morphing using linear interpolation of ver-
tices with fixed correspondences. The user assigns different cross-
sectional glyphs at certain data values in the range [0,1]. This is
similar in spirit to assigning different colors and opacities to differ-
ent values through a transfer function. Consider two neighboring
glyphs Gu, Gy, assigned to two values a,b € [0, 1]. During extru-
sion for a vertex of a characteristic line with a value x € [a,b], we
perform linear interpolation between the vertices of the glyphs G4
and G, to obtain the cross-sectional glyph used for this line vertex.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

This method exploits that all glyphs are designed with the same ver-
tex count and with fixed correspondences. Finding correspondences
could be automated [YFO9] but we opt for a simpler approach.

The user can choose between three modes of interpolation as
shown in Fig. 3. Firstly, attribute values along a streamline can be
used for continuous interpolation between neighboring shapes as
shown in row A. Secondly, a specific attribute value can be used to
select an interpolation instant for the whole streamline extrusion,
e.g. to explore different glyphs conveniently as shown in row B.
And finally, a threshold attribute value can be used to obtain a hard
transition between different glyphs as shown in row C.

During shape morphing, we use a special strategy for handling
shape normals. As an input to our technique, each 2D glyph ver-
tex is marked with a flag as either flat or smooth. For flat vertices,
we use edge normals and duplicate vertices during extrusion. For
smooth vertices, we compute the per-vertex normal as the average
of both edge normals. Our interpolation technique merges vertices
marked with two different flags as flat.

3.4. Controlling Longitudinal Kernel

In addition, our system can control the geometric width across the
extruded geometry. During geometry extrusion, we bind the longi-
tudinal kernel (see Sec. 3.5) as a 1D texture and sample it using a
certain attribute. By doing so, we can encode directional properties
of characteristic lines using the integration step ¢ for kernel sam-
pling (see Fig. 4), or highlight certain features within vector fields
using a certain attribute range.

Spatially Varying Opacity. In oriented LIC, the filter kernel k(s)
is an asymmetric function such that the directionality of the vector
field is encoded in the density. Varying the density in this way is
easily accomplished with our method. A factor for the opacity is
taken from a user-defined function that depends on the time vari-
able of the characteristic line.

92 M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance

/

-
Input
oo O O
A ~af —~
.1_3 _________________________
c ~ap ~ -~ P
Output

Figure 3: Using circle and quad glyphs, we allow several modes
of interpolations along extruded geometry. In row A, we extrude all
interpolation instants between quad and circle (left), and between
circle and quad (right). In row B, we display four separate example
instants of interpolation, where we selectively extrude an interme-
diate shape between quad and circle over the whole streamline. In
row C, we use a user-specified threshold t along a streamline to se-
lectively extrude the first glyph shape to all attribute values below
t, and extrude the other glyph shape to the rest of the input range.

3.5. Generation of Triangle Meshes

The geometry generation step is done on the GPU using several par-
allel kernel calls across vertices and characteristic lines. The output
of this stage is a triangle soup of vertex and index buffers, which
are subsequently bound to an OpenGL rasterizer for final rendering
(Sec. 4). We define a segment as a user-defined region along the
attribute range with two cross-sectional glyphs with the same num-
ber of vertices. In the beginning, we triangulate the closed polygon
of cross-section shape to be mapped at the start and end boundaries
of each extruded segment. For each pair of consecutive vertices,
we generate side quad faces between each two adjacent points of
the cross-sectional glyphs. To do so, we launch a parallel kernel
for each characteristic line vertex to count the exact triangle bud-
get needed for the corresponding geometric faces. Then we count
the aggregate number of triangles for each characteristic line and
use a prefix sum scan [SHZOO07] to emit triangles of each vertex in
another parallel pass over all characteristic line vertices. Streamrib-
bon glyphs have special but predefined handling in this stage since
we display such glyphs as geometric quads between each adjacent
pair of vertices along the characteristic line.

4. Rendering

In this section, we discuss the main steps to render geometric struc-
tures produced by our framework. Firstly, we describe our shading
scheme in Sec. 4.1. Next, in Sec. 4.2, we show how to achieve a

Input

Output

Figure 4: Extruding an ellipse cross-section shape using a constant
kernel for extrusion (left), and ramp kernel (right).

volumetric appearance in spite of the geometry-based representa-
tion of input structures. Finally, we discuss the use of state-of-the-
art order-independent transparency techniques for the correct com-
position of the characteristic lines in Sec. 4.3. Our renderer uses
OpenGL 4.5 with programmable shaders to render the opaque or
volumetric streaks.

4.1. Shading

Shading contributes substantially to the perception of the shape of
geometric structures. We use a physically based reflection model
for shading [Wol18] with point light sources. The material colors
are chosen by the user or taken from a transfer function. The final
rendering color is subject to change through shading (Sec. 4.1) and
the absorption coefficient is integrated along view rays to obtain
opacity (Sec. 4.2).

To aid the understanding of silhouettes as well as edges with flat
shading, we highlight them with black outlines in the spirit of non-
photorealistic rendering. We detect silhouettes and edges in screen
space using normal and depth buffers [NDO3].

4.2. Opacity Computation along Volumetric Cross Sections

From the transfer function, we only obtain an absorption coeffi-
cient 6 > 0. However, for volumetric lines, each fragment that we
render corresponds to a whole line segment where the ray passes
through the volume. We assume that the absorption coefficient is
constant along these line segments. Thus, the only missing quan-
tity to compute the opacity a € [0, 1] of a fragment is the distance
d > 0 that a ray travels through the extruded geometry. Then ac-
cording to Beer’s law, the opacity is

a=1-—e¢"%.

An exact computation of the distance traveled would require ray-
triangle intersections. To avoid this cost, we make one simplifying
assumption: We assume that the extruded lines are thin enough to
be considered straight over the distances that the rays travel within
them. Thus, we can project the ray direction to the plane orthogo-
nal to the tube direction and compute the distance traveled for this

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance 93

modified ray. Subsequently, we divide the distance by the sine of
the angle between the ray direction and the tube direction to obtain
d for the original ray. The assumption above fails at grazing angles.
In practice and to avoid extreme results, we clamp the reciprocal of
the sine above by 5.

Hence, we have turned the computation of the distance traveled
into a planar problem. The set of all rays that we need to consider is
only two-dimensional and it is viable to create a complete lookup
table. This two-dimensional lookup table is only constructed once
per cross-sectional shape. In the following, we fix definitions for
how to construct and use the table.

Recall from Section 3.2 that the cross-sectional shape is defined
in a coordinate frame where the yz-plane is orthogonal to the tube
direction. It is natural to perform the computations for the distance
traveled in this coordinate frame as well. We begin by computing
a bounding circle around the cross-sectional shape. Each point on
this circle is characterized by an angle, namely aran2(z,y). A ray
in the yz-plane is characterized by the points where it enters and
leaves this circle, or equivalently by two angles y;, W, € [—T, 7|
(disregarding rays that start within the tube) (see Fig. 5). These two
angles are the values that we use to make lookups in the table. To
store the lookup table in a texture, the angles are mapped to tex-
ture coordinates in [0, 1] linearly. During lookups, we only have to
perform a planar ray-circle intersection to compute the two inter-
section points and thus the angles.

For construction of the lookup table, we iterate over all pairs of
angles, e.g. at a resolution of 5122. For each pair, we construct the
ray in Cartesian coordinates and perform intersection tests with all
line segments that constitute the cross-sectional shape. From the
sorted list of intersection points, the distance that the ray travels
within the cross-sectional shape is trivial to compute. This compu-
tation is implemented in a CUDA kernel using one thread per entry
of the lookup table.

To support volumetric cross-sectional transmittance approxima-
tion with 2D cross-sectional glyphs interpolation (Sec. 3.2), we
sample n intermediate shapes in between each pair of neighbors
glyphs and store the corresponding 7 lookup tables in a 3D texture.
During rendering, we use trilinear interpolation.

n2 n

_n—n -2 0
Yi

Figure 5: Precomputed traveled distance (right) over cross-
sectional disk shape (left).

Controlling Opacity. Although we compute opacity across geo-
metric primitives using approximate transmittance, we also give

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

the user full control to edit opacity for important regions using a
transfer function widget. Using this widget, the user can edit opac-
ity and color to explore the effects on the data set at run time. In
our framework, we optionally, and according to user input, modu-
late the approximate transmittance by the transfer function opacity.
This way we give the user focus-plus-context functionality by em-
phasizing regions of interest using distinct opacity and color values.

4.3. Order-Independent Transparency

Since we rely on rasterization rather than ray marching, ge-
ometry is not processed front to back. Therefore, compositing
of semi-transparent fragments requires a technique for order-
independent transparency. Moment-based order-independent trans-
parency (MBOIT) [MKKP18] is well-suited for our use case. The
technique scales well to situations with high overdraw, guarantees
smooth and plausible results and approximates the ground truth
more accurately than competing techniques. A full explanation of
MBOIT is beyond the scope of this paper but we briefly discuss
the steps we performed to integrate it into our renderer using the
published code [MKKP18].

MBOIT renders the transparent geometry in two passes with
simple additive blending. The first pass renders to so-called mo-
ment buffers, which encode the information needed for correct
compositing. The second pass renders to color buffers. For each
fragment it reads from the moment buffers and uses a special
heuristic to compute how much the fragments in front occlude the
currently rendered fragment. Multiplying the color value by this
transmittance factor and adding it to the other color values yields
an estimate of the pixel color. A subsequent full screen pass nor-
malizes the sum of the colors and composites them with the back-
ground (a constant color in our case). Opaque geometry is rendered
separately with depth buffer writes enabled.

5. Results and Evaluation

In this section, we demonstrate multiple visualizations to analyze
and highlight interesting features within real and synthetic 3D vec-
tor field data sets. We also discuss several visualization parameters
and evaluate performance using our method. For all experiments,
we used a computer with an Intel 17-6700 CPU with 3.40 GHz and
32 GB of main memory, and an NVIDIA GTX 1080 Ti GPU with
11 GB VRAM. In all rendered examples, and if not mentioned
otherwise, we map the velocity magnitude to color using a trans-
fer function. All example images are rendered at a resolution of
1920 x 1080. Table 1 reports the size of input and output geometry
for our test data sets as well as timings for geometry generation and
rendering. We achieve real-time rendering and interactive editing of
geometry in all cases.

5.1. Applications

Flow Visualization using a Directional Kernel. By using a direc-
tional kernel, we visualize flow direction by extruding an isotropic
cross-sectional glyph with a varying width over each streamline.
In Fig. 6, we use a multiple ramps kernel with a circular cross-
sectional glyph to encode flow direction inside the synthetic tor-
nado vector field [MCHMI10]. In order to apply the longitudinal

94 M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance

00 02 0.4 05 08 10 o i

Figure 6: The tornado dataset with a circular cross-sectional glyph
and several ramps as a longitudinal kernel.

kernel over streamlines, we keep a parametric distance ¢ for each
streamline vertex during particle tracing. This parametric distance
is proportional to the integration step and is normalized per stream-
line to be in [0, 1].

Our method lets us mimic the volumetric appearance of 3D
directional LIC. In Fig. 7 we compare rendering the geometric
structures using a constant opacity of 0.7 for all structures against
our approach using approximated volumetric traveled distance (see
Sec. 4.2). As shown in Table 1, our volumetric cross-section opac-
ity approximation has a low overhead on rendering performance.

An important aspect of our method is its scalability in terms of
geometry generation and rendering performance with respect to the
number of integrated characteristic lines. Fig. 8 shows the Trefoil-
Knot data set with diverse LIC-like structures using a varying num-
ber of lines to emulate the sparsity of noise texture integration with
3D volumetric LIC visualization [FWO08]. Short lines are filtered
out. In Table 1, we list the corresponding geometry size, geom-
etry generation time, and rendering performance. As we increase
the number of characteristic lines, rendering remains real-time and
geometry generation remains interactive.

In contrast to 3D LIC, our approach does not require an expen-
sive pre-processing step [FWO08] or on-the-fly integration of char-
acteristic lines. After our geometry generation step, we do not have
to perform any additional operations besides rendering. Lastly, our
approach is well-suited for high resolutions since we do not per-
form volume rendering. Our system provides real-time feedback
avoiding the complexity of volumetric ray casting inside 3D vol-
umes [RHTE99; HA04].

Region of Interest Selection. In Fig. 9, we map velocity to cross-
sectional glyphs. Low velocities are mapped to tube structures and
high velocity values are mapped to streamribbons. In this scenario,
we used ribbon-to-circular shape continuous interpolation. As the
flow becomes faster and more turbulent, we smoothly transition to
a visualization that highlights rotational components.

Encoding Vector Field Rotational Attributes. Figure 10 shows
simulated flow around an airplane model [ST69; SGHO06]. The flow
around the airplane wings has strong rotational components. This

region is of great importance for studying fluid dynamic phenom-
ena. We used streamribbons to highlight local rotation of stream-
lines. To do so, we used streamline curvature as an input parameter
to interpolate from a circular cross-section (green inset) to a ribbon
(orange and blue insets). In this case, we used curvature as a thresh-
old value to select our region of interest so that regions with high
curvature values are mapped to streamribbons and other areas are
mapped to circular cross sections.

We sample equidistant vertices over the streamribbon sides to
match the number of vertices of the other glyph. Only the top and
bottom vertices at the streamribbon are marked with flat flags, and
all other vertices are marked with smooth flags.

6. Conclusions and Future Work

In this paper, we presented a geometry-based flow visualiza-
tion technique whose appearance can be controlled intuitively
by the user and mimic a variety of well-established techniques
(e.g. streamribbons) as well as “blending” between them. The core
of our technique is the creation of geometric glyphs of genus-
0 along characteristic lines with specific radii, arbitrary cross-
sections, color, and opacity mapping. Combined with an approx-
imation of the volume integrals of view rays intersecting the re-
sulting geometry, we also reproduce the appearance of texture-
based/volumetric techniques such as 3D line integral convolution.
Despite its versatility, our method is easy to implement, well-suited
for GPU implementations, and easily achieves real-time frame rates
even at high screen resolutions.

Our method shares the limitations of most flow visualization
techniques in 3D. Displaying many lines results in cluttered ren-
derings that might hide important regions. On the other hand, it is
difficult to find a representative set of characteristic lines that em-
phasizes important features. Since our method is a geometric ren-
dering technique motivated by volume rendering, it becomes prob-
lematic when geometric primitives, such as tubes, are clipped at the
near viewing plane.

In the future, we would like to use an automatic way to find
correspondences between vertices of different 2D cross-sectional
glyphs [YF09]. We also want to employ an automatic way to se-
lect and place geometric glyphs on streamlines in a way similar to
opacity optimization techniques [GTG17; ZRPD20].

7. Acknowledgments

We would like to thank the anonymous reviewers for their construc-
tive comments. The tornado dataset is courtesy of Marchesinoet
al. [MCHM10], and TrefoilKnot dataset is courtesy of Candelaresi
and Brandenburg [CB11]. Thanks to Mahmoud Salem, Hisanari
Otsu, and Max Piochowiak for the proofreading. The first author is
partially supported by the Cultural Affairs and Missions Sector in
Egypt, and the German Academic Exchange Service in Germany.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance 95

Figure 7: The tornado dataset with circular cross-section glyph and a ramp longitudinal kernel. Left: Geometry is rendered with a constant
opacity value of 0.7 with all geometry. Right top: Approximate cross-sectional transmittance along geometry using our method. Right bottom:
Approximate traveled distance using our cross-sectional transmittance approximation.

00 02 0.4 06 08 10

Figure 8: A ramp kernel and a circular cross-sectional shape are used to emulate texture sparsity with the TrefoilKnot dataset. From left to
right we increase the number of streamlines.

Figure 9: Encoding vector field attributes using different cross-section glyphs and interpolation instants. High magnitude velocities are
marked with streamribbons and low values are marked with interpolation instants between a disk shape and a streamribbon.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

96 M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance

Table 1: Performance measurements for all figures. Geometry is only regenerated when it changes. Render times are total frame times.

Dataset Input geometry Output geometry Run-time
Num. streamlines Num. vertices (k) Num. vertices (k) Num. indices (k) Geometry (ms) Rendering (ms)

Tornado Fig. 6 353 21.7 179.4 1039.3 8.5 6.2
Tornado Fig. 7 top left 353 21.7 179.4 1039.3 8.4 6.8
Tornado Fig. 7 top right 7.3
TrefoilKnot Fig. 8 left 924 87 172 4179 32 7.7
TrefoilKnot Fig. 8 middle 1845 175 1435 8415 62 12
TrefoilKnot Fig. 8 right 2935 282 2302 13502 102 16
Tornado Fig. 9 left 353 21.7 288.4 844.6 12.4 6.4
TrefoilKnot Fig. 9 right 3084 298.1 4740.8 14037.5 198 9
DeltaWing Fig. 10 356 307.3 4922.7 14747.2 209 9.2

=
Figure 10: Encoding the rotational component of the vector field
using different cross-sectional glyphs. We use a vertex curvature
threshold (t = 0.015) so that high curvature values are marked with

streamribbons and low values are extruded with circular cross-
sectional glyphs.

References

[BCP*12] BRAMBILLA, ANDREA, CARNECKY, ROBERT, PEIKERT,
RONALD, et al. “Illustrative Flow Visualization: State of the Art, Trends
and Challenges”. Eurographics 2012 - State of the Art Reports. Ed. by
CANI, MARIE-PAULE and GANOVELLI, FABIO. The Eurographics As-
sociation, 2012. DOI: 10 . 2312/ conf /EG2012 / stars /075 -
094 2.

[BDV#04] BOYCE, WILLIAM E, DIPRIMA, RICHARD C, VILLAGOMEZ
VELAZQUEZ, HUGO, et al. Elementary differential equations and
boundary value problems. Ecuaciones diferenciales y problemas con val-
ores en la frontera. 2004 2.

[CB11] CANDELARESI, SIMON and BRANDENBURG, AXEL. “Decay
of helical and nonhelical magnetic knots”. Physical Review E 84.1
(2011), 016406 6.

[CL93] CABRAL, BRIAN and LEEDOM, LEITH CASEY. “Imaging Vec-
tor Fields Using Line Integral Convolution”. Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH °93. Anaheim, CA: ACM, 1993, 263-270. ISBN: 0-89791-
601-8.D0O1: 10.1145/166117.166151 2.

[ELC*12] EDMUNDS, MATT, LARAMEE, ROBERT S., CHEN, GUON-
ING, et al. “Surface-based flow visualization”. Computers & Graphics
36.8 (2012). Graphics Interaction Virtual Environments and Applica-
tions 2012, 974-990. 1sSSN: 0097-8493. DOI: https://doi.org/
10.1016/9.cag.2012.07.006 2.

[FWO08] FALK, MARTIN and WEISKOPF, DANIEL. “Output-Sensitive 3D
Line Integral Convolution”. IEEE Transactions on Visualization and
Computer Graphics 14.4 (July 2008), 820-834. 1SSN: 1077-2626. DOTI:
10.1109/TVCG.2008.251,2,6.

[GRT13] GUNTHER, TOBIAS, ROSSL, CHRISTIAN, and THEISEL, HOL-
GER. “Opacity Optimization for 3D Line Fields”. ACM Trans. Graph.
32.4 (July 2013), 120:1-120:8. 1ssN: 0730-0301. por: 10 . 1145/
2461912.2461930 2.

[GTG17] GUNTHER, TOBIAS, THEISEL, HOLGER, and GROSS,
MARKUS. “Decoupled Opacity Optimization for Points, Lines and
Surfaces”. Computer Graphics Forum 36.2 (2017), 153-162. DOI:
10.1111/cgf.131152,6.

[HA04] HELGELAND, A. and ANDREASSEN, O. “Visualization of vector
fields using seed LIC and volume rendering”. IEEE Transactions on Vi-
sualization and Computer Graphics 10.6 (Nov. 2004), 673-682. ISSN:
1077-2626. DOI: 10.1109/TVCG.2004.496.

[IG98] INTERRANTE, V. and GROSCH, C. “Visualizing 3D flow”. IEEE
Computer Graphics and Applications 18.4 (July 1998), 49-53. ISSN:
0272-1716.D01: 10.1109/38.689664 2.

[LEG*08] LARAMEE, ROBERT S., ERLEBACHER, GORDON, GARTH,
CHRISTOPH, et al. “Applications of Texture-Based Flow Visualiza-
tion”. Engineering Applications of Computational Fluid Mechanics 2.3
(2008), 264-274. DOI: 10.1080/19942060.2008.11015227 2.

[LHD*04] LARAMEE, ROBERT S., HAUSER, HELWIG, DOLEISCH, HEL-
MUT, et al. “The State of the Art in Flow Visualization: Dense
and Texture-Based Techniques”. Computer Graphics Forum 23.2
(2004), 203-221.pOI: 10.1111/7.1467-8659.2004.00753.
x1,2.

[MCHM10] MARCHESIN, S., CHEN, C., Ho, C., and MA, K. “View-
Dependent Streamlines for 3D Vector Fields”. IEEE Transactions on Vi-
sualization and Computer Graphics 16.6 (Nov. 2010), 1578-1586. ISSN:
1077-2626. D01: 10.1109/TVCG.2010.212 2,5, 6.

[MKKP18] MUNSTERMANN, CEDRICK, KRUMPEN, STEFAN, KLEIN,
REINHARD, and PETERS, CHRISTOPH. ‘“Moment-Based Order-
Independent Transparency”. Proc. ACM Comput. Graph. Interact. Tech.
(Proc. i3D) 1.1 (July 2018), 7:1-7:20. 1SSN: 2577-6193. por: 10 .
1145/32032061,2,5.

[MLP*10] MCLOUGHLIN, TONY, LARAMEE, ROBERT S., PEIKERT,
RONALD, et al. “Over Two Decades of Integration-Based, Geometric
Flow Visualization”. Computer Graphics Forum 29.6 (2010), 1807
1829.p01: 10.1111/3.1467-8659.2010.01650.x 1.

[NDO3] NIENHAUS, MARC and DOLLNER, JURGEN. “Edge-
Enhancement-An Algorithm for Real-Time Non-Photorealistic
Rendering.” WSCG. Vol. 11. 2003, 1-3 4.

[PPvA*11] PRCKOVSKA, VESNA, PEETERS, TIM H. J. M., van ALM-
SICK, MARKUS, et al. “Fused DTI/HARDI Visualization”. IEEE Trans-
actions on Visualization and Computer Graphics 17.10 (2011), 1407-
1419.DOI1: 10.1109/TVCG.2010.244 2.

[RBE*06] REINA, G., BIDMON, K., ENDERS, F., et al. “GPU-Based Hy-
perstreamlines for Diffusion Tensor Imaging”. EUROVIS - Eurographics
/IEEE VGTC Symposium on Visualization. Ed. by SANTOS, BEATRIZ
SOUSA, ERTL, THOMAS, and JOY, KEN. The Eurographics Association,
2006. 1SBN: 3-905673-31-2. DOI: 10.2312/VisSym/EuroVis06/
035-042 2.

[RHTE99] REZK-SALAMA, C., HASTREITER, P., TEITZEL, C., and
ERTL, T. “Interactive Exploration of Volume Line Integral Convolution
Based on 3D-texture Mapping”. Proceedings of the Conference on Vi-
sualization "99: Celebrating Ten Years. VIS *99. San Francisco, Califor-
nia, USA: IEEE Computer Society Press, 1999, 233-240. ISBN: 0-7803-
5897-X. URL: http://dl .acm.org/citation.cfm?id=
319351.3193796.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.2312/conf/EG2012/stars/075-094
https://doi.org/10.2312/conf/EG2012/stars/075-094
https://doi.org/10.1145/166117.166151
https://doi.org/https://doi.org/10.1016/j.cag.2012.07.006
https://doi.org/https://doi.org/10.1016/j.cag.2012.07.006
https://doi.org/10.1109/TVCG.2008.25
https://doi.org/10.1145/2461912.2461930
https://doi.org/10.1145/2461912.2461930
https://doi.org/10.1111/cgf.13115
https://doi.org/10.1109/TVCG.2004.49
https://doi.org/10.1109/38.689664
https://doi.org/10.1080/19942060.2008.11015227
https://doi.org/10.1111/j.1467-8659.2004.00753.x
https://doi.org/10.1111/j.1467-8659.2004.00753.x
https://doi.org/10.1109/TVCG.2010.212
https://doi.org/10.1145/3203206
https://doi.org/10.1145/3203206
https://doi.org/10.1111/j.1467-8659.2010.01650.x
https://doi.org/10.1109/TVCG.2010.244
https://doi.org/10.2312/VisSym/EuroVis06/035-042
https://doi.org/10.2312/VisSym/EuroVis06/035-042
http://dl.acm.org/citation.cfm?id=319351.319379
http://dl.acm.org/citation.cfm?id=319351.319379

M. Zeidan, C. Peters, T. Rapp & C. Dachsbacher / Versatile Geometric Flow Visualization by Controllable Shape and Volumetric Appearance

[SFCNO2] Suzukl, Y., FuJisHIRO, 1., CHEN, L., and NAKAMURA, H.
“Case study: hardware-accelerated selective LIC volume rendering”.
IEEE Visualization, 2002. VIS 2002. Oct. 2002, 485-488. DOI: 10 .
1109/VISUAL.2002.1183811 2.

[SGHO6] SCHWAMBORN, DIETER, GERHOLD, THOMAS, and HEINRICH,
RALF. “The DLR TAU-code: recent applications in research and indus-
try”. (2006) 6.

[SHZOO07] SENGUPTA, SHUBHABRATA, HARRIS, MARK, ZHANG, YAO,
and OWENS, JOHN D. “Scan primitives for GPU computing”. 2007 2, 4.

[ST69] SCHLICHTING, HERMANN and TRUCKENBRODT, ERICH.
“Tragfliigel endlicher Spannweite bei inkompressibler Stromung”. Aero-
dynamik des Flugzeuges: Zweiter Band: Aerodynamik des Tragfliigels
(Teil 11), des Rumpfes, der Fliigel-Rumpf-Anordnung und der Leitwerke.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1969, 1-132. 1SBN: 978-
3-662-05619-6. DOI: 10.1007/978-3-662-05619-6_1. URL:
https://doi.org/10.1007/978-3-662-05619-6_1 6.

[Tel07] TELEA, ALEXANDRU C. Data visualization: principles and prac-
tice. 2nd Edition. AK Peters/CRC Press, 2007 2.

[USM96] UENG, SHYH-KUANG, SIKORSKI, C., and MA, KWAN-LIU.
“Efficient streamline, streamribbon, and streamtube constructions on un-
structured grids”. IEEE Transactions on Visualization and Computer
Graphics 2.2 (June 1996), 100-110. 1SSN: 1077-2626. DO1: 10.1109/
2945.506222 1.

[VVL13] Vos, SIOERD B., VIERGEVER, MAX A., and LEEMANS,
ALEXANDER. “Multi-Fiber Tractography Visualizations for Diffusion
MRI Data”. PLOS ONE 8.11 (Nov. 2013), null. por: 10 . 1371 /
journal . pone . 0081453. URL: https://doi.org/10.
1371/journal.pone.0081453 2.

[WGP97] WEGENKITTL, R., GROLLER, E., and PURGATHOFER, W.
“Animating flow fields: rendering of oriented line integral convolu-
tion”. Proceedings. Computer Animation '97 (Cat. No.97TB100120).
June 1997, 15-21.DO1: 10.1109/CA.1997.601035 2.

[Wol18] WOLFF, DAVID. OpenGL 4 Shading Language Cookbook: Build
High-Quality, Real-Time 3D Graphics with OpenGL 4.6, GLSL 4.6 and
C++17, 3rd Edition. Packt Publishing, 2018. ISBN: 9781789342253 4.

[WSSS14] WIENS, VITALIS, SCHLAFFKE, LARA, SCHMIDT-WILCKE,
TOBIAS, and SCHULTZ, THOMAS. “Visualizing Uncertainty in HARDI
Tractography Using Superquadric Streamtubes”. EuroVis - Short Papers.
Ed. by ELMQVIST, N., HLAWITSCHKA, M., and KENNEDY, J. The
Eurographics Association, 2014. 1SBN: 978-3-905674-69-9. DOI: 10 .
2312/eurovisshort.20141154 2.

[YFO9] YANG, WENWU and FENG, JIEQING. “2D shape morphing via au-
tomatic feature matching and hierarchical interpolation”. Computers &
Graphics 33.3 (2009), 414423 3, 6.

[YHGT10] YANG, JASON C., HENSLEY, JUSTIN, GRUN, HOLGER, and
THIBIEROZ, NICOLAS. “Real-Time Concurrent Linked List Construc-
tion on the GPU”. Proceedings of the 21st Eurographics Conference
on Rendering. EGSR’10. Saarbriicken, Germany: Eurographics Associ-
ation, 2010, 1297-1304. po1: 10.1111/9.1467-8659.2010.
01725 . x. URL: https: //doi.org/10.1111/5.1467 -
8659.2010.01725.x 2.

[ZRPD20] ZEIDAN, MAHMOUD, RAPP, TOBIAS, PETERS, CHRISTOPH,
and DACHSBACHER, CARSTEN. “Moment-Based Opacity Optimiza-
tion”. Eurographics Symposium on Parallel Graphics and Visualization.
Ed. by FREY, STEFFEN, HUANG, JIAN, and SADLO, FILIP. The Euro-
graphics Association, 2020. ISBN: 978-3-03868-107-6. DOI: 10.2312/
Pgv.20201072 6.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

97

https://doi.org/10.1109/VISUAL.2002.1183811
https://doi.org/10.1109/VISUAL.2002.1183811
https://doi.org/10.1007/978-3-662-05619-6_1
https://doi.org/10.1007/978-3-662-05619-6_1
https://doi.org/10.1109/2945.506222
https://doi.org/10.1109/2945.506222
https://doi.org/10.1371/journal.pone.0081453
https://doi.org/10.1371/journal.pone.0081453
https://doi.org/10.1371/journal.pone.0081453
https://doi.org/10.1371/journal.pone.0081453
https://doi.org/10.1109/CA.1997.601035
https://doi.org/10.2312/eurovisshort.20141154
https://doi.org/10.2312/eurovisshort.20141154
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.2312/pgv.20201072
https://doi.org/10.2312/pgv.20201072

