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Abstract
Estimating the differential properties of a signal sampled on a surface is of paramount importance in many fields of applied
sciences. In the common practice, the surface is discretized with a polygonal mesh, the signal is sampled at its vertices and
extended linearly over the triangles. This means that the polyhedral metric is assumed over the surface; the first derivatives of
the signal become discontinuous across edges; and the second derivatives vanish. We present a new method based on surface
fitting, which efficiently estimates the metric tensor, and the first and second order Riemannian differential operators at any
point on the surface. All our differential operators are smooth within each triangle and continuous across the edges, providing
a much better estimate of differential quantities on the - yet unknown - underlying smooth manifold.

1. Introduction

Roughly speaking, a surface S can be defined as a set of points that,
locally, “looks like” a plane. Such local characterization can be for-
malized by some function x(u,v), called a local parametrization,
which maps an open set V ⊂R2 to a subset U of S. This correspon-
dence plays a crucial role in the study of S, since it encodes the
deformation to which an infinitesimal portion of the real plane un-
dergoes when mapped to S. In order to set a differentiable structure
on S, we need x to be smooth: the more information we ask about
S, the more smoothness we require to x. For instance: C1 continu-
ity is sufficient to define a metric on S, and to estimate its surface
normal; while other quantities such as curvature or the Laplacian
of a scalar function on S require C2 continuity.

When considering the discretization of a surface, e.g., a trian-
gle (manifold) mesh M, we implicitly assume a piecewise linear
parametrization x, which has a trivial structure inside faces and is
just C0 across edges. In this case, it is not possible to endow M with
a differentiable structure in the sense described above.

Traditionally, to overcome this limitation, discrete counterparts
of the concepts of differential geometry have been proposed
[MDSB03]. For example, given a scalar field f defined at the ver-
tices of M, linear interpolation inside faces is usually assumed;
hence a piecewise constant gradient within each triangle, which
will be discontinuous across edges; and vanishing second deriva-
tives everywhere. Note that, in this way, the Euclidean (flat) met-
ric is implicitly assumed within triangles. The resulting polyhe-
dral metric over the mesh has singularities at all (non-flat) vertices,
causing behaviors that contradict the smooth setting, e.g., in the
computation of geodesic fields.

In this paper, we follow a different approach. We look at M as a
discrete representation of an unknown smooth surface S, and we es-

timate the differential structure of S pointwise, through an approxi-
mation of a smooth local parametrization xp(u,v) in the neighbor-
hood of each point p. We achieve this goal by fitting smooth sur-
faces to the neighborhoods of vertices of M, and blending such sur-
faces inside triangles. Although approaches based on surface fitting
have been used extensively in the literature, they are usually bound
to computations at a discrete set of points, typically vertices. Sub-
division schemes may be used to obtain a closed form surface that
either interpolates or approximates the initial data, but, as explained
below, there are drawbacks and/or limitations that make them un-
suited for our purposes. In this paper, we propose an efficient way
to estimate the differential structure at any point, warranting con-
tinuous values over the whole surface for all operators up to second
order.

Our method allows us to define a non-flat metric which smoothly
varies within the triangles of M, and with continuity across the
edges. This, in turn, leads to the computation of first and second
order covariant derivatives at any point of M, which have a closed
form in terms of the local parametrization. We apply the same ap-
proach to extend a discrete scalar field defined at the vertices to the
whole surface. Focusing our attention to geodesic distance fields,
we demonstrate that our differential operators provide much better
results than the commonly used linear interpolation. In particular,
we show how computation on coarse meshes can approximate well
the behavior of fields defined over finely tessellated surfaces, with
obvious smoothing effects due to the loss of detail.

We believe that our approach may lead to a change of paradigm
in many problems in geometry processing: from shortest paths trac-
ing to convex optimization.
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2. Related work

Linear regression using a polynomial function approximating a
given finite set of points is a well known technique in computer
graphics since decades. It has been used either to estimate differ-
ential quantities [JS02, LZ13, SK15, WYLC13, SK15], or geomet-
ric features [MW00, PPR10] or both [CP05, Xu13]. The idea is
to obtain a closed form from the best fitting polynomial (usually
quadratic) function in the least squares sense, which approximates
the geometry of a given point set and then compute the quantities
of interest analytically. Our starting point is the algorithm proposed
by Xu [Xu13], which is described in Section 4.

Pointwise evaluation of differential quantities may also be
obtained through discrete exterior calculus (DEC) [DKT08,
CdGDS13], or finite element methods (FEM) [PP93, War06,
WMKG07]. These methods are quite efficient, but, as discussed
by Wardetzky and colleagues [WMKG07] and by Xu [Xu13], they
are less robust than methods based on fitting, and pointwise con-
vergence is not always guaranteed.

Bézier and Hermite patches can be used to have a closed form
of an approximation of the geometry represented by a triangular
mesh [VPBM04, JK13]. At the best of our knowledge, the only
approach in the literature that uses these techniques to improve
the pointwise estimation of a given field on a triangular are the
PN-triangles introduced in [VPBM04]. Nevertheless, the quadratic
varying normal field defined on these patches is only C0 across
edges, while by construction ensure C1 at the vertices of the mesh.

Subdivision schemes may also be used to define a smooth sur-
face that approximates a given geometry [Doo78, CC78, Loo87,
ZSS96]. They can be either approximating or interpolating. The
latter are known to produce lower quality shape with respect to the
former [ZS99]. When dealing with triangular meshes, one of the
most used is the Loop subdivision scheme [Loo87]. Jos Stam stud-
ied such a scheme in [Sta98], in which he showed how the limit
surface of such scheme can be expressed in parametric form at
every point of the mesh. However, the Loop scheme is not inter-
polatory, meaning that the limit surface will not pass through the
initial vertices. Although it is possible to apply an iterative process
that converge to an auxiliary mesh M̂ such that the limit surface
of the Loop subdivision scheme applied to M̂ will interpolate the
vertices of our initial mesh M [DM12, CFL∗09], computing M̂ in
a straightforward way starting from the vertices of M is expensive.
Moreover, within a triangle incident to an extraordinary vertex (i.e.
vertices with valence 6= 6), the limit surface of the Loop scheme
is defined on a parametric domain that keeps shrinking when ap-
proaching such a vertex, eventually collapsing into one point when
reaching it. Therefore, at these vertices, the only information we
can have is their position on the smooth surface, but nothing else.

3. Preliminaries

We briefly review the basic concepts related to the differentiable
structure of a smooth surface. Further details can be found in any
introductory book of differential geometry [dC92, Sak97].

Let S ⊂ R3 be an embedded surface. For p ∈ S, we consider
a local smooth parametrization xp : V → S mapping an open set

V ⊂ R2 to a neighborhood U of p. We will conventionally use the
same small letter with and without a bar to denote corresponding
points through the parametrization, i.e., p = xp(p̄) for p̄ ∈ V . For
brevity, we will omit the argument p̄ of all operators, whenever this
does not cause ambiguity, e.g., we will write ∂xp

∂ui for ∂xp
∂ui (p̄).

Let (u0,u1) be the coordinates of a frame in R2. The Jacobian

J(p̄) =
[

∂xp

∂u0 ,
∂xp

∂u1

]
of xp at p̄ provides a basis of the tangent plane TpS of S at p. Since
xp maps a portion of the plane into a curved domain, lengths and
angles are not preserved in general. The metric tensor (a.k.a. first
fundamental form) keeps track of how such quantities are trans-
formed in a neighborhood of p. The metric tensor at p is a bilinear
operator, which can be represented as a 2×2 symmetric matrix Gp
in the given local reference system, defined component-wise as

gi j = 〈
∂xp

∂ui ,
∂xp

∂u j 〉.

The metric tensor defines an inner product on TpS, giving a rule to
multiply its vectors. As a bilinear operator, it is independent of the
specific parametrization and depends just on the intrinsic properties
of S, controlling how distances, angles and areas are measured in
the neighborhood of p. By defining the surface normal

n =

∂xp
∂u0 ×

∂xp
∂u1

‖ ∂xp
∂u0 ×

∂xp
∂u1 ‖

,

then the second fundamental form is defined as follows

II =

(
∂

2xp
∂2u0 ·n

∂
2xp

∂u1∂u0 ·n
∂

2xp
∂u0∂u1 ·n

∂
2xp

∂2u1 ·n

)
.

The first and the second fundamental forms together provide full
information on relevant differential properties of surface S at p, up
to the second order. For instance, the Gaussian curvature K can be
computed as the ratio between their determinants.

Now let f : S→ R be a scalar function defined on S. Then the
Riemannian gradient∇ f is a vector field on S that associates to ev-
ery point p ∈ S a vector in TpS. Second order derivatives are more
involved to define in the Riemannian setting, since the they involve
combining vectors belonging to different tangent spaces. This en-
tails the definition of an affine connection on S, which we will not
describe for brevity. It is sufficient to mention here that, given a
proper affine connection, the definitions of the usual Laplacian and
Hessian operators can be extended to the Riemannian setting, and
they are defined just in terms of the first and second derivatives of
the parametric function x and of the metric G. This, in turn, implies
that if a local parametrization for S is given, then all the quantities
mentioned above can be computed in closed form.

In the following, whenever no ambiguity arises, we will omit
the dependence on point p in all our notations. Likewise, we will
replace the notation (u0,u1) of coordinates in the parametric space
with the more common notation (s, t), possibly adding subscripts
when dealing with more than one parametric domain.
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Figure 1: The discrete logarithmic map logvi
at vertex vi maps the star of vi to its tangent plane; triangle ti jk is mapped to a warped version

of it, bringing point p̄ to p̃ (left to center). The quadric xi maps p̃ to pi on surface Si computed at vi; its Jacobian at p̃ maps vectors in the
(discrete) tangent space at vi of M to vectors in the tangent space of Si at pi: vector p̃−O is mapped to e′0 (center to right). The pseudo-
inverse of the Jacobian J†(p̃) maps the direction e′1 orthogonal to e′0 to direction e1. Transformation T0 is the affine mapping between frames
(e′0,e

′
1, pi) and (e0,e1, p̃). Transformation T1 is just a rotation for an angle −θ to align (e0,e1, p̃) with the reference system of ti jk.

4. Method

In a discrete setting, we are given a mesh M, which is a piecewise-
linear surface. Hence no smooth parametrization x could be defined
in the neighborhood of any point lying on an edge, or at a vertex of
M. As outlined before, we will assume M as an approximation of
an unknown smooth surface S, interpolating M at its vertices, and
we will estimate the differential operators on S.

Our approach consists of two steps:

1. Quadratic Fitting at Vertices. We approximate the surface S
around each vertex with a quadric, using the method proposed
in [Xu13]. The result provides a smooth local parametrization
xi of surface S around vertex vi. This is computed once for all
vertices and the coefficients of all quadrics are stored in our data
structure. We use the same approach to fit a local smooth func-
tion to a discrete scalar field f defined at the vertices of M.

2. Blending of Quadrics. For any other point p̄ ∈ M, belonging
to a triangle t, we blend on-the-fly the quadrics at the vertices
of t to obtain a new quadric, which provides a local smooth
parametrization xp of S around point p corresponding to p̄, and
likewise for the field f . The blended quadrics provide a point-
wise estimate of the surface S and the field f , and their differen-
tiable structure at p. This step is our main contribution.

Once a local smooth parametrization is available at a generic
point p, which is expressed in closed form with polynomial func-
tions, the differential operators defined in the previous sections can
be trivially computed from the derivatives of such functions.

The two steps of our method are described in detail in the fol-
lowing subsections.

4.1. Quadratic Fitting at Vertices

We briefly describe how the quadric xi : Di → R3 approximating
the geometry around a vertex vi ∈ M is computed, following the
approach proposed in [Xu13].

Let {vi1 , . . . ,vih} be the vertices in the 1-ring of vi. We map such
vertices to Di, coincident with the tangent plane at vi, by rescaling
the angles formed by the edges incident at vi (see e.g. [ZMT07]), so
that every one of them has its coordinate in the parametric domain.

By denoting with

{Q`(s, t)}5
`=1 := {s, t,s2,st, t2},

the basis functions of a quadric polynomial through the origin, then
we define as

xi(s, t) =
5

∑
`=1

c`Q`(s, t)+ vi,

where the coefficients c` ∈ R3 are chosen so that xi is the best fit-
ting quadric of the neighborhood of vi in the least square sense. For
computational reasons, we store the inverse of the matrix associ-
ated to the linear system (if such matrix is singular, we compute its
pseudo-inverse [GVL96]). We denote such a matrix with Ci. Note
that, since vi is identified with the origin of Di, by the choice of the
basis function we have that xi interpolates vi.

Likewise, given a discrete scalar field f = ( f1, . . . , fn), sampled
at the n vertices of M, we extend f to the neighborhood of vi with
the scalar function

f̂i(s, t) =
5

∑
`=1

d`Q`(s, t)+ fi,

where d` ∈ R.

Both the parametrization xi and the corresponding matrix Ci are
computed once at all vertices of M and stored in a data structure.
Once a discrete field f is given, the evaluation of function f̂i entails
a simple matrix-vector computation. Note that this formulation is
best for local evaluations of f̂i, while it can be optimized for global
computations over the whole mesh, by gathering the coefficients of
all the Ci’s in a unique sparse 5n×n matrix.
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It is worth pointing out that the choice of quadratic polynomials
is justified by the fact that we are interested in estimating second
order differential quantities, so 2 is the least degree we can work
with. Besides the fact that higher order polynomials would require
a larger stencil, we think that increasing the degree of the fitting
polynomial may introduce shape artifacts and bumpy regions. In
the future, we plan to demonstrate this claim as well as relaxing the
interpolatory constraint on the fitting polynomials.

4.2. Blending of Quadrics

We now extend the differential operators, which were computed
at a vertex vi in the previous section, to the rest of mesh M. We
will use the notation p̄ to denote a generic point of M, assuming an
implicit one-to-one mapping between p̄ and a corresponding point
p on the (unknown) smooth surface S. Differential quantities will
refer to the points of S, while the triangles of M will be taken as
local parametric domains to define such implicit mapping.

Let ti jk be a triangle of M with vertices vi,v j,vk. A point p̄ of ti jk
can be represented with barycentric coordinates (α,β) w.r.t. ti jk as

p̄ = (1−α−β)vi +αv j +βvk.

Let xi(si, ti), x j(s j, t j) and xk(sk, tk) be the quadric surfaces
parametrized at the vertices of ti jk, as described before. We will de-
fine a parametrization xp(s, t) about p̄ by blending such quadrics,
with weights corresponding to the barycentric coordinates of p̄.
This will provide a family of quadrics that vary smoothly across
ti jk, and continuously through its edges and vertices.

To this aim, we need to reparametrize the quadrics xi, x j, xk to
a common domain. We set a 2D reference system in the plane of
ti jk having its axes aligned with edge ei j , and with its orthogonal
direction e⊥i j , respectively, and the origin at vertex vi. The local
parametrization xp(s, t) will be defined with respect to a parametric
domain Dp, which is a copy of the same reference system with
origin translated in p̄. See Fig. 1 left.

In the following, we describe how to reparametrize xi in such
domain; the descriptions for x j and xk are analogous. We define
a correspondence between the parametric domain Di of xi and Dp,
which in our case is a linear mapping Ti : Dp→Di such that quadric
xi(si, ti) is reparametrized as xi◦Ti(s, t). The mapping Ti is obtained
as a composition of two transformations T0 and T1 (dependence of
T0 and T1 from index i is omitted to keep a light notation).

Let p̃ be the image of p̄ into the tangent plane at vi, which is
obtained with the logarithmic map centered at vi, as in the previous
section. The parametric domain in this tangent plane is denoted Di
with reference frame (si, ti,O) (see Fig. 1 left to center). Let Si be
the trace of xi. We set pi = xi(p̃) the image of such point through
the quadric at vi. Transformation T0 maps the tangent plane Tpi Si
to domain Di through the inverse of the Jacobian J of xi (see Fig. 1
right to center). More precisely, the tangent plane at pi is spanned
by the images through J of the reference axes si and ti. We set
e0 = p̃−O and e′0 its normalized image in Tpi Si through J(p̃); and
we choose e′1 as the orthogonal direction to e′0. We set an orthonor-
mal reference frame in Tpi Si defined as (e′0,e

′
1, pi) (see Fig. 1 cen-

ter). Now we consider the (non orthonormal) reference frame in Di

Figure 2: The coarse mesh in input consisting of 500 triangles
(left), is obtained from simplification of a reference mesh consist-
ing of ∼ 70k triangles (right). Our nearly smooth reconstruction is
obtained from the coarse mesh and has about the same number of
triangles of the reference mesh (center).

defined with (e0,e1, p̃), where axes are computed through the in-
verse of the Jacobian, i.e., (e0,e1) = J†(pi)(e′0,e

′
1). Finally, trans-

formation T0 is defined as the affine mapping from frame (e′0,e
′
1, pi)

to frame (e0,e1, p̃).

At this point, we have three independent reparametrizations of
xi, x j, xk with respect to three orthonormal frames with origin at
pi, p j, pk, respectively. Note that pi, p j, pk are the estimates of our
point p on S according to xi, x j, xk, respectively. In order to blend
such estimates, we need to reconcile the three reference frames. To
this aim, we first rigidly identify domain Tpi Si with the plane of ti jk,
mapping pi to p̄ and direction e′0 to p̄−vi, then we apply a rotation
to aligning the two reference frames. Transformation T1 is defined
as a rotation for an angle −θ, where θ is the angle between p̄− vi
and the s axis in the reference frame of ti jk (see Fig. 1 left).

With obvious notation, we now have that xi(Ti(s, t)),x j(Tj(s, t))
and xk(Tk(s, t)) are three quadrics defined in the same system of
coordinates, thus we can define xp(s, t) as

xp(s, t) = (1−α−β)xi(Ti(s, t))+αx j(Tj(s, t))+βxk(Tk(s, t)).

Note that, since the quadrics defined along an edge ei j depend just
on xi, x j and are reparametrizad in equivalent ways (up to rotation)
in the two triangles incident at ei j, the family of blended quadrics
vary with continuity across ei j.

We use exactly the same mechanism to blend scalar fields f̂i, f̂ j,
f̂k, estimated about the vertices, to obtain an estimate of scalar field
f̂p about p. At this point, xp and f̂p provide local estimates of the
surface and the field, respectively, in the neighborhood of p, which
can be used to compute all differential operators at p in closed form.

5. Experimental results

In the following, we present some results obtained with the method
described above to pointwise estimate the quantities introduced in
Section 3. We report experiments on just one object; extensive ex-
periments to assess robustness and performance are deferred to fu-
ture work. We take a watertight version of the original Stanford
bunny, consisting of about 70k triangles, and a drastically simpli-
fied version of the same object, consisting of just 500 triangles. We
compare results obtained on points sampled from the coarse mesh
with our method, against results on the same mesh and the same
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Figure 3: The metric tensor estimated from the coarse mesh is vi-
sualized on top of the reconstructed mesh. Each glyph shows the
eigen directions ei of the tensor, rescaled with respect to their cor-
responding eingenvalues λi. The scale factor applied to eigenvector
ei is 1/

√
λi, i = 0,1.

points obtained with linear interpolation, and against results on the
high-resolution mesh.

We will use two different sampling techniques: a regular sam-
pling (RS), to tessellate every triangle with a regular triangular grid,
and a Poisson disk sampling (PS) to obtain a more uniform distri-
bution of random points over the mesh. Both mesh simplification
and the Poisson disk sampling have been computed with Mesh-
lab [CCC∗08].

5.1. Shape properties

We first present results on properties that depend just on the un-
derlying shape, namely: surface reconstruction, metric tensor, and
curvature.

Figure 2 shows the coarse mesh, the reference mesh, and our re-
construction, which is obtained by tessellating every triangle of the
coarse mesh into 150 triangles with the RS method (thus obtain-
ing a resolution similar to the reference mesh) and estimating the
position of the vertices with our functions xp, as described in the
previous section. Although the fine details have been lost with sim-
plification, our reconstruction provides a relatively smooth version,
which approximates quite well the reference shape. As expected,
the surface is not fully smooth across the edges of the coarse mesh,
while it varies smoothly inside its triangles.

In Figure 3, we show the metric tensor computed on points from
the PS method. We visualize glyphs representing the eingenvectors
of the metric tensor, rescaled with respect to their corresponding
eingenvalues. The relative lengths of the exas of each cross reflect
the anisotropy of the metric, which is related to the local curvature.
It can be clearly seen that the tensor varies smoothly inside triangles
and with continuity across edges.

In Figure 4 we show the Gaussian curvature K computed as de-
scribed in Section 3.

Figure 4: Gaussian curvature computed with our method (top)
and using the approach of [Xu13] to estimate it at the vertices and
using linear interpolation inside triangles (bottom).

Figure 5: Heatmap and isolines of a geodesic distance field from
three sources. Our method (center) provides a much smoother re-
sult than the traditional linear interpolation (left) and closely ap-
proximates the result obtained on the reference mesh for a distance
field from similarly-placed sources (right).

Results are shown with heatmaps by using linear interpolation
over triangles of the coarse mesh versus our RS reconstructed mesh.
It is evident how linear interpolation causes abrupt changes, while
our method provides a much smoother result without evident arti-
facts. The differences are particularly visible in regions where the
curvature varies the most (e.g., at ears and feet): linear interpola-
tion poorly catches such variations, resulting in quick changes from
one triangle to another. On the other hand, since our method esti-
mates the curvature at any given point within a triangle by blending
smooth surfaces, we obtain a much smoother transition even across
the edges.

5.2. Field dependent differential operators

We take in input a geodesic distance field from multiple sources
manually picked on the shape. The distance field is computed with
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Figure 6: Gradient of the distance field shown in Figure 5: linear interpolation on coarse mesh (left), our method (center) and linear
interpolation on the reference mesh (right). On the coarse mesh, the variation of the gradient field is abrupt with linear interpolation and
quite smooth with our method, which has a behavior consistent with what happens on the reference mesh. The major differences can be
noticed in the proximity of singularities such as sources (bottom-right inset), and saddles (top-left inset): on the coarse mesh, they are
completely lost, on the reference mesh, they can be easily seen since the gradient is discontinuous there, while with our method the gradient,
they are critical points of the field.

the VTP algorithm [XW07] and stored just at the vertices of the
coarse mesh.

We estimate the field and its differential structure at all vertices
of either our RS reconstruction, or from the PS set. Figure 5 shows
a comparison between the field linearly interpolated on the coarse
mesh, our result on the reconstructed shape, and on the reference
mesh. Again, it can be easily seen, both from the heatmap and from
the isolines, that our result is smoother and overall consistent with
the one from similarly-placed sources on the reference mesh.

Figure 6 shows the gradient of the same distance field of Fig. 5
at the points of the PS set. We compare our method (center) with
the traditional linear interpolation over triangles both on the coarse
mesh (left) and on the reference mesh (right).

While the gradient is constant inside each face by using linear
interpolation, our results vary smoothly inside each face and nicely
across edges, capturing quite well the overall flow of the field. This
is particularly evident if we compare the result obtained on the
coarse mesh with ours: singularities such as sources and saddles
are completely lost with the linear interpolation, while they are de-
tected clearly with our method, even if they lie in the middle of
triangles. Moreover, even if they are overall consistent, the com-
parison between the gradient field on our reconstruction and the
one on the reference mesh indicates that the field we are estimating
is smoother than the geodesic distance field. In fact, our gradient
smoothly varies when approaching the cut locus, while the gradi-
ent on the reference mesh “breaks”, as it should, since the geodesic
distance is not differentiable there.

When solving optimization problems, it is important to assess
whether the energy E we are trying to minimize is convex or not.

Figure 7: Heatmap of the minimum and maximum eigenvalue (cen-
ter and right, respectively) of the second covariant derivative of the
distance field from a point placed on the head of the bunny (left).

Usually, this is done by checking the positive-definiteness of its
Hessian. In Figure 7, we choose E(q) = dp̄(q), i.e. a distance field
from a point p̄ on the head of the bunny(left), and we show the
heatmap of the minimum and maximum eigenvalue of∇2E (center
and right, respectively).

We then consider the field sin(10E(q)) (Figure 8, left), and we
compute the Laplacian of the such field using our method. We com-
pare our result with the one obtained on the reference mesh, where
the Laplacian in this case has been computed using the cotangent
Laplacian. The right portion of the Figure 8 shows that, our result
(bottom) is overall consistent with the one computed on the refer-
ence mesh (top). It is interesting to note how the geometric details
that we have lost during the decimation process have not a clearly
visible effect on the distance field (left), but visibly influence the
behavior of the Laplacian (right).
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Figure 8: The results obtained computing the Laplacian of
sin(10dp̄(q)) with our method on the reconstructed mesh (bottom-
right) and on the reference mesh (top-right). The heatmap of signal
is depicted on the left of the image.

6. Concluding remarks

We have presented a method based on surface fitting to estimate
pointwise differential operators, up to second order, over surface
meshes and scalar fields defined on them. All our operators are
smooth on triangles and continuous across edges. Most computa-
tions to estimate these operators are performed just once on the
input mesh, while pointwise evaluation entail simple and efficient
matrix-vector computations.

This is just preliminary work, which we plan to extend in several
directions in the near future. First of all, we plan to make extensive
comparisons about both accuracy and performance of the method
with respect to other methods at the state of the art, and possibly
widening the range of operators supported by our method (e.g. di-
vergence, mean curvature, etc.).

Next, we will address applications, especially in the context of
the many problems that require to use gradient descent on functions
(usually energies) defined over the surface. Since we can efficiently
compute both the gradient and the Hessian, we expect to obtain
relevant improvements in terms of both accuracy and speed.

Our method may be also improved by addressing a better way to
compute the quadrics at vertices, since the method of Xu [Xu13] is
not always stable on vertices with low degree, non-regular neigh-
borhood, and meshes with elongated triangles.

While our approach already improves over the state of the art, is
remains a pointwise estimator, which does not guarantee smooth-
ness across edges and vertices. An important open problem is to
devise a globally smooth reconstruction of the surface and estimate
of its differential properties. Moreover, such reconstruction should
take into account sharp features that the user might want to pre-
serve, which is not possible in our current implementation.
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