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Abstract
Fast research and prototyping, nowadays, is shifting towards languages that allow interactive execution and quick changes.
Python is very widely used for rapid prototyping. We introduce Py3DViewer, a new Python library that allows researchers
to quickly prototype geometry processing algorithms by interactively editing and viewing meshes. Polygonal and polyhedral
meshes are both supported. The library is designed to be used in conjunction with Jupyter environments, which allow interactive
Python code execution and data visualization in a browser, thus opening up the possibility of viewing a mesh while editing the
underlying geometry and topology.

CCS Concepts
• Computing methodologies → Mesh models; Volumetric models; Rendering;

1. Introduction

Computer Graphics has been traditionally dominated by code writ-
ten in the C++ language, because of its high speed and widespread
diffusion of libraries that allow programmers to access the graph-
ical capabilities of the underlying machine directly. Even though
interpreted languages, such as Python, are much slower than C++,
they allow to quickly prototype ideas by avoiding the compilation
step. Moreover, in their interactive variants, they allow inherent de-
bugging of programs by being able to execute blocks of code in
arbitrary order. The prototyping speed, coupled with the high num-
ber of performant C-based libraries that the Python ecosystem pos-
sesses, made it the de facto standard for research in Deep Learn-
ing. Libraries such as Numpy [Oli ], Tensorflow [AAB∗15] and
PyTorch [PGC∗17] allow researchers to develop algorithms by us-
ing tensors, n-dimensional arrays, whose operations can run either
on the CPU or directly on the GPU. This abstraction can greatly
improve development speed, since there is no need to write C++ or
CUDA directly.

Prototypes in the above-mentioned fields are often developed
through the use of Jupyter Notebooks [Jupa], which are browser-
based environments that allow to run code in blocks, called cells.
Cells can also include Rich Text and arbitrary Javascript-based in-
teractive views.

We introduce Py3DViewer, a library designed to provide fast
prototyping and visualization capabilities with a modern interac-
tive approach. Our tool is based on the data structures provided by
the aforementioned Numpy library, since it is the most commonly

Figure 1: A screenshot of Py3DViewer running inside a Jupyter-
Lab cell. The Goyle tri-mesh model is courtesy of [ZJ16].

used library in the scientific computing context (for more details
see section 4). This design choice allows any user to quickly ex-
tend the functionalities of our library whenever they need so, and
to easily integrate existing Numpy-based algorithms.

The main driving idea behind our project is to provide re-
searchers in the Computer Graphics field with a tool to read, edit
and view meshes directly in a Jupyter Notebook without needing to
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compile any code and being able to run their prototypes remotely
on any Jupyter instance. Not only does this speed up the prototyp-
ing phase, but it seamlessly allow to run any code on the GPU by
utilizing any Numpy-compatible tensor library such as PyTorch, a
task which would be more verbose if done in the typically used C++
and CUDA languages directly. Moreover, to provide value that, to
the best of our knowledge, no other 3D library in Python does, our
project supports visualization and editing of both polygonal and
polyhedral meshes without depending on any other library other
than Numpy for computing and PyThreeJS [The17] for visualiza-
tion.

Py3DViewer is available on GitHub, licensed with MIT:
(github.com/cg3hci/py3DViewer). The required depen-
dencies are Numpy, PyThreeJS and IPyWidgets [Jupb].

2. State of the art

In the context of Computer Graphics, the visualization of data is
tightly coupled with the research field itself. For this reason, there
exist a multitude of viewers, with a different focus based on what
they were originally needed for. For quick visualization and basic
processing that is decoupled from the development phase, many
standalone tools exist. Meshlab [CCC∗08] is a software that bun-
dles mesh visualization and common mesh processing algorithms
with a comprehensive GUI, and is widely used in the community
as a secondary tool during development to quickly check mesh
properties and to remesh models. While a very feature-rich tool,
it lacks ways to deal with polyhedral meshes. In this context, there
also exist a number of tools to visualize polyhedral meshes, such
as Graphite [ALI] and ParaView [Aya15]. While these tools allow
volumetric representations to be visualized, they can not be eas-
ily coupled with the development itself, since they are standalone
programs.

On the other hand, a number of libraries also exist that can be
used as tools to visualize, store and perform common processing
algorithms on meshes all in a single tool. For example, a recent
C++ header only library, called Cinolib [Liv19], aims to simplify
the tasks most commonly performed in the field by providing a vi-
sualization interface and many algorithms and data structures all
without needing to depend on other libraries. This has the advan-
tage of speeding up the prototyping and development phases, but on
the other hand still suffers from the larger complexity of C++ based
solutions. Based on this language, which is the one most commonly
used to implement Computer Graphics software, there also exist
CGAL [The19], VCG [CG13], libigl [JP17], OpenMesh [BSBK02]
and OpenVolumeMesh [KBK13] etc. These libraries also aim to
provide an all-in-one solution to visualization and computation,
with a deeper focus on efficiency of storage and speed compared
to ease of use. It is noteworthy that many other libraries that try to
solve this same problem exist in the field. While many C++ based
solutions eventually started supporting Python bindings to simplify
the prototyping process, such as the aforementioned CGAL, libigl,
OpenMesh library, they are still often harder to use compared to na-
tive Python solutions that implement many features of the language
that C++ based tools do not have access to.

A widespread way to prototype geometry processing algorithms

is to write them in a Matlab [Mat] environment. The issue with this
approach is that Matlab is a commercial software that requires to
be installed, and as such might have compatibility issues and re-
quires local storage in a machine. Compared to Python and Jupyter
enviroments, Matlab is also harder to use on a remote machine.

When it comes to Python, a few tools already exist that try to
solve this same problem. For example, PyMesh [The ] is a library
that is widely used for Geometry Processing tasks in Python. The
main limitations that come from PyMesh is that it is not built in
Python from the ground up, but to allow users to use all its features
rather relies on a number of C++ dependencies such as CGAL and
libigl. CGAl is one of the most widely used libraries in the field,
and contains a very extensive collection of algorithms and tools.
The high complexity of some of its dependencies makes it harder
for the library to use many features of the language, sometimes
requires a basic knowledge of the underlying libraries (for exam-
ple for using CGAL based algorithms) and can sometimes prove
more difficult to install. Moreover, PyMesh is designed as a purely
processing library, and does not try to tackle the visualization prob-
lem. A library that does try to both visualize and process meshes
in a single tool is Trimesh [Daw], which is a Numpy-based solu-
tion that leverages the full capabilities of the Python language and
also supports Jupyter environments natively. The main limitations
of Trimesh are that it can only process triangular meshes, and that
it only provides very basic visualization features.

In the context of browser based mesh visualization, a very re-
cent notable work is Hexalab [BTP∗19], a Javascript based online
tool that allows users to visualize their hexahedral mesh with a
multitude of viewing options. The aforementioned Meshlab soft-
ware also has an online javascript implementation [Vis17] as a stan-
dalone project.

While many other smaller projects exist, to the best of our knowl-
edge the community still needed a comprehensive all-in-one tool
that allows users to store, visualize and process both polygonal and
polyhedral meshes, with a modern Jupyter native support inspired
by the recent diffusion of this tool in the Deep Learning field, which
is the problem this project aims to solve.

3. Architecture

The library is divided into modules. We decided to split the visu-
alization, data structures and algorithms in three separate blocks to
improve readability and extensibility. So far, the focus of the project
has been providing data structures and visualization tools, therefore
the algorithms module is still a work in progress compared to the
rest of the library. We aim to add algorithms as the necessity arises
and based on the community feedback. The visualization and data
structures modules, instead, are ready to be used.

3.1. Data structures

To maximize efficiency and to properly utilize the underlying
Numpy capabilities, we decided to design data structures that are
index-based. Compared to a more classical rigid approach, where
the internal attributes of the data structure can not be accessed and
modified directly, we decided to make our data structures reactive,
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Figure 2: The structure of the classes for the mesh representation, as explained in section 3.1

meaning that a direct modifications to a property (e.g. removing
a face) automatically refreshes the other properties (e.g. refresh-
ing the vertex list) to maintain a consistent mesh structure. On top
of this reactive approach, we also expose methods to do the same
operations in a more human-readable way (e.g. add_faces()
method).

We organized our library in two main levels (see figure 2 for the
complete hierarchy). The main class is AbstractMesh which rep-
resents a generic mesh containing all the shared elements among
the specific mesh classes. In particular, it contains an array of ver-
tices (expressed as triples of float coordinates), an array of faces
(composed of generic arrays of indices referring to the vertex ar-
ray) and a bounding box of the mesh. Furthermore, it contains the
adjacencies among vertices and between vertices and faces.

To implement surface meshes we extended the AbstractMesh
with two classes: Trimesh for triangle-meshes and Quadmesh for
quadrangular-meshes. Both these classes contain the information
about the surface topology. In particular they contain the adjacen-
cies between faces and all the methods to add and remove sim-
plices. In the same way we extended the AbstractMesh with the
Tetmesh and Hexmesh classes to represent volumetric meshes, in
particular tetrahedral and hexahedral meshes. Both these classes
contain the information about the surface and volume topology. In
particular they contain the adjacencies between polyhedra and all
the methods to add and remove elements.

All the aforementioned classes (except for AbstractMesh) im-
plement the show() method that draws the mesh geometry in a
canvas by calling functions of the Visualization module (see sec-
tion 3.2). Moreover, the standard representation of each mesh is the
show()method itself, so that if a mesh is evaluated in a block cell,
it automatically shows the viewer.

3.2. Visualization

In the prototyping phase it is very useful to have a way to visualize
the mesh during the developing process. To provide this function-
ality we implemented a viewer that can show any mesh and that

can give the user an intuitive UI to interact with. We implemented
a class Visualizer to manage the code related to the interface, in
order to keep it separated from the core of the library. The Visual-
ization module has two different modalities to launch the canvas:

• without UI: this visualization mode includes only the canvas
and it is meant to be used for a quick view of the mesh.
• with UI: this visualization mode include a simple command tool

interface to interact with the shown mesh (colors, wireframe,
cuts, etc.) by using graphics widgets. It is meant to be used to
deeply analyze the mesh.

We implement the classical visualization options regarding
meshes. We include different options for the wireframe visualiza-
tion, with customizable color and thickness. The color of the sur-
face and volume elements is also customizable. Elements can be
hidden or shown in different colors depending on the chosen qual-
ity metric or label 5. In the Utilities module we included different
metrics to compute the per-simplex quality. Moreover, any custom
metric is also supported on a per-mesh basis (see 3.1 for details).
We support different color maps to visualize the chosen metric, as
shown in figure 3. The mapping between a given metric and a color
map differs based on the metric upper and lower bounds. This range
is defined in the metric dictionary, where each value mapped to a
key is defined as a tuple of this form: << min,max >,metric >. If
no upper and lower bound is provided (by setting these values to
the null object None), the metric is normalized between zero and
one using the existing values in the array to calculate the bounds,
then mapped to the color map. This is useful to highlight differ-
ences in a metric that has only an absolute value (such as volume).
For metrics that have known bounds (such as a quality metric on
a simplex), the whole range is mapped on the color map without
stretching the values between the min max, to highlight absolute
values compared to the possible range. This is useful to quickly
visualize overall qualities of a mesh.

To allow an in-depth analysis of the mesh, we implemented a
cut system to explore the interior of both surface and volumetric
meshes. Two color pickers allow both the internal and external col-
ors to be chosen independently. The UI supports a slider for each
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Figure 3: Different color schemes for the quality visualization. We
use the Scaled Jacobian as a metric to express the quality of the
Toy tet-mesh. In (a) the "Virdis" scale, in (b) "Parula", in (c) "Jet"
and in (d) the classical "Red-Blue". Model courtesy of [XLZ∗19].

axis of the Cartesian space and we give the user the possibility to
cut the mesh along one (or more) of the axes. To guarantee this op-
eration in real-time we implement the cut operations by exploiting
the tensorial form of the elements stored in our structure and the
Numpy speed for matrix computations. In figure 4 we show how a
cut mesh is drawn in the visualizer canvas.

All the aforementioned rendering functionalities (color changes,
cuts, etc.) are also usable directly from the source code, without
using the UI.

3.3. User Interface

If the user decides to view its mesh in the augmented canvas, which
has a GUI that allows him to interact with the visualized mesh, the
library provides a number of widgets. The UI is shown in figure 6.

– Cuts: to provide the user with the possibility of not showing part
of the geometry, for example to analyze the interior of a volu-
metric mesh, the GUI contains three range sliders, one for each
axis of the Cartesian space. Moreover, each slider is paired with
a check button to invert the chosen range.

– Wireframe: the GUI also contains widgets to modify the wire-
frame appearance. In particular, we provide a slider to change

Figure 4: Two examples of cuts in meshes. The tet-mesh is created
with the MakeHuman tool and turned into a tet-mesh by using Tet-
Gen [Si15]. The hex-mesh model is courtesy of [GSZ11].

the line opacity, paired with a color picker that allows the user to
change the wireframe color.

– Default mesh colors: through the use of a small menu, the user
can decide to color the mesh uniformly. In the case of volumetric
meshes, the user can independently choose internal or external
color. We provide this functionality through one color picker for
the former, and two for the latter.

– Metric based mesh colors: through the same menu, the user
can instead choose to color the mesh based on a given metric.
To choose the metric, we provide another menu that is dynami-
cally populated based on the available metrics. The user can then
choose a color map out of another dynamically populated menu
of color maps. The mesh is then colored based on the absolute
metric value if the metric provides a range, or on the metric nor-
malized along the color map if it does not.

– Label based mesh colors: the last menu option allows the mesh
to be colored based on its labels. Each label can be independently
colored by using a color picker. The library dynamically adds a
color picker for each label contained in the mesh data structure.
An exhaustive example of this visualization mode is shown in
figure 5

Figure 5: The tet-mesh of the Korean Male model, obtained from
the Visible Korean Human [PCH∗05] images, shown by using the
label colors. In pink the label of the skin portion of the model, in
red the muscles, in yellow the fat, in white the bones, and in green
the internal organs.
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Figure 6: The UI interface of Py3DViewer. By changing the Type
Color rendering is changed, and the related color widgets are
shown.

Figure 7: Interaction with the UI interface of Py3DViewer. The
Joker quad-mesh shown in the figure is courtesy of [ULP∗15].

3.4. Utilities

This module contains utilities that are not related to the storage or
visualization of the data. In particular this module is meant to con-
tain generic algorithms that can be applied to our data structures.
Currently this module contains the algorithms to compute the met-
rics we use to determine the simplex quality. We implement differ-
ent metrics for both surface and volumetric meshes:

• Surface Meshes: Area and Aspect Ratio.
• Volume Meshes: Volume and Scaled Jacobian.

Metrics can be easily added and customized to any of our data
structures, and the visualizer is able to work with any custom met-
ric. For more information on how metrics can be extended see 3.1.

The definitions of the color maps available in the viewer to rep-
resent a given metric are also contained in this module. The li-
brary contains the following commonly used color maps: Parula,
Jet, Virdis and Red-Blue.

These color maps are defined as a dictionary contained in this
module, of this form ′color_map′ : numpyArray(Nx1). The viewer
is agnostic to the content of this dictionary: this can be changed at
runtime by the user and any new entry will display as a color map
in the interface.

This module also includes common I/O operations, such as com-
mon file extension parsers. Currently, we support only the .OBJ for-
mat for surface meshes and the .MESH one for volumetric meshes.
In the future, we aim to support the most common mesh formats,
prioritizing based on community feedback.

4. Design Choices

We decided to base our viewer on Numpy because of its widespread
diffusion in the context of scientific computing in Python and its
efficiency. Moreover, Numpy uses a syntax that is inspired by Mat-
lab [Mat], which is another tool that is often used for quick proto-
typing in many scientific fields, as well as in Computer Graphics.
We hope that this design choice will make it easier for our users to
adopt this paradigm, making it easier for them to use Python as a
language to quickly prototype ideas instead of C++. Numpy is also
extremely efficient [WCV11], which makes it a valid choice when
compared to more commonly used C/C++ based libraries.

Our viewer also aims to eventually expand as a more general tool
for mesh processing in Python, so we designed it to be easy to ex-
tend for any need that may arise. The UI is agnostic to most of the
underlying data shown: this means that a user can simply add a met-
ric to the known metric dictionary and the viewer will automatically
show it inside its interface, seamlessly allowing arbitrary metric vi-
sualization on the given mesh. Apart from custom metrics, at the
moment the user can also add arbitrary color maps to visualize the
metrics as the need arises. Moreover, we aim to allow the viewer to
optionally be set to be truly reactive, so that any change to the un-
derlying mesh data structure immediately causes a redrawing of the
scene to mirror the changes. By making this possible, any algorithm
could be visualized after each step of the computation. This could
prove extremely useful to quickly visualize the output of a neural
network on the mesh for any Geometric Deep Learning [BBL∗17]
task directly during its training. One of our priorities, apart from
the complete reactive approach, is to simply allow a redraw when-
ever the user chooses to, so that it would become trivial to refresh
the mesh at arbitrary steps of a computation.

The design of our viewer was also driven by the need for a gen-
eral mesh visualization tool in Python with support for Jupyter en-
vironments. Most commonly used 3D libraries for Python, such as
PyMesh or Trimesh, lack some functionalities that we deemed nec-
essary for a prototyping pipeline. The former, while being able to
work with volumetric meshes, is not able to easily show them. The
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latter, on the other hand, lacks support for polyhedral meshes and
has limited visualization capabilities. Py3DViewer is designed as a
single tool that can be easily integrated into any Python 3D proto-
type that deals with polygonal or polyhedral meshes.

5. Simple examples

We design our library to be easy and quick to use in the context of
fast prototyping. In the example below it is shown how a mesh can
be loaded from a file and drawn in a canvas with just a few lines
of code. Then it is possible to interact with the mesh with the GUI
widgets as shown in the figure 7.

from Py3Dviewer import Tetmesh

#load a Tetmesh object from file
my_mesh = Tetmesh(filename=’dog.mesh’)

#show the mesh into a simple canvas
my_mesh.show()

#show the mesh with the GUI
my_mesh.show(UI=True)

Our library also allows to create a mesh given an array of vertices
and an array of faces or polyhedra. Moreover, in the code below we
show some useful functionalities to change the mesh geometry and
topology after its creation.

from Py3Dviewer import Trimesh

#create a Trimesh given the vertices and the
faces

my_mesh = Trimesh(vertices, faces)

#remove a set of vertices from the mesh
my_mesh.remove_vertices([0, 5, 10, 25])

#remove a set of faces from the mesh
my_mesh.remove_faces([50, 51, 52, 53])

#add a set of vertices to the mesh
my_mesh.add_vertices([[10.2,25.4,3.3],

[7.9,8.43,5.22]])

#add a set of faces to the mesh
my_mesh.add_faces([[1,2,3],[70,72,74]])

#set the cut
my_mesh.set_clipping(min_x = 0.0, max_x = 1.0,

min_y = 0.5, max_y = 1.5,
min_z = 0.0, max_z = 1.0,
flip_x = True)

The following example shows an algorithm based on the
Py3DViewer library, Numpy and Scipy [VGO∗19] (a widespread
scientific computing library based on Numpy). The code applies a
Laplacian smoothing and shows how Python and its ecosystem of
libraries allow the user to easily experiment with possible algorithm
ideas.

from Py3DViewer import Trimesh, Viewer
import numpy as np
from scipy.sparse import lil_matrix as sp_matrix
from scipy.sparse import eye as identity
from scipy.sparse.linalg import sp_solve
from scipy.sparse.csgraph import laplacian

#loading and showing a Trimesh object from file
bunny = Trimesh(’bunny.obj’)
bunny.show()

#declaration and creation of the matrices for
the Laplacian smoothing

lambda_ = 0.5
n = bunny.num_vertices
e = bunny.edges
P = bunny.vertices
A = sp_matrix((n, n))
A[e[:,0], e[:,1]] = 1
D = sp_matrix(A.shape)
D.setdiag(np.sum(A, axis=1))
L = D - A
I = identity(n)

#smoothing application and visualization of the
new mesh

bunny.vertices = sp_solve( I + lambda_ * L, P)
bunny.show()

6. Comparison

We compared the loading time of our library with the C++ library
"Cinolib". The comparisons are shown in table 6. We performed the
tests by using meshes of different types and different numbers of
simplices. We decided to compare the loading time (including the
adjacencies computation) to give the reader an idea of the "price
to pay" to switch from a C++ library to our Python-based library.
Even though in the prototyping phase large meshes are rarely used,
we still aim to improve this time by optimizing critical parts of the
reading and loading process.

Model #Vert. #Simp. T ( [Liv19]) T (ours)
tri-mesh 14290 28576 0.25s 1.05s
quad-mesh 9650 9648 0.11s 0.49s
tet-mesh 4651 15412 0.52s 0.58s
hex-mesh 18951 15232 0.61s 1.06s

Table 1: Differences in loading times for different kinds of meshes
with different resolutions.

All the tests have been performed by using a MacBook Pro 13"
mid 2014, with an Intel core i5 CPU with integrated GPU and 8GB
of ram.

We also tested the differences in visualization speed, considering
both the rendering and the real-time interaction. The differences
between our library and the C++ one are not appreciable.
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7. Conclusion and Future Work

Py3DViewer is a library designed to facilitate the prototyping pro-
cess of Computer Graphics researchers. We built a tool that allows
a user to quickly load, edit and visualize a polygonal or polyhe-
dral mesh in an interactive way. The project is also heavily inspired
by the recent diffusion of prototyping phases based on Python and
the Jupyter environment, especially in the blooming field of Deep
Learning.

The code is available on GitHub, as a Python package
(github.com/cg3hci/py3DViewer), and it is also available
through the de facto standard Python package management sys-
tem pip. We expect Py3DViewer to be useful to anyone that wants
to quickly test an idea without the larger complexity of making a
C++ prototype. We also expect our tool to facilitate sharing ideas
between researchers by using online Jupyter based environments
such as the popular Google Colab [Goo] system, compared to the
difficulties of sharing a project that needs compilation.

Some of the features we aim to implement in the future are the
following. First, we are working to extend the kinds of geometric
data that the library supports, to appeal to an even broader part of
the community. For the animation community, we are working to
support skeletons, both for editing and visualizing (an example of a
rudimentary visualization of a skeleton is shown in figure 8. Ideally,
similar to what some other libraries are doing, Py3DViewer will
support generic polygonal or polyhedral meshes, and point clouds.
By making the system as modular as possible, we are working to
make it easy to extend the supported data representations by mak-
ing the viewer and the interface as data agnostic as possible. Even-
tually, we want the project to become the reference library for quick
prototyping, and to achieve this goal we will extend the number of
supported algorithms for each type of data representation that will
be supported, based on what the community deems useful.

We aim to completely integrate PyTorch tensors to represent the
geometry information of a mesh, so that any tensorial operation
on the underlying data structure could be seamlessly executed on
the GPU by simply passing GPU-instantiated tensors to our data
structures or by loading a mesh file directly on the GPU. This would
make it easier to use the viewer as just a visualization layer on
top of the same data that is being processed by the algorithm. The
possibility of having simultaneous computation and visualization
would simplify Machine Learning experiments in PyTorch. Current
solutions that aim to solve this problem, such as Visdom [The], are
not integrated inside the Jupyter environment.

In the near future, the interactive Jupyter interface will be ex-
tended to more widgets and will support adding custom UI ele-
ments to better suit each different user’s need. Moreover, similarly
to how the online viewer Hexalab approaches the mesh visualiza-
tion, we will support better shading options and will allow a more
extensive rendering customization. By opening up different render-
ing options, the user will be able to more easily display the features
they need to visualize.

More generally, the library will continuously improve in its doc-
umentation and examples. To facilitate prototyping for new users,
we are working to implement interactive examples in the form of
tutorial notebooks, by using the aforementioned Google Colab plat-

form as a mean to quikly try our library’s features. One of the most
important features we will implement in the near future, is a com-
plete PyTorch support for the data structures and algorithms for the
underlying representation, instead of Numpy, if the user so chooses.
This feature will allow the library to seamlessly run its algorithms
on the GPU, to speed up parallel computations and to allow re-
searchers to easily and efficiently prototype Geometry Processing
algorithms and Deep Learning networks.

Figure 8: An example of a rudimentary visualization of a skeleton.
Model and skeleton are courtesy of [LS13] .
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