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Figure 1: Microfacet models tend to lose energy with the increase in surface roughness, causing an undesired darkening of rough materials.
Our method allows compensating for the loss of energy without the use of precomputed look-up tables. Instead, we propose a set of analytic
approximations of the directional albedo of conductive (left), glossy (center) and dielectric (right) materials.

Abstract

Microfacet models suffer from a significant limitation: they only simulate a single interaction between light and surface, ig-
noring the subsequent scattering across the microfacets. As a consequence, the BSDF is not energy preserving, resulting in an
unexpected darkening of rough specular surfaces. Energy compensation methods face this limitation by adding to the BSDF a
secondary component accounting for multiple scattering contributions. While these methods are fast, robust and can be added
to a renderer with relatively minor modifications, they involve the computation of the directional albedo. This quantity is ex-
pressed as an integral that does not have a closed-form solution, but it needs to be precomputed and stored in tables. These
look-up tables are notoriously cumbersome to use, in particular on GPUs. This work obviates the need of look-up tables by
fitting an analytic approximation of the directional albedo, which is a more practical solution. We propose a 2D rational poly-
nomial of degree three to fit conductors and a 3D rational polynomial of degree three to fit dielectrics and materials composed
of a specular layer on top of a diffuse one, such as plastics. We enforce energy preservation by rescaling the specular albedo,
thus maintaining the same lobe shape. We validated our results via the furnace test, highlighting that materials rendered using
our analytic approximations match almost exactly the behaviour of the ones rendered with the use of look-up tables, resulting
in an energy-preserving model even at maximum roughness. The software we use to fit coefficients is open-source and can be
used to fit other BSDF models as well.

CCS Concepts
e Computing methodologies — Reflectance modeling;

1. Introduction

Microfacet models have been introduced for the first time by Tor-
rance and Sparrow [TS67]. These models assume that surfaces that
are not perfectly smooth are composed of many tiny facets, each
of which is a perfect mirror. Each microfacet is so small that the
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surface cannot be represented in a geometric way. Instead, they are
modeled in a statistical manner.

Nowadays, microfacet models are considered the industry stan-
dard to simulate rough material surfaces, both in real-time and of-
fline rendering. Unfortunately, they suffer from an important lim-
itation: they only simulate a single interaction between the ray of
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Figure 2: Furnace test on a set of spheres made of different mate-
rials with a roughness value that increases from left to right. From
top to bottom: metal, plastic, thin glass and thick glass.

light and the surface. What should happen, in reality, is that the ray
of light should be scattered several times between different micro-
facets before being eventually reflected in the viewing direction. As
a consequence, the rendered material becomes darker and darker as
the value of the roughness increases. This effect is due to the fact
that multiple bounces are absent in perfectly smooth surfaces, but
become not negligible at high roughness values.

This behaviour becomes clearly visible if we run the furnace test.
This test consists in computing a lighting integral against a con-
stant environment light. If we consider a perfectly white material,
it should always evaluate to the same color as the background, if
there is no energy loss or gain. In the example shown in Figure
2 instead, we can see a substantial amount of energy loss, espe-
cially for high roughness values. More formally, the bidirectional
reflectance distribution function (BRDF) results to be not energy
preserving, because part of the energy is lost while ignoring sec-
ondary interactions.

In this work, we face the problem of energy loss in microfacet
models. We start analyzing the current state-of-the-art techniques
that address this limitation. Correct methods simulate the multiple
bounces stochastically [HHdD16; WJF*22], but remain cumber-
some to integrate into most renderers, especially on GPUs. Instead,
we focus mainly on energy compensation methods [KC17; Tur19]
that rescale the BRDF to account for the missing energy. These
methods involve the computation of the directional albedo, i.e. the
fraction of the incident radiation which is reflected in the viewing
direction. This quantity is expressed as an integral which does not
have a closed-form solution, so it is necessary to precompute and
store it in two or three-dimensional look-up tables.

We developed a set of analytic approximations of the directional
albedo to avoid the use of look-up tables to store its values. We
provide numerical approximations of the two-dimensional look-up
table used for conductors and of the three-dimensional ones used
for dielectrics and materials composed of a specular layer on top of
a diffuse one, such as plastics, for the microfacet model based on
the GGX distribution function.

We found the best compromise between accuracy and number
of coefficients in a rational polynomial of degree three both for the
2D and the 3D cases. This results in only 19 coefficients for the ap-
proximation of the two-dimensional look-up table and only 39 co-

efficients for the approximation of the three-dimensional ones. Our
analytic approximations represent a more practical solution with
respect to look-up tables, since they are easier to integrate into an
existing rendering architecture, they are more suited for GPU com-
putations and they have a comparable computational cost.

We validate our results both by measuring the fitting error and
by running the furnace test. Our tests highlight that materials ren-
dered using our analytic approximations match almost exactly the
behaviour of the ones rendered with the use of precomputed look-
up tables, resulting in an energy-preserving model even at maxi-
mum roughness. Moreover, our final renders show the emergence
of expected phenomena, such as the increase in intensity and satu-
ration as the surface gets rougher.

The software we developed to fit our analytic approximations
is open-source and publicly available on GitHub. It can be easily
used to fit other scattering models and can be found at https:
//github.com/dsforza96/energy—preservation.

2. Related Work

In the previous section, we highlighted the energy loss of micro-
facet models. In the following, we analyze the state-of-the-art tech-
niques that try to address this problem.

Stochastic Models As we already said, the limit of microfacet
models is the fact that they simulate only a single interaction be-
tween the ray of light and the surface. Heitz et al. [HHdD16] de-
rived a stochastic method that not only simulates the first interac-
tion between the ray of light and the surface but also all the consec-
utive bounces. It works by modeling the rough material as a volume
with the constraint of a sharp interface representing the surface of
the object. The BRDF is then evaluated by performing a random
walk in the medium. In order to validate their method, they com-
pared their BRDF to the light scattering from a surface made of
explicit microfacets, obtained by triangulating it according to the
microfacet distribution function. They observed that their model
predicted both the albedo and the shape of the multiple scattering
BRDF with a high level of precision.

In two concurrent and independent works, Kulla and Conty
[KC17] and Turquin [Turl19] highlighted some limitations of the
method proposed by Heitz et al. [HHdD16]. Due to its stochastic
nature, it needs random numbers to sample and evaluate the BRDF
and this makes it difficult to integrate it into an existing render-
ing architecture. Moreover, for similar reasons, it results to be a
computationally very expensive method, with a slowdown in ren-
dering performance which ranges from a factor of 7 up to a factor
of 15. Even if the method has been lately improved by Wang et
al. [WJF*22] in terms of required number of samples, it is still not
suited for real-time applications. On the other hand, we can con-
sider the method by Heitz et al. [HHdD16] a ground-truth solution
given its extreme accuracy.

Energy Compensation Methods Energy compensation methods
try to compensate for the loss of energy by adding to the BRDF
representing the first bounce a term which accounts for all subse-
quent bounces. Thus, we can see our BRDF p(,, ®;) as the sum of
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two terms, the first one accounting for the single main interaction
and the second one for all the multiple secondary ones:

P(@o,®;) = Pss (0o, 0;) + Prus (00, 0;) ey

This family of techniques is based on the concept of directional
albedo, that is defined as the fraction of the incident radiation which
is reflected in a given direction. Due to the law of conservation of
energy, it can never be greater than 1. Given a BRDF p(,,®;) and
denoting with H the hemisphere and with n the surface normal, the
directional albedo E () is given by:

E(w,) = /Hp((00>coi)|”'mi|d(’)i (®))

If we ignore for the moment the absorption due to the Fresnel term,
which is equivalent to saying that the material is perfectly white,
the following relationship must hold:

E(wp) = Ess(@0) + Ems(00) = 1 3)

The idea behind the method proposed by Kulla and Conty
[KC17] is to use a diffuse BRDF to account for all the secondary
bounces on the surface. This can be seen as a generalization of a
previous work by Kelemen and Szirmay-Kalos [KSO1] in which
the authors try to address the problem of energy preservation in the
specific case of glossy materials. Following the derivation used in
the work by Kelemen and Szirmay-Kalos [KSO1], they formulate
the multiple scattering BRDF as follows:

(I — Ess (o)) (1 — Egs (7))
(1 — Eavg)

where Fps is a separate term which accounts for the Fresnel ab-
sorption at each secondary bounce and Eayg is the average albedo
(the average of the directional albedo for all the possible viewing
directions) defined as:

(C))

Pms ((Dm (Di) = Fins

1
Eavg = E/I‘iEss(mo)|n'0)o|d(Do ©)

Differently from Kulla and Conty [KC17], Turquin [Turl9]
started his work from an observation on the results provided by
Heitz et al. [HHdD16]: the secondary BRDFs do not have a diffuse
shape, whereas they look like a scaled-down version of the primary
one. This observation led the author to formulate the multiple scat-
tering BRDF as the primary BRDF multiplied by a scaling factor
kms(®o) which depends on the viewing direction:

pms(mmmi) = Enskms(mo)ps.v((l)m (Di) (6)

If we ignore for the moment the effect of Fresnel absorption on the
multiple scattering BRDF, we can consider the BRDF p(,, ®;) as
a normalized version of the single scattering BRDF pj; (o, ®;):

pss((l)m(l)i)
Wy, @) = 01
p( ’ l) Ess((oo)

The BRDF defined this way is energy preserving by construction
since it verifies Equation 3:

@)

Ess(mo)
cildo; = ——% =1 8
|n 1| i Em(mo) (8)

Pss(w(n (Di)

E((Do): H E‘vs((\)())

Given this observation, the author derives the scaling factor
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kms(®0), which in its final form is defined as follows:

1 —Eg ((00)
Ess ((00)

For what concerns the F;,s term, which accounts for the Fresnel ab-
sorption at each secondary bounce, Turquin [Tur19] explored dif-
ferent possibilities, coming to the conclusion that Fy, i.e. the color
at normal incidence, is a very simple yet good enough approxima-
tion.

(C)]

kms ((»00) -

Both methods illustrated so far involve the computation of the di-
rection albedo Eg(®,). Unfortunately, there is no closed-form so-
lution for it, but it is smooth enough to be precomputed and stored
in a look-up table of a reasonable size. The result is a 2D look-up
table, storing values for the albedo varying the roughness and the
viewing direction. Under the assumption of an azimuthal invariant
BRDF, the outgoing direction can be represented using one single
angle, which is the angle between the viewing direction and the
surface normal. Turquin [Turl19] suggests parametrizing the table
with the square root of the roughness and the cosine of this an-
gle. With the use of look-up tables defined this way, both methods
achieve similar and state-of-the-art results. The same observation is
also valid for the average albedo employed in the method by Kulla
and Conty [KC17], but, of course, in this case a 1D look-up table
is needed.

Analytic Approximations As an alternative to the use of look-up
tables, Kulla and Conty [KC17] derived a numerical fit of the di-
rectional albedo. However, they do not consider it as precise as the
use of the tables themselves and discourage its use. More recently,
a different analytic approximation has been developed in the Mate-
rialX Physically Based Shading system [Aca21]. It ensures results
comparable to the one with the use of precomputed tables, but it
is limited to the case of conductive materials. In our work, we also
deal with glossy materials and dielectrics, providing a more gen-
eral framework to compensate for the loss of energy in different
scenarios.

3. Energy compensation

In the next sections, we will analyze the different classes of mate-
rials we worked on. We decided to work with the GGX distribution
function [WMLTO7] that nowadays is considered the industry stan-
dard both in physically-based and real-time rendering.

3.1. Conductors

The first class of materials we addressed is conductors, which are
materials that conduct electricity. This fundamental characteristic
influences the way how light interacts with metals like steel and
gold. When light hits a surface made of this kind of material, it can
be reflected or absorbed, but it can never pass through the surface
itself.

Both methods by Kulla and Conty [KC17] and Turquin [Tur19]
involve the precomputation of the directional albedo E(®,) of the
single scattering BRDF. We have already introduced its definition
in Equation 2. The variable of integration, the incoming direction
;, varies across the hemispherical domain H. We can express this
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variable into a spherical coordinates system using two angles: a
polar angle 6;, ranging from O to %, and an azimuthal angle ¢;,
ranging from O to 27. If we write the incoming direction, together
with the outgoing direction ®,, in this coordinate system, Equation
2 becomes a double integral of the form:

2n o2
E(eo,%):/o /02P(907¢o,9i7¢i)|0089i|SiH9id9id¢i (10

Assuming a BRDF invariant to rotations along the surface normal,
we can set ¢, = 0 and substitute ¢, and ¢; with their difference
0 = ¢; — 0,. We obtain:

(SIE]

2n o
E(Oo):/0 /0 p(00,0;,9)| cos6;|sin6; d6; d (11)

By reparameterization, we can substitute the polar angles 8 with
their cosine u = cos6. After the appropriate change of variable
du; = —sin6;d0;, we get the final form:

21 1
E(uo) = /0 /0 D(tto,15,0) 1] dpr & (12)

We choose to follow the derivation of the multiple scattering
term for conductors provided by Turquin [Tur19] because it is bet-
ter motivated with respect to the one by Kulla and Conty [KC17].
Remembering that F is the color at normal incidence, we define it
as:

1 — Eg(00)

pmS(mmmi) =F Exs((’)o)

pss(mo, (1)1') (13)
The equation for the directional albedo, given that pj;(uo, i, 0) is
the BRDF without the Fresnel term, becomes:

21 1
Eys(tt0) = /0 /O 0% (1o i) 1] s (14)

In particular, we remember that the single-scattering microfacet
BRDF for reflection, ignoring Fresnel absorption and denoting with
h the halfway vector between the incoming and outgoing direc-
tions, with D(h) the microfacet normal distribution function and
with G(w,,®;) the bidirectional shadowing-masking function, is
defined as follows:

D(h)G(O)U:(Di)
4in- wol|n - o

5)

p;}((ﬂg,(l)i) =

3.2. Glossy materials

The second class of materials we examined are glossy materials,
such as plastics. Nowadays, to obtain their characteristic appear-
ance, they are modeled by overlapping a specular white BRDF
onto a diffuse colored one. However, naively summing a micro-
facet BRDF with a diffuse one is not energy preserving. In fact,
we have to consider that the energy which is reflected away from
the specular layer cannot reach the underlying diffuse one. As a re-
sult, we get extra energy at grazing angles, where the Fresnel term
is near 1, especially at low roughness. The diffuse term must be
modulated proportionally to the energy which remains after the in-
teraction with the specular layer. A coarse approximation of this
amount of energy is represented by the Fresnel term F (0, ). Denot-
ing with pgigr(®o, ®;) the diffuse BRDF, our model can be written

as follows:

P(Wo, ®;) = Pss(Wo, ®;) + (1 — F (o)) Paitr (o, @;) (16)

The Fresnel term is an overestimation of the energy which re-
mains after the interaction with the specular layer, because it rep-
resents the amount of energy that would be reflected away by a
perfectly smooth surface. To face this limitation, Kulla and Conty
[KC17] scaled down the diffuse term proportionally to the direc-
tional albedo of the specular BRDF layer, accounting for multiple
bounces too.

Differently from conductors, the look-up table storing the val-
ues of the directional albedo must include also the Fresnel term,
because it influences the fraction of energy that is transmitted by
the specular layer. As a consequence, we need a three-dimensional
look-up table with a further dimension representing the index of re-
fraction, on which the Fresnel term depends. Turquin [Tur19] sug-
gests parametrizing it by the reflectivity at normal incidence Fp,
ranging from O to 1, instead of using directly the index of refrac-
tion itself. The directional albedo of the specular layer is given by:

2n 1
pSS (:uO s Miy ¢)
E, = — " |ui|du;id 17
spec(,uo) /0 0 Ess(,ua) ‘,Uz| i do (17)

Thus, our new energy-preserving BRDF becomes:

_ Pss (@0, ®;)

p(wo, ;) = Fus(0) + (1 = Espec (®0) ) paifr (@0, ;) (18)

3.3. Dielectrics

The last class of materials we worked on is dielectrics, i.e. materi-
als that do not conduct electricity. This characteristic translates to
the fact that light cannot only be reflected or absorbed, but it can
also continue its path through the surface. The BRDF becomes a
bidirectional scattering distribution function (BSDF), which is the
sum of a BRDF and a bidirectional transmittance distribution func-
tion (BTDF). Turquin [Tur19] observed that for transparent and
translucent materials, such as glass and ice, in order to obtain an
energy-preserving BSDF, what can be normalized is the sum of the
reflected and transmitted energies. Thus, being pfs(wo, ®;) the sin-
gle scattering BRDF, p’(w,,®;) the single scattering BTDF, we
have:

R T
N Pss (@0, @;) + Pss (00, ©;)
P((Dm(l)z) N E.vs(wo)

19)

Since we are dealing with a BSDF that also involves transmis-
sion, the directional albedo must be computed integrating over the
whole sphere. However, we preferred to compute two separate in-
tegrals, one for the BRDF and one for the BTDF, in order to avoid
the discontinuity at 1; = 0, resulting in a more stable computation.
The directional albedo of the reflection lobe is similar to one of
conductors, but includes the Fresnel term and is given by:

2T

Esii (NO) = /

1
[ /0 O (1o 11, 0) || dp 0 (20)

The directional albedo of the transmission lobe, instead, is inte-
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grated with the cosine y; ranging from —1 to 0:

T B 2n 0 T ' ' .
Ess(luo)—/(; ./71P.vx(uo7ﬂz7¢)‘ﬂt|d#zd¢ (21)

Finally, the total directional albedo, characterizing the whole
BSDF, is:

Egs(to) = Eg (o) + Ess (o) (22)

Also in this case, we have to include the Fresnel term in the com-
putation (and, as a consequence, use a 3D look-up table), because it
determines the ratio between the reflected and transmitted energies.
Moreover, it is necessary to store two tables: the first one is used
when the ray of light travels from air toward the material, while the
second one for the opposite direction, remembering to invert the
index of refraction of the medium in the latter situation.

The BRDF is equal to the one for conductors, but including the
Fresnel term F (@, ), while the transmission part, denoting withn =
% the relative index of refraction, is:

_ |0 - hl|eo - A (1= F (%)) D(h) G (020, @)
o nllog-n] (m(w;h) + (0, h))2

pLi(@0, ;) 23)

3.4. Thin Dielectrics

Besides proper dielectrics, we worked also on a simplification of
them, which we denote as thin dielectrics. They are an approxima-
tion of real dielectrics which do not simulate refraction. This model
is useful in rendering systems because the majority of transparent
objects we are familiar with, such as windows, are thin enough so
that the rays of light are not bent in a significant manner when they
pass through them.

The approximation results in two identical shapes for the BRDF
and the BTDF and thus there is no need for the third dimension
accounting for the ratio between reflected and transmitted energies
in the look-up table. Furthermore, given that the transmission lobe
is an upside-down version of the reflection one, the sum of their di-
rectional albedo can be computed as defined in Equation 14. Thus,
we can exploit the same look-up table computed for conductive
materials.

3.5. Analytic Approximation

In the last sections, we have seen that energy compensation meth-
ods involve the precomputation of the directional albedo which
needs to be stored in small tables. The main goal of this work is
to avoid the use of these look-up tables, trying to develop a set
of analytic approximations of the directional albedo of conductive,
glossy and dielectric materials.

Given the smoothness that characterizes the directional albedo,
we individuated in polynomials a good class of functions to try to
approximate it. Moreover, the fact that polynomial regression can
be solved in closed form strengthened our choice. Unfortunately,
polynomials did not ensure us the performance we expected using
a reasonable number of coefficients. Thus, we decided to extend
our set of candidate functions to rational polynomials. We tried to
approximate high-resolution versions of the look-up tables, com-
puted as described in the previous section, using polynomials and
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rational functions up to degree 10 for the two-dimensional case and
polynomials up to degree 7 and rational functions up to degree 5 for
the three-dimensional one.

In the case of conductors, we maintained the parametrization
proposed by Turquin [Tur19], varying the cosine of the angle be-
tween the outgoing direction and the surface normal, along the first
dimension, and the square root of the roughness, along the sec-
ond dimension. Both quantities range from O to 1. For the third
dimension, needed in the case of glossy materials and dielectrics,
the author suggests using the reflectivity at normal incidence Fj in-
stead of the index of refraction directly. Similarly to what Kulla and
Conty did in their work [KC17], for dielectrics we tabulated the di-
rectional albedo for values of the index of refraction which go from
1 to 3 (or, more precisely, for the corresponding values of Fy which
go from 0.0125 to 0.25).

4. Results

In this section, we describe our experimental setup and present our
results. We also explain how we validated our method and finally
report some renders to carry out a qualitative evaluation.

We solved the directional albedo integral using the method of the
numerical quadrature. In particular, we wrote our code in Python
and exploited the SciPy library [VGO*20]. In order to obtain a
more accurate numerical fit, we computed a higher-resolution ver-
sion of the 32 x 32 and 32 x 32 x 32 look-up tables suggested by
Turquin [Turl9]: 1024 x 1024 for the two-dimensional table and
128 x 128 x 128 for the three-dimensional ones.

To fit the rational polynomials, we exploited the API for curve
fitting which implements an extension of the Trust Region Reflec-
tive algorithm [BCL99]. The mean absolute error for each fit is
reported in Figure 3. We found the rational polynomial of degree
three to be the best compromise between accuracy and number of
coefficients, resulting in only 19 coefficients for the approximation
of the two-dimensional look-up table and only 39 coefficients for
the approximation of the three-dimensional ones. Obviously, we
could achieve better accuracy choosing functions of a higher de-
gree, but at the cost of a fast growth in terms of number of coeffi-
cients. The numerical fits we found for each class of materials are
reported in Appendix A.

We based the validation of our method on the furnace test. We
run the furnace test writing a custom shader for the Yocto/GL ren-
dering system [PNCI19]. Figure 4 shows the results of the fur-
nace test for all kinds of material we worked on. As we can no-
tice, they highlight that materials rendered using our analytic ap-
proximations match almost exactly the behaviour of the ones ren-
dered with the use of precomputed look-up tables, resulting in an
energy-preserving model even at maximum roughness. However, in
the particular case of dielectrics, we could not achieve a perfectly
energy-preserving result for values of the index of refraction near
the boundary of the interval we chose to fit, i.e. 1 and 3. This is
probably due to the difficulty of polynomials to adapt to the be-
haviour of the BSDF in presence of total internal reflection, which
translates to a non-smooth shape of the directional albedo. In future
work, we plan to explore the possibility to fit better the albedo of
dielectrics moving to a different class of functions.
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Figure 3: Left: Number of coefficients and mean absolute error (MAE) of the numerical fits of the directional albedo of, from the top,
conductors, glossy materials, dielectrics and dielectrics with inverted index of refraction. Right: MAE of the same numerical fits against
number of coefficients of polynomials (blue curve) and rational functions (orange curve).

Finally, we performed a qualitative analysis by rendering golden,
plastic and glass spheres (Figure 5) together with the rendering of
a more complex model made of the same set of materials (Figure
1). The effect of energy compensation is quite noticeable for con-
ductors and glossy materials and becomes even more evident in the
case of dielectrics. Moreover, they show the emergence of expected
phenomena, such as the increase in intensity and saturation as the
surface gets rougher.

5. Conclusions and Future Work

In this work, we addressed the problem of energy loss in microfacet
models. We decided to follow an energy-compensation approach
and developed a set of analytic approximations of the directional

albedo to obviate the need of look-up tables to store its values. We
provide numerical approximations for the GGX distribution func-
tion for conductors, dielectrics and materials composed of a specu-
lar layer on top of a diffuse one, such as plastics.

In future work, we plan to improve the energy compensation in
the case of dielectrics, which still lose energy if we vary the index
of refraction far from the canonical value of 1.5. Linearly trans-
formed cosines [HDHN16; KHDN22] represent a promising class
of functions to fit the behaviour of the BSDF and have been applied
successfully to the domain of realistic cloth appearance modeling
[ZBC22]. In our scenario, we think they could be a valid alternative
to the use of rational polynomials.

© 2022 The Author(s)
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Figure 4: Furnace test for conductors (top left), glossy materials (top right), thin dielectrics (bottom left) and proper dielectrics (bottom
right). Top row: no energy compensation. Middle row: energy compensation with the use of look-up tables. Bottom row: energy compensation

with the use of our analytic approximations. Roughness increases from left to right.
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Figure S: Golden (top left), plastic (top right), thin glass (bottom left) and thick glass (bottom right) spheres with a roughness value that
increases from left to right. Top row: no energy compensation. Middle row: energy compensation with the use of look-up tables. Bottom row:

energy compensation with the use of our analytic approximations.
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Appendix A: Coefficients of the Analytic Approximations

We report here the analytic approximations of the directional
albedo that we found to work best. Denoting with r the square
root of the roughness (r = /) and given o = |0, - n|, the
two-dimensional rational polynomial representing the directional
albedo of conductors can be expressed in the form:

ap+ayr+axto +a3r2 +agruo+

asup +agr +ayr o + agru + aguy
E(ruuU) =

(24)
1 +aygr+a o +arar® +agzruo+

2 3 2 2 3
A4y + a5 + ajer Ho + aypriy +aigr
Similarly, the three-dimensional rational polynomial represent-
ing the directional albedo of the other cases, which depend also on
the index of refraction parametrized by Fy, is:

ag+ a1 Fy + ayr + azpo + asFg +
asFor + agFotto +azr” + agrto + i+
aioFg +anFyr+anFipo +aizFor*+
arsFop +air’ +airruo + argrug + aropy
1+ axFo + a7+ aznpo +anFg + axFor+
axsFopto + axer” + aryrito + arspil + a29F03 +
azoFgr + a3 Fo + asaFor® + as3 Foruo+
azaFous + assr + aserio + azyrus + asspa
(25)

E(F()7r7/.lg) =

The coefficients we found for each class of materials are reported
in table 1.

Table 1: Coefficients of the rational polynomials approximating the
directional albedo of conductors, glossy materials and dielectrics.

Conductors Glossy Dielectrics Dielectrics (inv. 1)

ap 1.0247  0.043013 0.88205 0.90583
a; —10984 13298  2.9101 0.66887
ap 10918 —0.92736 —0.4865 —0.58909

a3 46934 —0.61435 —0.68697 —2.644

as —54779 —262.23 —-2.6111 0.078838
as 21.742 —137.75 1.2801 —0.12924
ag —30.369 —234.72 —-3.0361 —1.3579
a; 31919 5.1258 6.01 0.14004
ag —8.014 —0.37466 1.5585 1.4653
ag —6.2407 9.2847  5.0414 2.3356
ajp —10.218  129.71 0.086795 0.014114
ay;  10.955 171.82 1.7978 —0.030981
ajp  44.082 400.05  2.4123 —0.093506
aj3 —55.335 20699  3.0965 —0.028034

ajy 21438 1.0848 —13.059 0.20931

ais —23745 42802 65016 0.65552
aig 33265 —22109 —58326  —0.055329
ay; —79269 —6.0564 28601 —0.042
aig 5931 095864 —2.8236 —0.94219
ao —11.775 —1.999 —0.55064
ax 13943 2.5766 0.69984
ay; —24.177 —0.88472  —0.25523
axn —3.7301 —0.2968 —3.2628
a; —253.78 —1.9874 0.027249
a 67171 71.7758 —0.11726
ass 98.039  11.823 —1.3839
a 153.19  11.806 0.050796
a; —184.53 0.77913 0.65825
asg 230.02  8.3709 3.4458
ax 113.94 —0.2142  —0.0099151
aso 66.642 —3.3057  —0.019894
as 108.32  —7.3967 0.0090828
as 23578 26.12 —0.02356
ass 120.04 —38.74 0.16388
as 10291  18.953 0.63573
ass 17.03  —7.0976 0.0093054
asg 25948 0.060185  —0.021682
as 75779 —1.6996 —0.43173
asg 49349  —4.2701 —~1.1592
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