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Abstract

Virtual city generation from real data is far from being straightforward for users, as it strictly depends on the application
domain, amount of information available, and the adopted reconstruction techniques. Nowadays, reconstruction of virtual
cities is of interests in entertainment, urban planning, emergency response and machine learning. To serve these applications,
we have developed an open-source tool that can reconstruct cities at scale directly from OpenStreetMap data, that can perform

full city generation in the order of hundreds of seconds.

CCS Concepts

* Computing methodologies — Graphics systems and interfaces;

1. Introduction

The growing interest in reconstructing large areas motivates the
effort of researchers and practitioners in the generation of large
cities in 3D, since several application domains take advantage of
them [BSL*15]. In the entertainment industry, interactive virtual
cities are becoming the norm, but they remain very expensive to
produce at scale. In urban planning, 3D reconstructions provide
necessary representation of both real-world data and planned town
changes, but generating whole metropolis without pre-processing
is still cumbersome due to scale [SOW*18]. In archaeology, city-
wide reconstructions allow for better visualization, used to study
past events and to present them to an audience for education and
outreach. Furthermore, in emergency response, large-scaled mod-
els are employed to train emergency, policy and military personnel,
so to also include planning evacuation routes for various catastro-
phes [LZO08].

In this paper, we focus on modeling cities from OpenStreetMap
(OSM) data, which is the most widely available and complete
open source dataset of cities’ information. To be more precise,
we seek to generate a 3D model of an urban area that includes
buildings, streets, landscape elements, such as waterways, vege-
tation and farmlands. Such elements are described through their
2D geometry footprint, and sometimes by 3D information con-
cerning building and roof heights. Rarely details about the terrain
elevation [Wik21a] are available. However, particularities accessi-
ble from OpenStreetMap that are associated to buildings, such as
the height, number of levels, color and roof shape are strictly re-
lated to the city to be reproduced. For instance, most places in
Germany are provided with many details concerning the build-
ings, streets and natural areas, whereas various municipalities of
Rome, but also the city of Tokyo, present missing data. This lack
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of information can be associated to either a wide area or par-
ticular city elements. Our interest is to provide an open source
library, available on GitHub (https://github.com/sarettak/
3DCityReconstructionFromOSM), that can produce reconstruc-
tions of urban areas directly from raw OpenStreetMap data and
can scale to generate entire cities at once. However, minor pre-
processing or data augmentation are considered only when essen-
tial information about a specific city element is not available. Such
introduction is required to have a stable and robust system able to
also reproduce all those elements characterized by lack of informa-
tion.

Our application takes as input raw OSM data [Kon19] extracted di-
rectly through Overpass Turbo [Wik21d], which is a data mining
tool for OpenStreetMap. Before developing our system, we tested
the city reconstruction methods available in Blender and Houdini
that take the same input data, but we found them neither robust nor
scalable. We noticed that Blender is not suitable to render a large
portion of an area, for limitations associated to its OpenStreetMap
module [Wik21b] in reproducing buildings that lack of informa-
tion, which is the case for the vast majority of edifices in most cities
(Figure 1a). The procedural building generator of Houdini [Est19]
allows the user to create buildings with different appearance, by
changing values of the height, number of floors and windows on
each facade, but it requires the person to design each single con-
struction separately in order to reach the goal of a wide 3D city
model (Figure 1b). CityEngine is a 3D modeling software applica-
tion that also exploits a procedural modeling approach to generate
urban scenarios. It uses a set of hierarchical rules to create a virtual
representation of a specific city, so users not familiar with rule files
are required to invest substantial time in learning them. For this
reason, we developed a simple C++ application that can generate a
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(a) Urban area surrounding the
Colosseum (Rome) in Blender.

(b) Procedural building genera-
tor in Houdini.

Figure 1: City reconstruction in Blender and Houdini.

3D model of the whole city in just hundreds of seconds, including
serialization. Compared to the open source tools available to prac-
titioners today, our system is significantly more scalable and robust
on all cities we have tested.

In the reminder of the paper, we describe our application in de-
tails as follows. Section 2 contextualizes our study within the cur-
rent state-of-the-art in 3D city reconstruction focusing on real data
information. Section 3 illustrates the selected tool for information
extraction and presents the content of the adopted file format. Sec-
tion 4 reports the implemented features, specifically city elements
added to the scene and discusses two different types of materials.
Section 5 provides the performances along with the final represen-
tations of the reconstructed cities. In conclusion, Section 6 sum-
marizes the key points of this paper, discusses its limitations and
future research directions.

2. Related Works

Several studies have been conducted over the years with the aim
of creating detailed city elements, such as buildings and streets, by
employing different techniques and adopting various approaches.
In this paper, we review the more relevant methods to whole-city
generation and refer the reader to [LG06, WYD*14] for the syn-
thesis of single buildings. The authors of [NGDA*16] develop a
system that generates edifices starting from user sketches through
machine learning techniques, that precisely recreate user’s input.
The underlying system is based on procedural grammars, that are
often used for building synthesis [MWH*06, Kel21]. Moreover,
further relevant works concerning reconstruction of single city el-
ements are [CEW*08] and [VKW™12], focusing respectively on
street modeling and parcels generation. To this aim, the first article
addresses the problem of reproducing large street networks through
the introduction of a modeling framework, where the user has the
possibility to modify an existing street network or create one from
scratch. Instead, the second paper presents a method for the inter-
active procedural generation of parcels, through a partition of the
city blocks by considering user-specified subdivision attributes and
style parameters.

In the last few years, procedural building generation [Kel07]
through Neural Networks [BLS17] and Generative Adversarial
Networks (GANs) [KGS*18] has been adopted to reproduce en-
tire cities by changing the dimension and building style in order to
obtain a more natural effect. Recently, authors of [BK20] propose a
procedure for 3D city models generation from existing aerial pho-
togrammetric datasets in order to capture city parts and terrain in-
formation. In developing this framework, CityGML and LoD2 have

been adopted for reconstructing existing towns located in Sahin-
bey Municipality, in Turkey. Indeed, this study mainly focuses on
object diversity and level of details in the recreated city models,
simulating also a future representation of the interested area, but
as the authors mention, such reconstruction is associated to only
one Municipality. On the opposite, we would like to test scalabil-
ity with our application, by analysing information of areas around
the world differing in the city dimensions. Furthermore, another
interesting work concerning automatic 3D building reconstruction
starting from multi-view aerial images with a deep learning-based
approach is presented in [YJLW21]. However, an important limita-
tion emerges from this study. In particular, building segmentation
becomes hard when constructions are located very close to each
other, which is a common situation encountered in reconstructing
cities. Moreover, we develop a system which is strictly based on
city elements footprints and information provided in the GeoJSON
files, allowing us to precisely recreate the desired place.

3. OpenStreetMap Data

The reconstruction of cities environments starts with the real world
data available and with the choice of the tool to extract it.

3.1. Data Extraction

We evaluated a large variety of tools accessible for this step, differ-
ing in how they handle the spatial extent of the query, what are the
returned information extracted and in what format they are avail-
able. For OpenStreetMap, we considered BBBike Extract, Geofab-
rik download server, and Planet OSM. The main issue we found is
that these tools are targeted at reconstructing small places or only
handle the proprietary osm format. For this reason, we focus on the
reconstruction with direct queries to the OpenStreetMap database.

Overpass Turbo, one of the main APIs available for the main
OpenStreetMap database, plays a key role in the development of
our system. Its main feature relies on the ability of executing
queries in a query language, with the aim of customizing the subset
of information to extract, so to obtain a precise model of the desired
city. Furthermore, Overpass Turbo supports people who have just
started working with the query language with the wizard, whose
task consists in converting simple, human readable search terms in
Overpass queries, without additional user efforts.

3.2. Data Model

OpenStreetMap’s data model is comprised of three main entities:
nodes, ways and relations. A node defines a point on the Earth’s
surface identified by a pair of coordinates, representing respectively
its latitude and longitude (e.g. a park bench or a tree). A way is an
ordered list of nodes, constituting a river or a road, but can be also
employed to delineate the area boundaries, mainly for buildings
and forests. A relation is an ordered list that encodes the relation-
ship between two or more data elements of nodes, ways, or other
relations (e.g. a building with an internal garden).

OpenStreetMap employs tags to associate additional data for each
of its entities. A tag is a key-value pair (a list of all the features
available in OpenStreetMap is provided in [Wik21c]). The key,
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which is unique, is employed for a topic, category or type of fea-
ture specification, while a more precise information is provided by
the value. For instance, highway = residential defines the high-
way as a road, whose main function is to give access to people’s
homes. Hence, the map highlighting all the data requested through
the query is displayed on the right side of the interface, such as
in Figure 2 and the information can be downloaded in one of the
available formats, including GeoJSON.

Run Share Export Wizad Save Load Setings Help Overpass turbo @

Loaded - nodes: 174384, ways: 3

27 Displayed - pois: 936, ines: 102

Figure 2: The query for data extraction of the First Municipal-
ity of Rome (Italy) is presented on the left, while on the right, the
associated visual representation is displayed in Overpass Turbo.

3.3. GeoJSON

In our system, information concerning the city to be recreated in
3D is extracted from GeoJSON files. The choice of adopting such
document format, rather than the proprietary osm one, is related to
the clarity in the content organization and simplicity in its under-
standing, so to allow a wide range of users to take advantage of our
application. GeoJSON is a geospatial data format, based on JSON
extension and designed for representing simple geographical fea-
tures, their properties and spatial attributes. In particular, a Geome-
try, identifying a region of space, a Feature, specifying a bounded
entity or a FeatureCollection can be represented by a GeoJSON ob-
ject. A FeatureCollection is a list of Features, each of which is com-
posed of a set of additional properties and geometry information, as
presented in Figure 3. Indeed, properties are essential when work-
ing with 3D city reconstruction, giving precise information about
the type of the city element (if representing a building, a highway
or a natural area), the color, the shape, the number of floors and the
height (assigned to a building or a roof). Concerning the geome-
try, the following types are supported: Point, LineString, Polygon,
MultiPoint, MultiLineString, MultiPolygon and GeometryCollec-
tion. Consequently, depending on the geometry type, a set of co-
ordinates, identifying the positions of the vertices of the Feature
shape, is also provided. Specifically, the longitude (X axis) and the
latitude (Y axis) are required to assign a position to each vertex of
the GeoJSON object. Rarely, a third coordinate, representing the
elevation (Z axis), is available.
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“features”: [

"type": "Feature",

"properties": {
"@gid": "way/23071179",
"addr:city": "Dresden",
"addr:housenumber”: "14",
"addr:postcode”: "01067",
"addr:street": .-Kilz-Ring",
"building”: "roof",
"building:levels": "1",
"height”: "2.9",
“roof:shape”: "flat"”

"geometry": {
"type": "Polygon”,
"coordinates": [

[

13.7372807,
51.0472358

1,

Figure 3: Properties information and geometry structure of a
building in Dresda (Germany).

4. City Generation

This Section is devoted to the explanation of the programming
choices made in our city reconstruction application.

4.1. Base Libraries

We base our system on the Yocto/GL library [PNC19]. Yocto/GL
is a software library for Computer Graphics written in C++, that
provides support for several operations of basic math, geometry,
path tracing, image and file management. Compared to other open
source graphics libraries, such as PBRT [PJH16], CGAL [The21]
and Libigl [JP17], Yocto/GL scales very well to large complexity
environments due to its data-driven minimalistic design that im-
proves both computation times and memory consumption for large
scenes. All the aforementioned features induced us to develop our
application for 3D city reconstruction relying on Yocto/GL. As ad-
ditional dependencies, we used Eartcut [Mop20] for triangulation
and JSON [Loh21] for parsing tags from GeoJSON files.

4.2. Coordinate Processing

Coordinates in GeoJSON are expressed with respect to a latitude-
longitude parametrization. We instead want to map these coordi-
nates to a 3D reference frame, centered in the middle of the city
bounding box to avoid loosing too much precision. The transfor-
mation from the GeoJSON coordinates to the Cartesian one is com-
puted as in [Wik21e]:

x= {% ZZoom(X—i-n)J pixels

y= {% po0m (TC —In [tan (g + g)])J pixels

Initially, an instance of the city structure, that will contain all the
required information extracted from the GeoJSON files, is initial-
ized with initial values as shown in Figure 4. Then, each element is
processed independently based on its type.

4.3. Buildings

The geometry of buildings is either a Polygon or MultiPolygon,
with the only difference in the extra level of depth of the coordi-
nates in the last case and tags that specify additional information.
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str geojson_element {
string name

type
roof
tree
building
colour
level

height
roof_height
thickness
coords
new_coords {3
uble2>> holes &y
<double2>> new_holes = {};

Figure 4: Example of an element structure with initial values.

Key Value Notes
"building" "apartments", "ho- This key describes
tel", "tower", "res- the typology of the
idential" building.
"building:levels"  integer value This key specifies the
number of levels in a
building.

"building:height", integer or float This key describes

"height" value the height of a build-
ing.
"building:colour"  "white", "yellow", This key provides in-

"light yellow", formation about the

"brown", "light  color of a building.
brown" "light
orange"

"historic" "monument”, This key identifies
"building", various historical
"tomb", "bunker", places.
"church"

"roof:shape" "flat", "onion", This key describes
"pyramidal the shape of the roof.
"gabled"

"roof:height" integer or float This key describes
value the height of a roof.

"tourism" "attraction" This key is used

to map places of
specific interest to
tourists.

Table 1: Most relevant building features analysed by our system.

Various controls are performed in order to update all the neces-
sary data, such as the shape and height of the roof, along with de-
tails concerning if the building is a historical or touristic place, the
colour, the edifice height or number of levels, if any of these infor-
mation is provided in the GeoJSON files. Table 1 illustrates the
relevant building features available from OpenStreetMap treated
by our system, with a brief explanation of what they represent.
When some specifications are not available, they are computed us-
ing other attributes associated to the element in analysis, and if even
these are absent, default values are assigned. For instance, if the
number of levels of a building is missing from the properties list,
but the height is given, we can easily determine the overall number
of floors, starting from the standard height of a floor in real build-

7 6
. A

Figure 5: Side generation of a building from 4 initial positions (in
red).

ings, which is 3.2 meters in most locations. In the worst case, when
neither information about the level nor the height is provided, but
the Feature in consideration is a building of the following types:
“apartments’, ‘residential’ or "hotel’, the number of floors is set to
3 as an average of the possible heights for such city elements. We
have noticed that when default values are considered in the recon-
struction (due to missing data), in the final scene, most buildings
present the same height. Usually the lack of information is associ-
ated to a particular area, as demonstrated in Figure 6.

However, it could happen that a building has many details, while
its neighbors are missing some essential information. Since each
city element is analysed separately from the others, data propaga-
tion (e.g. details available for a building, such as the height, the
color and number of floors are directly assigned to the nearest con-
structions that are missing them) is currently not supported by our
system.

The building section is a sequence of one or more polygons, each of
which is a list of coordinates. The first polygon represents the exte-
rior walls, while all the others identify holes, i.e. interior walls, so
there is the need to separate the positions of the external ring from
the list of holes. To support all possible combinations, we triangu-
late the upper part of each building using the Earcut library. The ed-
ifice is then extruded by growing down its sides from the outer and
inner polygons. Then, we assign colors to face depending on build-
ing tags and add texture for more realism if details are needed. To
this aim, a specific control for generating the building sides is intro-
duced. Indeed, the idea of a texture refinement lead us to generate a
quad mesh rather than a triangular one, so to analyse the indices of
two contiguous positions in order to find the correspondent vertices
on the ground, as shown in Figure 5. Furthermore, a distinction of
the surface in the upper part of the building (flat rooftop) from the
rest is introduced, so to obtain two different shapes to whom we
assign a specific colour and consider the upper surface as the base
for extruding the roof. Additionally, a unique model would not be
suitable to assign a specific material (either texture or colour) to the
building and a different one to the roof.

Roof information, and in particular roof shape, is rarely available
in GeoJSON files and when present, usually its value indicates a flat
rooftop. The other most common roof type is a gabled roof, that
we support too. The remaining roof types are rarely adopted and
mostly used non-consistently, so we ignore these tags and employ
the gabled roof for all non-flat types. The chosen strategy consists
in finding the 2D coordinates of the barycenter defined by the ver-
tices of the rooftop, so to identify the highest position of the roof.
Earcut library is responsible for triangulation, while the procedure
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Figure 6: Visualization of 3D buildings (without materials) of the
Second Municipality of Rome (Italy).

for the generation of roof sides is similar to the one presented pre-
viously for the buildings, with the only difference, in this case, in
the presence of the triangular shapes. Furthermore, the total height
is defined as the sum of the building and the roof heights.

Our building representation is simplistic and not detailed when
viewed closely. However, we add particularities using textures, but
do not include further geometry. We chose this reconstruction over
the use of complex procedural buildings since it is scalable to large
cities and more importantly, faithful to the OpenStreetMap data.
Noticeably, we do not use instances, as typical in large environ-
ments rendering, but we generate a different shape for each build-
ing in the city.

4.4. Streets

Usually, streets in GeoJSON are represented as either ’LineString’
or ’MultiLineString’, both used for roads and bridges. Rarely a
polygonal shape is adopted to such city elements, mainly to identify
squares and large pedestrian areas. Regarding the information ex-
tracted, we distinguish two different types of streets: "highway’ and
’pedestrian’. The most frequent values associated to street features,
analysed by our system, are presented in Table 2. Roads specified
as polygons are simply triangulated, while streets represented as se-
quence of line segments, must be transformed into a polygonal sur-
face. For this reason, the analysis of street points is performed by
working on two contiguous positions at the same time (representing
the current and next location). Indeed, starting from the thickness,
the current and next coordinates, the most suitable surface is gen-
erated, as shown in Figure 7, in which points in blue identify the
information available in the GeoJSON Feature, while the grey ones
are obtained by considering a specific value for the thickness that is
determined based on the street value: 0.00005 for ’pedestrian’ type
and 0.0001 for "highway’ specification. Therefore, the combination
of separate squared surfaces positioned one next to the other gen-
erates a consistent shape of the street network, such as in Figure 8.
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Key Value Notes
"highway" "footway", "pedestrian", "steps", This key is
"path", "living_street", "trunk", fundamental
"sidewalk", ‘"primary", ‘"sec- to describe
ondary", "motorway", "tertiary" roads and
footpaths.

Table 2: Most relevant street features analysed by our system.
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(b) Second type of polygonal
street generation.

(a) First type of polygonal
street generation.

Figure 7: Two different types of street representation.

4.5. Natural Areas

This category encompasses the following natural elements: parks,
forests, arable lands, rivers, lakes and beaches. The main features
considered in our application are reported in Table 3. In general, the
geometry representation of these city objects can vary, but they are
mainly of type ’Polygon’ or "MultiPolygon’. Rarely some of them
(e.g. rivers) are represented as ’LineString” or MultiLineString’,
so following the same analysis of the streets. In this last case, the
thickness of the rivers, represented by either 'water’ or ’water-
ways’ value, is 1.0. Moreover, a precise distinction also concerns
the green areas, in which we identify zones with a lot of vegeta-
tion as ’forest’, while gardens and parks as *grass’, as presented in
Figure 9.

Trees are the simplest city elements represented as "Point’ ge-
ometry type, consisting of a unique position. No vegetation models
are present in the raw data, exception for the tree type that may be
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Figure 8: Streets of the First Municipality of Rome (Italy).
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Figure 9: Green areas of the Second Municipality of Rome (Italy).

Figure 10: Trees in the 7" " Arrondissement of Paris (France).

available. To this aim, we use instanced 3D meshes as proxy for
trees, downloaded from Free 3D. Thus, the height of these city ele-
ments is adapted through the usage of the graphic software Blender
by considering their type. The pine is the highest one, followed by
the oak that is slightly smaller. The palm and the cypress have a
similar value, while the standard tree is taller than the last two tree
types. The standard model is adopted in all cases a tree exists in
a GeoJSON file, but it is not of the aforementioned types. These
models are converted in ply format and loaded in our system by
exploiting Yocto/GL functions. An example of a scene with trees
information is shown in Figure 10.

4.6. Materials

We assign materials to city objects based on their element type and
the associated tag data. Indeed, we use either solid color or textures.

Colors and material types (i.e. matte, glossy, transmissive) are
mainly employed to distinguish the type of streets, the green areas,
but also to obtain a more natural result for the water, and to indi-
cate historical buildings. For this reason, we define a material map-
ping function from GeoJSON tags to 3D scene elements that can

Key Value Notes

"genus" "Quercus",  "Cu- This key provides the sci-
pressus”, "Pinus" entific name of a tree.

"landuse"  "grass", "vil-  This key describes the
lage_green", "farm-  purpose of a land area.
yard", "meadow",

"forest", "farm-
land", "orchard"

"leisure" "park", "garden", This key identifies places
"playground", where people go in their
"pitch", "recre-  spare time.
ation_ground",

"dog_park"

"natural" "scrub", "tree", This key describes natu-
"grassland”, "wa- ral and physical land fea-
ter", "wood" tures, including the ones

modified by humans.

"type" "waterway", This key provides infor-
"pine", "palm"”, mation about the feature
"cypress" typology in analysis.

"waterway" "canal", "river" This key specifies the type

of the waterway.

Table 3: Most relevant natural features analysed by our system.

building_color) {

Figure 11: Material mapping function from GeoJSON tags to 3D
models.

be customized with ease. Such function converts the most common
colors employed for historical buildings into their corresponding
RGB values, as shown in Figure 11. Furthermore, function in Fig-
ure 12 assigns a specific color to each city object by relying on
the element type in analysis. Additionally, users can customize the
final appearance (in terms of materials) of the reconstructed area,
by introducing in the system their own textures and by changing the
colors assigned to different city elements. Indeed, from this point of
view, our application is easy to use, developed with the aim of facil-
itating its improvement by the introduction of updates and changes.
Our goal is to provide a simple, robust and customizable system
for users to generate visualizations, since material information is
mostly not present in the raw data.

Textures are used to obtain a more pleasant look of the recon-
structed 3D city. Indeed, facades textures are introduced in the ap-
plication to add particularities to buildings, such as windows and
balconies, by analysing the number of floors. Texture coordinates
(u,v) are generated accordingly to map facade repetitions. Hence,
depending on the building levels, (u,v) coordinates scale conse-
quently to adapt the texture to the height of the building facade.

© 2021 The Author(s)
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vec3f get_color(g

rn vec3f{0.725, 0.71, 0.68};

Figure 12: Function mapping the specific color to the element in
analysis.
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Figure 13: Textures for building facades adopted for all the recon-
structed cities.

Figure 13 shows examples of the textures used in our system. Fi-
nally, we render our scene with path tracing and environmental il-
lumination. Skies are either procedurally generated or use a cap-
tured HDRI map. Example of environmental maps are shown in
Figure 14.

4.7. Graphical User Interface

A Graphical User Interface (GUI) is provided in our system for
3D city reconstruction, allowing users to interact directly with the
scene. People can change either the perspective of the city, dis-
played on the right of the GUI, or values associated to the param-
eters (positioned on the left of the GUI) through sliders. Indeed,
such changes are related to the resolution, the exposure (represent-
ing the amount of light reaching the camera) and the number of
samples (the noise appearing when rendering the scene). However,
compared to Yocto/GL GUI, we add the lens parameter, so to easily
manage the quantity of data to display and to observe, from a closer

Figure 14: Respectively texture of the morning, sunset and night.
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Figure 15: GUI with the render of London.

Model GeoJSON Size  Notes

Amsterdam 363 MB 12 km?

London 552MB 24 km* London and Westminster
Paris 80.0 MB 23 km®> 10 Arrondissement
Rome 482MB 40 km®>  1and II Municipalities
Tokyo 351 MB 17 km?

Table 4: Cities GeoJSON data.

point of view, the features of the reconstructed city elements. The
GUI of our application is illustrated in Figure 15.

5. Results

Starting from the available OpenStreetMap data, we demonstrate
the efficiency of our system by analyzing the reconstruction perfor-
mance of the following cities: Amsterdam, London, Paris, Rome
and Tokyo. Indeed, Amsterdam is known for its canals, London for
the alternation of ancient and modern buildings, while parks are
emerging in Paris. Rome is characterised by its historical build-
ings and Tokyo is identified by the skyscrapers. The aforemen-
tioned cities are selected for their different structures, with the goal
to compare the final results with the amount of information pro-
vided in the starting GeoJSON files. Hence, the dimension of such
representative content has a key role in the performance analysis,
considering that the time to generate each city element strictly de-
pends on the amount of data to reconstruct. The dimensions of the
selected urban areas are summarized in Table 4. For each of the
aforementioned places, we discuss the scene of the final 3D city
reconstruction. Below each resulting image, we provide also a ta-
ble including all the identified city elements along with information
concerning the generation time (in seconds), number of triangles,
quads and instances.

5.1. Cities

The scene of Amsterdam requires 1 minute and 27 seconds to be
generated and saved, 36 seconds to be loaded and 1 second to be
displayed. The resulting image in Figure 16 is identified by the
characteristic canals of Amsterdam, accentuated by the sun reflect-
ing in the waterways. For this render, a daily environmental texture
is preferred, allowing the viewer to immediately focus on the water
properties, that give more natural effect to the final scene.
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Time Triangles Quads  Elements

Buildings 0.19 170306 240305 23333
Green Areas 0.006 8747 0 1015
Highway 0.04 31674 0 15834
Pedestrian 0.02 19757 0 8222
Water/Waterway ~ 0.007 11052 0 1562

Figure 16: Reconstruction of Amsterdam.

London is the second city reconstructed. In this case, the scene
is generated and saved in 2 minutes and 33 seconds, 1 minute and
10 seconds is needed to load it, while 1 second for visualization.
Figure 17 illustrates a representation with both skyscrapers, char-
acterizing the modern part of the city, and low rise buildings in the
foreground. The reconstructed parks and waterways are emerging,
including all trees provided in the GeoJSON files.

The third city presented is Paris, requiring 2 minutes to be cre-
ated and saved, 1 minute and 39 seconds to be loaded and 1 sec-
ond to be displayed. The generated 3D scene presents an incredible
amount of details, clearly deductible by the presence of many tree
models. Indeed, Paris is one of the cities with the highest num-
ber of information provided in the GeoJSON files, as noticeable in
Figure 18. Looking at this image, the viewer notices the reflecting
buildings in the Seine river that flows obliquely through the scene
and the Eiffel Tower in the background, that characterizes Paris.

The render of the two municipalities of Rome requires 2 min-
utes and 24 seconds to be generated and saved, 1 minute and 11
seconds to be loaded, while 1 second to be presented. In the fore-
ground of Figure 19, the Colosseum is emerging along with some
historical buildings (monochrome) representing churches. Differ-
ently from other cities, the building heights are rarely provided in
the GeoJSON files of Rome. For this reason, a standard height is
adopted and many constructions appear to have the same elevation.
However, different types of trees are distinguishable in the scene,
mainly in the area surrounding the Colosseum, as pines, cypresses,
palms and standard trees.

The last city presented is Tokyo that takes 2 minutes to be created,
25 seconds are necessary to load it and 1 second to display this area
in 3D. The skyscrapers are the first city elements that capture the

Time Triangles  Quads Elements

Buildings 0.34 179991 271445 30474
Green Areas 0.006 15965 0 1104
Highway 0.08 60105 0 29937
Pedestrian 0.06 53337 0 22737
Water/Waterway  0.004 11564 0 153

Figure 17: Reconstruction of London.

Elements

Time Triangles Quads

Buildings 0.34 378726 485845 35695
Green Areas 0.01 30822 0 2400
Highway 0.057 43488 0 21393
Pedestrian 0.05 62890 0 18173
Water/Waterway ~ 0.001 3446 0 252

Figure 18: Reconstruction of Paris.

viewer attention. Indeed, they are positioned in the center of the
rendered scene, characterized by different textures based on their
number of floors that varies from 10 to more than 101. Particularly
relevant in Figure 20 is the missing information of buildings in the
lower part of the picture, where only streets and some green areas,
that create the contours of the absent elements, are emerging.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.
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Time Triangles Quads  Elements Time Triangles Quads  Elements
Buildings 0.21 193215 266357 24347 Buildings 312 2122567 3156025 344489
Green Areas 0.01 34074 0 2784 Green Areas 0.17 298709 0 28287
Highway 0.11 78622 0 39263 Highway 0.94 597654 0 298218
Pedestrian 0.07 60321 0 25818 Pedestrian 1.02 650984 0 315412
Water/Waterway ~ 0.002 4678 0 202 Water/Waterway ~ 0.04 56330 0 9974

Figure 19: Reconstruction of Rome.

Figure 21: Reconstruction of Berlin.

Time Triangles Quads

Elements Time Triangles Quads  Elements
Buildings 0.32 103912 205800 33963 Buildings 0.99 640253 1016889 125491
Green Areas 0.003 7248 0 545 Green Areas 0.08 191374 0 12667
Highway 0.058 42721 0 21353 Highway 0.77 529212 0 264349
Pedestrian 0.04 29800 0 13893 Pedestrian 0.25 186661 0 86931
Water/Waterway ~ 0.005 4409 0 1642 Water/Waterway  0.005 14042 0 405

Figure 20: Reconstruction of Tokyo.

5.2. Performance

Looking at the tables, it is possible to notice that the highest gen-
eration time is associated to the buildings. In particular, Paris (0.34
seconds) and London (0.34 seconds) are the cities requiring more
time to generate edifices, followed by Tokyo (0.32 seconds), Rome
(0.21 seconds) and finally by Amsterdam (0.19 seconds). However,
the presented time performances are coherent with respect to the
other city elements, because additional seconds are required for the

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Figure 22: Reconstruction of all available municipalities of Rome.

generation of building sides. Moreover, we tested for scalability by
reconstructing all the available municipalities of Berlin (11 in to-
tal) and Rome (11, including also the 1* and 2"¢ municipality pre-
sented previously). Hence, by analysing all the reconstructed cities,
Berlin (illustrated in Figure 21) is the widest area generated, with
the dimension for the provided data equal to 700 MB, followed by
all municipalities of Rome (represented in Figure 22), with a total
dimension of 205.9 MB.



60 S. Kaszuba & F. Pellacini / 3D City Reconstruction

6. Conclusion

Summarizing, we presented an application for urban area recon-
struction that can handle processing of large city data in just hun-
dreds of seconds. To this aim, we started with the available Open-
StreetMap data and generated a 3D model suitable for scene visu-
alization and rendering in a path tracer. Moreover, the efficiency
and potential of the program is demonstrated by rendering cities
differing in features, level of details provided in the GeoJSON files
and dimension of the area to reproduce. Hence, compared to other
open source tools, we are significantly faster and more robust at our
target scale of whole-city reconstruction.

Looking at the future, we would like to introduce a terrain system
for converting elevation data [Mas19, CMsRP12], more accurate
roofs as in Straight Skeleton algorithm [EHP21], and we would also
include embedded buildings found in the OpenStreetMap database.
Furthermore, another interesting improvements concerns the intro-
duction of small particularities, such as street lamps, traffic lights
and street signs, relying on the information available on Open-
StreetMap. Moreover, the GUI can be also optimized to allow users
to customize the individual elements of the reconstructed city, such
as materials (both textures and colors), number of floors and the
height of the buildings with lack of information.
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