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Figure 1: Pipeline of the kernel computation for a polyhedron. At first step, we compute the Axis Aligned Bounding Box (AABB) of the
polyhedron; then, we iterate on each face f of the polyhedron (black edges) and cut AABB with the plane induced by f (red edges).

Abstract
We present a geometric algorithm to compute the geometric kernel of a generic polyhedron. The geometric kernel (or simply
kernel) is defined as the set of points from which the whole polyhedron is visible. Whilst the computation of the kernel for
a polygon has already been largely addressed in the literature, less has been done for polyhedra. Currently, the principal
implementation of the kernel estimation is based on the solution of a linear programming problem. We compare against it on
several examples, showing that our method is more efficient in analysing the elements of a generic tessellation. Details on the
technical implementation and discussions on pros and cons of the method are also provided.

CCS Concepts
• Computing methodologies → Volumetric models;

1. Introduction

The concept of geometric kernel of a polygon, a polyhedron, or
more generally of a shape, is a pillar of computational geometry.
Intuitively, the kernel of a close, geometric shape S is the locus of
the points internal to S from which the whole shape S is visible.
This concept is particularly interesting when applied to non convex
polytopes, as for convex shapes the kernel coincides with the shape
itself.

In the simplest scenario, that is if the shape is a polygon, the
standard way of computing its kernel is by intersecting appropriate
half-planes generated from its edges. This problem has been tack-
led since 70s, when [SH76] presented an efficient algorithm that
performed the kernel computation in O(e loge) operations, where e
is the number of edges of a polygon, as the intersection of e half-
edges. After that, an optimal algorithm able to run in O(n) oper-
ations, being n the number of vertices of the polygon, has been
proposed in [LP79]. Up to our knowledge, computational tools and
libraries like Boost [Boo21], Geogram [LF15], CGAL [FP09], or
Libigl [JP17] implement routines to compute intersections between
polygons and planes, which can be used to estimate the kernel. In

the first attempts, for example in [PS85], the extension of the prob-
lem to the 3D case was treated only from a theoretical point of view.
Starting from this perspective, the natural approach of extending of
the 2D method (which we call the geometric approach) was soon
dismissed as unattractive for computational reasons. It was replaced
by a new approach (which we call algebraic) which makes use of
linear algebra and homogeneous coordinates, and that is the state
of the art for computing 3D kernels currently implemented by li-
braries like CGAL.

During years, the polygon kernel computation has become pop-
ular to address several problems based on simple polygon analysis,
such as star-component decomposition and visibility algorithms
that are of interest in robotics, surveillance, geometric modeling,
computer vision and, recently, in the emerging field of additive
manufacturing [DAB18]. Today, the geometric kernel of a polytope
is a pivotal information for understanding the geometrical quality
of an element in the context of finite elements analysis. While in the
past years finite elements methods were only designed to work on
convex elements like triangles/tetrahedra or quadrangles/hexahedra
[Cia02], recent and more complex methods like the Mimetic Fi-
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nite Difference Method [LMS14], the Virtual Elements Method
[BBC*13], the Discontinuous Galerkin Mehod [CKS12] or the Hy-
brid High Order Method [DD19] are able to deal with non convex
polytopes. This enrichment of the class of admissible elements led
researchers to further investigate the idea of the geometric quality
of a polytope, and to define quality measures and metrics for the
elements of a mesh [ABB*21; SBMS21]. In this setting, the geo-
metric kernel is often associated with the concepts of shape regu-
larity and star-shapedness of an element. For example, as analyzed
in [SPC*21], most of the error estimates regarding the VEM (but
the same holds for other polytopal methods) are based on the theory
of polynomial approximation in Sobolev spaces, assuming the star-
shapedness of the elements [SB08; DS80]. As a consequence there
are a number of sufficient geometrical assumptions on the compu-
tational domain for the convergence of the method, which require
an estimate of the kernel. Mesh quality measures/metrics/indicators
require to compute the kernel of thousands of polytopes, each of
them with a limited number of faces and vertices, in the shortest
possible time [SBMS21].

In this paper we define an algorithm for the implementation of
the geometric approach to the computation of the kernel of a poly-
hedron, and empirically show how this approach can significantly
outperform the algebraic one when applied in the context of finite
elements methods, with elements having a limited number of faces
and vertices.

The paper is organized as follows. In Section 2 we introduce and
define the concept of kernel of a polytope in dimension 2 and 3. In
Section 3 we detail the algorithm for the construction of the kernel
of a polyhedra. In Section 4 we exhibit some examples of computed
kernels and analyze the performance of the algorithm, also with
comparisons with an implementation of the algebraic approach. In
Section 5 we sum up pros and cons of the algorithm and draw some
conclusions.

2. Terminology and preliminary concepts

Let us introduce some basic concepts, useful to the computation
of the kernel of a polyhedron. Following the notation adopted in
[PS85], a polyhedron is defined by a finite set of plane polygons
such that every edge of a polygon is shared by exactly one other
polygon and no subset of polygons has the same property. The ver-
tices and the edges of the polygons are the vertices and the edges
of the polyhedron; the polygons are the faces of the polyhedron.
In this work we only consider simple polyhedra, which means that
there is no pair of nonadjacent faces sharing a point.

A polyhedron P is convex if, for any two points p1 and p2 in P,
the segment (p1, p2) is entirely contained in P. It can be shown that
the intersection of convex polyhedra is a convex polyhedron. Two
points p1 and p2 inside P are said to be visible if the line segment
connecting p1 and p2 does not intersect with the exterior of the P.
It is easily seen that any two points inside a convex polyhedron are
visible. The kernel of a P is the set of points from which all points
inside P are visible. Some polyhedra may not have a kernel, or
we also say their kernel is empty. The polyhedron P is called star-
shaped if there exists a sphere completely contained in its kernel.
A polyhedron is not star-shaped if its kernel is empty.

In Fig. 2 we present a parametric polyhedron shaped like a tent,
with the parameter regulating the height of the "entrance". As the
parameter increases, the set of points from which the whole polyhe-
dron is visible becomes smaller, and so does the kernel. The last ex-
ample of Fig. 2 is not star-shaped anymore, i.e. the kernel is empty.

Figure 2: Evolution of the kernel (in red) in a sequence of para-
metric polyhedra.

In Section 3 we will make use of the concept of signed distance.
Given a plane p with unit normal vector nnn and a point ppp on it,
the signed distance between a point xxx and the plane is given by
the scalar product d(xxx, p) = nnn · (ppp− xxx). We say that xxx is strictly
(weakly) below p if d(xxx, p)< 0 (≤ 0), xxx is strictly (weakly) above
if d(xxx, p)> 0 (≥ 0), and xxx is on p if d(xxx, p) = 0.

2.1. Geometric vs algebraic approach

The state of the art algorithm in the 2D case follows a geomet-
ric approach: the kernel of a polygon is found as the intersection
of half-planes originating from its edges. We use the term "geo-
metrical" because the algorithm computes repeatedly a sequence
of geometric intersections between polygons and planes. This idea
was optimized until obtaining an algorithm able to run in O(n) op-
erations, which has been proven to be optimal. One natural way
to define a method for the 3D kernel computation is to extend the
2D algorithm, which is well studied and documented, to the upper
dimension.

The problem with the 3D case is that whereas two convex poly-
gons with respectively n1 and n2 vertices can be intersected in time
O(n), being n = n1 + n2, two convex polyhedra with the same pa-
rameters are intersected in time O(n logn), thus the generalization
of the two-dimensional instance would yield an O(n log2 n) algo-
rithm. This is in contrast with the result shown in [PS85], where a
lower bound for the intersection of convex polyhedra is established
at O(n logn).

This brought to the definition of a new algorithm based on the
so-called "double duality trick", which makes use of linear algebra
and homogeneous coordinates, able to compute the intersection of
n half-spaces in time O(n logn) [PS85]. This algebraic approach
can be implemented inside the framework of the CGAL library,
although there is currently not an explicit routine for computing
the kernel of a polyhedron and one has to connect the function for
the intersection of half-spaces to the polyhedron data structure.

While from a theoretical point of view the cited results are indu-
bitable, we believe that in many practical situations the geometric
approach could perform better than the algebraic one. Intuitively,
if the number of faces and vertices of the polyhedron is low, this
method can be more efficient than the algebraic one, as the cost of
solving a linear problem does not go under a certain bound while
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the intersection of half-spaces can become extremely cheap if per-
formed intelligently.

3. Computing the kernel of a Polyhedron

In this section, we induce our method for computing the kernel of a
polyhedron. It has a modular structure composed of four nested al-
gorithms, each one calling the next one in its core part. It is modular
in the sense that each algorithm can be entirely replaced by another
one performing the same operation(s). For instance, one could use
another strategy for computing the intersection between a polygon
and a plane and simply replace Algorithm 3 (and Algorithm 4 if not
needed).

In the next subsections we adopt the following data structure in-
herited by the cinolib library [Liv19], in which the code has been
written:

• Polyhedron: class composed by a field verts containing the ver-
tices (in 3D coordinates) and a field faces containing the faces of
a polyhedron.
• Points: array of unordered 3D points.
• Face: array of unsigned integers representing the indices of the

vertices of a face, ordered counter-clockwise.
• Plane: class composed by a 3D point d indicating a random point

on the plane, and a 3D point n indicating the unit normal of the
plane.

We point out that we always consider a plane p together with the
direction indicated by its normal vector p.n, which is equivalent to
considering the half-space originating in p and containing p.n.

3.1. Polyhedron Kernel

Algorithm 1 tackles the main problem: given a polyhedron P, we
want to find the polyhedron K representing the kernel of P. We
will also need as input an array containing the outwards normals
of the polyhedron faces, as it is not always possible to compute
the orientation of a face only from its vertices (for example with
non-convex faces).

We start by defining K as the axis aligned bounding box (AABB)
of P, i.e. the box with the smallest volume within which all the
vertices of P lie, aligned with the axes of the coordinate system.
We then recursively "cut" this box with a number of planes. For
each face f of P we compute the plane p which contains it, with
the orientation given by the opposite of its normal N( f ) (that is to
say, p.n=−N( f )). In general p will separate K into two polyhedra,
and between those two we choose the one containing the vector p.n,
which points towards the interior of K. This operation is performed
by the Polyhedron-Plane-Intersection algorithm detailed in Section
3.3, which replaces K with the chosen polyhedron.

We point out that cutting a convex polyhedron with a plane will
always generate two convex polyhedra, and since we start from
the bounding box (which is convex), we are guaranteed for K to
be always a convex polyhedron. We could as well start with con-
sidering the polyhedron’s convex hull instead of its bounding box,
but it would be less efficient because the convex hull costs in gen-
eral O(n logn) while the AABB is O(n). Note that even if we used

the convex hull, we would still need to intersect the polyhedron
with each of its faces. As we iterate through the faces, we gener-
ate a sequence of convex polyhedra Ki, i = 1, . . . ,#faces, such that
Ki ⊆ Ki−1. No matter how weird the initial element P is, from this
point on we will only be dealing with convex polyhedra and convex
faces.

Algorithm 1 Polyhedron-Kernel
Input: Polyhedron P, Points N (faces normals);
Output: Polyhedron K

1: K := AABB of P;
2: for Face f in P. f aces do
3: Plane p := plane containing f with normal −N( f );
4: K := Polyhedron-Plane-Intersection(K, p);
5: end for
6: return K;

3.2. Polyhedron-Plane-Intersection

With the second algorithm we want to intersect a polyhedron P
with a plane p. This intersection will in general be composed of
two polyhedra, and between these two we are interested in the one
containing the normal vector of p (conventionally called the one
"above" the plane and indicated with A). This algorithm is inspired
from [AS08], where the authors define an algorithm for the inter-
section of a convex polyhedron with an half-space.

(a) (b)

Figure 3: Intersection of a polyhedron with a plane: (a) clipping
and (b) capping of a cube.

The first part of Algorithm 2 is called the "clipping" part (recall-
ing the terminology from [AS08]) and consists in cutting each face
of P with the plane p, see Fig. 3(a). We preliminarly evaluate the
signed distances (defined in Section 2) between the vertices of P
and the plane to understand their position with respect to p. Faces
strictly below p are discarded, faces weakly above p are added to
A together with their vertices, and faces intersected by p are split
by the Polygon-Plane-Intersection algorithm. While we visit every
face only once, the same does not hold for vertices, hence we need
to check if a vertex is already present in A before adding it.

This simple idea of processing in advance the faces which are
only weakly above the plane resolves several implementation is-
sues and in some cases significantly improves the efficiency of the
algorithm. By doing this, we make sure that only the faces properly
intersected by the plane are passed to Algorithm 3, so that we do
not need to implement all the particular cases of intersections in a
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single point or along an edge or of faces contained in the plane. In
addition, for every face not passed to Algorithm 3 we have an ef-
ficiency improvement, and this happens frequently in models with
many coplanar faces like the ones considered in Section 4.2.

If at the end of this step p intersects A in more than two points,
given that A and all its faces are convex, the vertices shared by p
and A will define a "cap" face of A completely contained in p, see
Fig. 3(b). In order to sort counter-clockwise the points contained
in capV we project them onto a plane and apply the algorithm pro-
posed in [Bae21] for 2D points. Note that if the cap face was not
convex it would make no sense to order its vertices, but the intersec-
tion between a plane and a convex polyhedron will always generate
convex faces. Last, we need to check that this face is not already
present in A: for example if p is tangent to P along a face, this face
could be added to A both as an intersection face and as a cap face.
If this is not the case we add capF to A. f aces, but we do not need
to add any vertex from capV, as we can assume they are all already
present in A.verts.

Algorithm 2 Polyhedron-Plane-Intersection
Input: Polyhedron P, Plane p
Output: Polyhedron A

1: evaluate the position of all points in P.verts with respect to p;
2: for Face f in P. f aces do
3: Points fv = vertices in P.verts relative to f ;
4: if all vertices in fv are strictly below p then continue;
5: else if all vertices in fv are weakly above p then
6: A.verts← fv, A. f aces← f ;
7: else
8: aboveV,aboveF:=Polygon-Plane-Intersection( fv, f , p);
9: A.verts← aboveV, A. f aces← aboveF;

10: end if
11: end for
12: Points capV:= vertices in A.verts which are on p;
13: if size(capV)< 3 then return A;
14: end if
15: Face capF := capV indices ordered counter-clockwise;
16: if capF /∈ A. f aces then A. f aces← capF;
17: end if
18: return A;

3.3. Polygon-Plane-Intersection

Algorithm 3 describes the intersection of a polygon (representing a
face of the polyhedron), defined by an array of 3D points polyV and
an array of indices polyF, with a plane p. In analogy to Algorithm 2,
the intersection will in general produce two polygons and we are
only interested in the one above the plane, see Fig. 4(a), defined
by vertices aboveV and indexes aboveF. We generically say that a
vertex v is added to above meaning that v is added to aboveV and
its index idv is added to aboveF.

We preliminarly evaluate the signed distances between the ver-
tices of the polygon and the plane to understand their position with
respect to p. Then we iterate on the edges of poly: in order to avoid
duplicates, for each couple of consecutive vertices v1,v2, we only

accept to add to above the second vertex v2 or the intersection ver-
tex v, but never v1. When applying the algorithm recursively, as in
the case of kernel computation, this idea requires to have all faces
oriented coherently.

If both vertices are strictly below p we ignore them, unless v2
lies exactly on the plane, in which case we add it to above. If they
are both above or on p we add v2 to above, otherwise we perform
the Line-Plane-Intersection algorithm and find a new vertex v. Its
index idv will be equal to the maximum value in polyF plus one,
just to make sure that we are not using the index of an existing
vertex. Now, if v1 is above p (and consequently v2 is below) we
only add v to above, while if v1 is below p (and v2 is above) we add
both v and v2. As already noted in Section 3.2, treating separately
the weak intersections makes the code simpler and more efficient.

(a) (b)

Figure 4: (a) Intersection between a polygon and a plane, with the
above part coloured in green. (b) Intersection between a line and a
plane.

Algorithm 3 Polygon-Plane-Intersection
Input: Points polyV, Face polyF, Plane p.
Output: Points aboveV, Face aboveF.

1: evaluate the position of all points in polyV with respect to p;
2: for i = 1 : size(polyF) do
3: id1 := polyF(i), id2 := polyF(i+1);
4: v1 := polyV(id1), v2 := polyV(id2);
5: if v1 and v2 are strictly below p then
6: continue;
7: else if v1 is weakly below p and v2 is on p then
8: aboveV ← v2, aboveF← id2;
9: else if v1 and v2 are weakly above p then

10: aboveV ← v2, aboveF← id2;
11: else
12: v := Line-Plane-Intersection(v1,v2, p);
13: idv := max(polyF)+1;
14: if v1 is strictly above p then
15: aboveV ← v, aboveF← idv;
16: else
17: aboveV ← v, aboveF← idv;
18: aboveV ← v2, aboveF← id2;
19: end if
20: end if
21: end for
22: return aboveV, aboveF;
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3.4. Line-Plane-Intersection

This last algorithm returns the intersection point between a line,
given as a couple of vertices, and a plane. It is a very simple and
well known procedure, and we report it here only for completeness.

The intersection vertex v is defined by a linear combination of v1
and v2, with a coefficient t which may also fall outside the standard
range [0,1]. The only difficulty lies in the definition of t, which is
the negative ratio between two scalar products involving the plane
normal p.n and a generic other point on the plane, p.s, other than
v1 and v2, see Fig 4(b). If the denominator D vanishes, it means
that either the line does not intersect the plane or that the line is
contained in it: we treat these exceptions as errors because in Al-
gorithm 3 we only call this algorithm after checking that the edge
(v1,v2) properly intersects the plane p.

Algorithm 4 Line-Plane-Intersection
Input: vertices v1,v2, Plane p.
Output: vertex v.

1: N := (p.n) · (v1− p.s);
2: D := (p.n) · (v2− v1);
3: if D = 0 & N 6= 0 then error: no intersections;
4: else if D = 0 & N = 0 then error: line contained in the plane;
5: end if
6: t :=−N/D;
7: return v := v1 + t(v2− v1);

3.5. Computational complexity

Making advantage of the modularity of our algorithms, we can esti-
mate separately the computational cost of each algorithm and then
include them into a single formula.

We start with a polyhedron P with nv vertices and n f faces. For
Algorithm 1 we need to compute its AABB, which is O(nv), and
then perform Algorithm 2 for n f times, therefore N1 = nv +n f N2.

In Algorithm 2 we receive as input a polyhedron which is poten-
tially different from P, but we empirically measured that the num-
ber of vertices and faces remain approximately constant when ap-
plying this routine. We preliminarly compute nv signed distances;
then, only in the cases in which the vertices of a face do not all
lie by the same side, run Algorithm 3. If only m1 faces needs to
be cut (with m1 < n f ), the clippping part takes nv + m1N3 op-
erations. If we have a cap face (which is not always true) with
nvc verts, we need to sort them with a QuickSort routine which
is on average O(nvc lognvc). Altogether, Algorithm 2 takes N2 =
nv +m1N3 +nvc lognvc operations.

Given a face fi with nvi vertices, in Algorithm 3 we start by com-
puting nvi signed distances. Then, if only m2 of the edges intersect
the plane (where m2 < nvi), perform Algorithm 4. This means that
N3 = nvi +m2N4, and Algorithm 4 only consists of 4 operations.

Collecting all costs together, we obtain:

N4 = 4;

N3 = nvi +4m2;

N2 = nv +m1 (nvi +4m2)+nvc lognvc;

N1 = nv +n f (nv +m1 (nvi +4m2)+nvc lognvc) ;

= nv +n f (nv +C) .

Let us focus our attention on the term C. Since m2 ≤ nvi and
nvc is the number of vertices of the cap face, we can substitute
them with an average na of the number of vertices per face and
get C = m1na + na logna. For the very majority of the considered
models (especially the more complex ones) we can assume that
both m1 and na are negligible compared to nv: a plane can intersect
a polyhedron in a very limited number of its faces, and the average
number of vertices per face is significantly smaller than the total
number of vertices. The term C can therefore be included in nv,
and as a realistic approximation of the computational cost we get
O(nv(1+n f )).

4. Examples and discussions

In this section we test our method over a collection of polyhedra,
comparing its performance to the results obtained using our im-
plementation of the algebraic method in CGAL. Experiments have
been performed on a MacBook Pro equipped with a 2,3 GHz Intel
Core i5 processor with four CPUs and 16GB of RAM. Source code
is written in C++ and it is accessible at https://github.com/
TommasoSorgente/polyhedron_kernel together with all
datasets.

4.1. Collections of polyhedral elements

As an initial test we built four datasets containing 1000 non-convex
polyhedra each, simulating a typical configuration in which a tes-
sellation of a complex 3D computational domain come with non-
convex elements. As elements of a tessellation on which to perform
numerical simulations, they typically present a fairly simple shape
and possess a fairly limited number of vertices. A gallery of exam-
ples is visible in Fig. 5.

The first three are denoted tet10, tet20 and tet30, where the num-
ber indicates the number of vertices of the contained polyhedra.
Each polyhedron is built by sampling the relative number of points
randomly in the space and connecting them in a Delaunay tetra-
hedalization using Tetgen [Si15]. Then one vertex is moved to the
polyhedron’s centroid, in order to get a non convex element. Note
that Tetgen outputs the convex hull of the Delaunay tetrahedraliza-
tion of a set of points, therefore the initial polyhedron is guaranteed
to be convex, its centroid is guaranteed to lie inside its volume and
the operation of moving a vertex towards the polyhedron centroid
does not generate connectivity problems.

The fourth dataset, voro, contains 1000 random non-convex
polyhedra with non-triangular faces. For building each polyhedron
we start from a Voronoi cell and triangulate the face with the largest
area connecting the face vertices to the face centroid. Then we
move the face centroid to the polyhedron centroid to obtain a non
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Figure 5: Polyhedra and kernels from datasets tet10, tet30 and voro.

convex element. It is not possible to know a priori the exact number
of vertices of each Voronoi cell, but after the definition of dataset
voro we measured that the number of vertices of its elements ranges
from 5 to 20.

Table 1: Computational times for estimating the kernel on the
whole dataset (in seconds) and ratio between the CGAL time and
ours.

dataset #vertices our CGAL ratio

tet10 10 0.29 2.49 8.58
tet20 20 0.49 3.62 7.39
tet30 30 0.63 4.49 7.13
voro 5-20 0.24 1.92 8

We measure the computational time needed to estimate the ker-
nels of all polyhedra in each dataset and compare it with the per-
formance of the CGAL library in Table 1. On this kind of poly-
hedra, the geometrical approach performs significantly better (be-
tween seven and eight times) than the algebraic one. This may be
due to the fact that, with a limited number of planes, computing
the geometric intersection between them is cheaper than solving a
linear problem. As the number of vertices increases the difference
between the two approaches becomes smaller.

4.2. Refinements

As a second setting for our tests we wanted to measure the asymp-
totic behaviour of our method as the number of vertices increases.
We considered two polyhedra taken from the dataset Thingi10K
[ZJ16]: the so-called laser-chess and flex. These models are given
in the form of a surface mesh and we treat them as single volumet-
ric cell, analyzing the performance of our algorithm as we refine
them.

Figure 6: Original laser-chess model and its third refinement. The
kernels are identical.

The laser-chess model is extremely simple, being defined by
only eight planes. Even refining its faces with a midpoint strat-
egy, the planes induced by its faces remain identical and the ker-
nels of the refined models are all equal (Fig. 6). On this example
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our method performs on average 6.8 times better that the algebraic
method (see Table 2), and the computational time scales with a con-
stant rate (see the red lines in Fig. 8). Our implementation takes
advantage of the fact that Algorithm 2 recognises coplanar faces
and performs Algorithm 3 only eight times, independently of the
number of faces.

Figure 7: Original flex model and its third refinement. Small per-
turbations in the faces lead to slightly different kernels.

The flex model is more complex, as it presents a curved surface
which generates a lot of different planes defining the kernel. More-
over, we refined this model using the Loop’s algorithm and this
generated faces lying on completely new planes. This explains the
difference between the two kernels in Fig. 7. Our geometric method
improves the performance of the algebraic one by one order of mag-
nitude, even if the difference between the two approaches decreases
(from 13 times to 9, see Table. 2) as the number of vertices in-
creases.

Table 2: Computational times for the laser-chess and flex refine-
ments (in seconds) and ratio between the CGAL time and ours.

mesh #vertices our CGAL ratio

laser-chess1 10 0 0.001 1
laser-chess2 127 0.001 0.007 7
laser-chess3 493 0.004 0.027 6.75
laser-chess4 1945 0.017 0.11 6.47
laser-chess5 7729 0.06 0.41 6.83
laser-chess6 30817 0.24 1.73 7.21

flex1 834 0.026 0.35 13.46
flex2 3130 0.097 1.17 12.06
flex3 11216 0.45 5.1 11.33
flex4 26560 1.33 14.19 10.67
flex5 35566 2.31 22.1 9.57
flex6 42659 3.57 33.26 9.32

4.3. Complex models

Last, we try to compute the kernel of some more complex models,
taken again from the dataset Thingi10K and treated as single vol-
umetric cells. Note that most of the models in Thingi10K are not
star-shaped, thus making it useless to compute their kernels. Even
if our method is designed for dealing with a large number of simple
polyhedra (i.e., with a relatively small number of vertices), our al-
gorithms are still able to compute the kernel of a whole object with
thousands of vertices. In Fig. 9 we present the kernel computation

Figure 8: Computational times for the refinement of the flex and
laser-chess models. Time is expressed in milliseconds.

of six complex objects, and the computational times are reported in
Table 3.

Table 3: Computational times for complex models (in seconds) and
ratio between the CGAL time and ours.

mesh #vertices our CGAL ratio

bot-eye 453 0.28 0.048 0.17
rt4-arm 655 0.21 0.11 0.52

super-ellipse 290 0.02 0.04 2
playset 1416 0.01 0.08 8

leg 87 0.003 0.03 10
fandisk 7229 0.07 3.58 51.14

We notice that the number of vertices of the element, by itself,
is not strictly related to the efficiency of the method. Much more
influence has the shape of the object: in accordance to the results of
Section 4.2, over simple models like leg or models with numerous
ajacent coplanar faces like playset and fandisk our method is prefer-
able. Note in particular the different performance of the two meth-
ods over the fandisk model, which has a high number of vertices.
Vice versa, over elements with significant curvatures like bot-eye,
rt4-arm or super-ellipse, the algebraic method performs similarly
or better than ours even on relatively small models.

5. Conclusions

We presented an algorithm for the computation of the kernel of a
polyhedron based on the extension to the 3D case of the geometric
approach adopted in two dimensions. The algorithm showed up to
be robust and reliable, as it computed successfully the kernel of
every considered polyhedron.

We compared its efficiency to the one of the algebraic approach
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Figure 9: Examples of our kernel evaluation for complex models: bot-eye, rt4-arm, super-ellipse, playset, leg, fandisk.

to the problem, implemented in CGAL. From a theoretical point
of view, the computational complexity evaluation of Section 3.5
suggests that our method is in general quadratic, while the algebraic
approach has a lower bound at n log(n). Nonetheless, we proved in
Section 4 that in several circumstances our approach outperforms
the algebraic one.

Our method performs significantly better than the algebraic ap-
proach over polyhedra with a limited number of vertices and faces,
as shown in Section 4.1, making it particularly suitable for the
analysis of volumetric tessellations with non-convex elements. In-
deed, we point out that our algorithm is specifically designed to be
used with simple polyhedra, possibly composing a bigger and more
complex 3D model, and not with a complete model itself.

When the size of the polyhedron increases, our method is still
particularly efficient if the model has numerous coplanar faces, like
in some of the complex examples in Section 4.3. This is a very
common situation in models representing mechanical parts. On the
other side the algebraic approach is preferable over curved do-
mains, with numerous vertices and faces lying on different planes.

In conclusion, with this work we do not aim at completely re-
placing the algebraic approach for the kernel computation but in-
stead to give an alternative which can be preferred for specific
cases, such as the quality analysis of the elements in a 3D tessel-
lation, in the same way as bubble-sort is to be preferred to optimal
sorting algorithms when dealing with very small arrays.

As a future development, we plan to include this tool in a suite
for the generation and analysis of tessellations of three dimensional
domains, aimed at PDE simulations. The kernel of a polyhedron
has a great impact on its geometrical quality, and the geometrical
quality of the elements of a mesh determines the accuracy and the
efficiency of a numerical method over it. We therefore plan to use
this algorithm for better understanding the correlations between the
shape of the elements and the performance of the numerical simula-
tions, and be able to adaptively generate, refine or fix a tessellation
accordingly to them.
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