STAG: Smart Tools and Applications in Graphics (2019)
M. Agus, M. Corsini and R. Pintus (Editors)

Interactive animation of single-layer cumulus clouds using cloud
map

Prashant Goswami!®

Blekinge Institute of Technology, Karlskrona (Sweden)

Figure 1: Landscape-scale cumulus cloud animation using our approach for the single-layered cumulus clouds, simulation together with the
rendering running at around 200 fps.

Abstract

In this paper, we present a physics-driven procedural method for the interactive animation of realistic, single-layered cumulus
clouds for the landscape-scale size. Our method employs the coarse units called parcels for the physics simulation and achieves
procedural micro-level volumetric amplification based on the macro physics parameters. However, contrary to the previous
methods which achieve amplification directly inside the parcels, we make use of the two-dimensional texture called cloud maps
to this end. This not only improves the shape and distribution of the cloud cover over the landscape but also boosts the animation
efficiency significantly, allowing the overall approach to run at high frame rates, which is verified by the experiments presented

in the paper.
CCS Concepts

o Computing methodologies — Animation; Procedural animation;

1. Introduction

Clouds form an important component of several background scenes
in the video games and other interactive applications, many of
which demand dynamic clouds with evolving shapes. Whereas im-
pressive static images of the clouds can be obtained using purely
procedural techniques [MMPZ12], realistic cloud animation at
real-time rates remains a challenge. Methods in the computational
fluid dynamics (CFD) are dependent on the accurate initial condi-
tions to simulate cloud development [Mih11]. Moreover, they are
computationally intensive and not suitable for interactive applica-

1 prashant.goswami @bth.se

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

DOI: 10.2312/stag.20191365

tions. In computer graphics, most of the methods that deal with the
physics-based simulation of clouds are offline. Other methods of-
ten need high resolution to produce a limited volume of clouds on-
line [FBDY 15]. Furthermore, all of them require a separate pass for
the surface generation and rendering which is often offline, leaving
them unsuitable for games.

Recently hybrid methods [GN17] are proposed, where a physics-
inspired procedural technique is used for the real-time cloud ani-
mation. This is achieved by using coarse primitives (parcels) at the
macro-level to compute the physics followed by the hypertexture
generation at the micro-level inside these parcels for cloud visu-
alization. This significantly reduces the computational time spent
on simulating the underlying physics which otherwise is a very ex-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0003-0891-2859
https://doi.org/10.2312/stag.20191365

72 P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map

pensive component. As a second step, these macro components can
be raytraced at the real-time frame rates using procedural ampli-
fication, which itself is tuned as a function of the macro variables
computed from the physics.

In this paper, we improve on their method for animating single-
layered cumulus clouds, in terms of appearance and efficiency. The
motivation for this improvement comes from the fact that in na-
ture, a large type of cumulus clouds of varying shapes and sizes are
present in a single layer with minor vertical displacements between
them [Day05]. To this end, we employ cloud map, a bounded 2D
texture which guides cloud formation and provides us a handle to
generate more natural cloud shapes efficiently.

The key contributions of our work are:

e To employ a 2D cloud map for the single-layer cumulus cloud
animation to support a more realistic cloud cover and evolving
cumulus cloud shapes

e To simplify and reduce the computational overhead of physics
and rendering, by operating them on the cloud map domain in-
stead of a much larger free space

Our approach leveraging the cloud maps not only inherits a bet-
ter cloud shape and distribution over the landscape, but also pro-
duces an efficient interactive animation that could be easily used in
the games or flight simulators as a background component on the
landscape-scale terrain size. In contrast to the existing approach
where volume amplification is achieved directly inside the parcels,
our method disentangles the physics and the rendering part. The
cloud cover is obtained from the cloud map which eliminates need
for the user to specify the parcel distribution.

2. Related Work

Cloud generation is an extensively studied research topic in the
field of computer graphics for the past several decades. Researchers
have looked into the various aspects of cloud generation including
physics, shape modeling and rendering. [KVHS84] trace densities
within a volume grid and to this end, they review dynamical mod-
els of clouds. [BN0O4] use blobs to model the shape of static cumu-
lus clouds. Recently, [KMM™17] use neural networks to synthesize
clouds images with enhanced illumination.

Some early work has been targeted to achieve simplified anima-
tion. In [HBSLO3] voxel-based Eulerian physics is used to simu-
late the cloud evolution. In [DKY*00] the dynamics of cloud for-
mation is simplified and simulated using a cellular automata. The
obtained density is then rendered with the splatting algorithm. Bi
et al. [BBZ*16] have combined cellular automata together with
the particle system to achieve the cloud modeling and visualiza-
tion. Earth-scale clouds for photorealistic synthesis of images taken
from the space are animated by specifying centers of high and low
pressure in [DYNO6]. [GDO07] employ particle-based cloud simula-
tion using the basic stability criteria for the air. [FBDY 15] propose
adaptive particle-based cloud simulation using the position based
fluids on the GPU [MM13], where the particles are split and merged
to concentrate computation on regions where it is most needed.

In [YW11], cloud modeling, rendering and morphing is attained

with the help of the 2D images. Recently a purely procedural ani-
mation for cloudspaces is presented in [WCGG18]. Their method
is capable of simulating various types of clouds. Instead of using
physics-based simulation, they animate cloudscapes by morphing
between the pre-selected key-frames with the help of user con-
trol. [Ney97] use higher level guiding variables to obtain convective
cloud formation whereas [SSEHO3] propose an interactive system
to artistically model and animate the cloud systems. [SMST] model
the cumulus cloud formation with the help of mass-flux of turbulent
updraughts. In [DG17] a real-time, CPU-based cloud simulator is
proposed that uses available sounding data to simulate 3D clouds.
Their results are impressive for the limited landscape sizes where a
high frame rate is not required.

It is worth noting that a majority of the aforementioned work
focuses on a single aspect of cloud generation: modeling, animat-
ing or visualization. Some of the techniques can achieve offline
visualization in addition to modeling or animation. However, none
of them can be used for the real-time animation together with the
visualization. Furthermore, they are not extensively scalable since
they model a limited volume of the atmosphere for the simulation

purpose.

[GN15,GN17] introduced the first hybrid model that combines
procedural rendering with physics for the real-time animation of
cumulus clouds. Though their method is capable of achieving inter-
active frame rates for a few parcels, the performance drops quickly
as the number of parcels grow. In their method, one either requires
few big or several small parcels to produce a good cloud coverage
on the landscape. In both of these cases, the rendering performance
drops significantly as one intends to increase the cloud coverage.
Furthermore, the generated clouds are limited in their shapes and
distribution over the landscape which has to be controlled explic-
itly. We present an improvement of their model for simulating and
rendering single-layered cumulus clouds. Our method is capable of
generating a more realistic, natural looking cloud cover and ani-
mate it efficiently for real-time applications. We expand more on
this extension and extensively describe our approach in Sec.3, fol-
lowed by results in Sec. 4.

3. Method

We begin with a brief overview of the underlying physics by
Goswami and Neyret [GN17] which forms the basis of our ap-
proach.

3.1. Base physics

The atmosphere is implicitly represented with a temperature and
humidity profile varying with the altitude. Physics is carried out at
the macro level within a bounded domain using octree in the spher-
ical thermal units called parcels, while the rendering is achieved
with the hypertexture on-the-fly at the micro level inside the sim-
ulated parcels (see Fig. 2). The buoyant force is obtained with the
Archimedes principle using the difference of virtual potential tem-
perature of parcel (@”“““') with that of the surrounding environ-
ment (@4™);

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map 73

®parcel _ ®atm
fhuoy = (W)g (1

The interaction between the parcels is handled using the
smoothed particle hydrodynamics (SPH) where pressure and the
viscosity forces come into play. These parcels interact with the
implicit environment through the process of entrainment and de-
trainment which causes mixing of the parcel content with the sur-
rounding atmosphere. During entrainment, the surrounding rela-
tively drier air enters and mixes with the parcels whereas detrain-
ment refers to the process of parcels ejecting their moisture content
slowly to the atmosphere.

The parcels are randomly created in the regions containing a
higher humidity in 3D space, which rise due to the positive buoyant
force (initialized parcels are slightly warmer than the surrounding
air), where the difference in virtual potential temperature is used to
compute net buoyant force on a parcel, see also Eq. 1. The creation
and placement of parcels, and hence the cloud shape, in the scene
is left to the user to decide, which is not always intuitive. In their
method there are no explicit parameters available to tune the cloud
coverage.

Figure 2: In the original method, physics is simulated within a
bounded domain (octree) at the macro level using parcels (left). In
the visualization pass, the parcels intersecting the line of sight are
filled with hypertexture based on the physics variables (right). The
atmosphere is implicitly represented using temperature and humid-
ity curves.

We refer the reader to the original article for more in-depth de-
tails of the original approach.

3.2. Our model

The original model employs parcels in the 3D as physics primitives,
on top of which micro-level procedural amplification using hyper-
texture is achieved. This imposes certain limitations on the look of
the cloud cover generated:

e Parcels are limited to only spherical shape (due to physics) con-
straining the overall cloud mass to assume somewhat limited ap-
pearance

e In order to produce a filled cloud coverage, a few hundreds of
parcels are required which makes the visualization component
very expensive

e Since the simulation domain is bounded by an octree, cloud cov-
erage is bounded too. This leads to a finite cloud coverage and
absence of clouds beyond a certain distance, especially towards
the horizon

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

e The user has to explicitly specify the parcel distribution over the
landscape which leads to unequal and somewhat unnatural ap-
pearance and spread of clouds

The proposed work eliminates all the above mentioned limita-
tions. The parcel shape or size is irrelevant to the cloud shapes ob-
tained and the method is capable of running at high frame rates
even when the cloud coverage in the sky is increased. Since we dis-
entangle the rendering and the physics domain, the cloud coverage
has a much larger span, including towards the horizon. Finally, the
user does not have to specify the parcel or cloud distribution in the
sky.

Fig. 3 demonstrates the approach adopted by our proposed
method. In the first step, a single layer of parcels is simulated us-
ing the physics from the original method. However, this simulation
differs from [GN17] in that the parcels are simulated in a unit oc-
tree and contain only a few units comprising a single layer. The
parcels are not required to align vertically and may therefore, vary
in their altitude. In the second step, the physical attributes from the
simulated parcels are mapped and projected on the top of a pre-
computed noise texture (cloud map) which guides the cloud shape.
The purpose of this step is to blend the macro-scale, computation-
ally inexpensive physics from the previous step, with the precom-
puted cloud-like pattern inherent in this noise texture. Finally, this
combined texture is employed to render the physics-inspired clouds
within the specified height band y (bounded by /i, and hay) in the
3D scene using volume ray casting. The texture could be mapped
to a user specified region on the landscape in the x — z direction to
cover a certain sky portion (as shown in Fig. 3) or even repeated pe-
riodically. It is important to note that the first two steps are largely
independent of the scene employed; they depend only on the stan-
dard environment parameters like temperature and humidity profile
as in the original method.

In the following, we describe the important components of our
method in more detail, see also Alg. 1.

Unit3D simulation cube
3D Parcels
-, ., Cloud densi inth

Figure 3: In the proposed method, a single layer of a few parcels is
simulated in the unit domain (left top). The obtained physics vari-
able values from the parcels are then mapped and projected on top
of the cloud map containing cloud generation noise (left bottom).
The aggregate texture from the previous step is then mapped within
the specified horizontal and vertical range in the 3D scene for vol-
ume ray casting (right). Each stacked plane represents a sampling
point on the cast ray, for which the same aggregate texture is used.

74 P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map

3.2.1. Cloud map

In order to improve on the existing method in terms of cloud ap-
pearance and performance, our model introduces the concept of
2D cloud map (as used in [Nij18] for static procedural clouds) in
conjunction with the aforementioned physics. Cloud map Cp is a
two-dimensional bounded planar texture consisting of the spatial
density values for the cloud mass at a given moment. The idea be-
hind its use is to employ a pregenerated 2D texture of noise that
guides cloud coverage and shapes in the sky. Furthermore, instead
of the density values, C 4 stores spatially consistent and continu-
ous noise values which are then used to generate cloud densities.
The reason being that its much easier to generate these noise values
(for ex, using Perlin noise) than directly obtaining the physically
accurate cloud density at various spatial locations. However, this is
no limitation and in general a cloud map can be composed of any
values that could be translated to the cloud density. These density
values are mapped to the sky in along x and z dimensions. The ver-
tical height and span of the cloud is obtained from the atmospheric
variables leading to vertical cloud formation. In our case this is suf-
ficient to describe the cloud cover since we assume that the cumulus
clouds are single-layered.

The presence of the cloud map gives us a handle to produce
realistic cloud shapes but by itself is insufficient to simulate the
underlying cloud physics. One possibility could be to use several
such maps from successive timestamps to create a continuous ani-
mation. In order to simplify the task of storage and animation, we
target to achieve our animation with a single chosen C, to evolve
cloud cover starting with its birth. In theory, one could evolve it
based on a base semi-Lagrangian simulation. However, in practice
this idea is confronted with some key impeding issues. Firstly, it
would be hard to correlate and blend the density obtained from the
grid cells with those in the map texture. In addition to controlling
cloud appearance in terms of density, it would also be challenging
to maintain the frame-to-frame coherence for animation. Secondly,
a detailed semi-Lagrangian simulation would be quite expensive
computationally to achieve real-time frame rates. Lastly, this would
defeat our basic assumption of employing an efficient model with
the disentangled physics guiding visualization. To this end, the hy-
brid model comprising physics on coarse parcels and visualization
at micro-level comes to our advantage, as explained in Sec. 3.2.2.

3.2.2. Physics

In the nature, the cloud layer is often formed due to the temperature
boundary layer inversion in the atmosphere. The water vapor con-
tinues to rise till it hits the altitude where the temperature inversion
takes place. At this point the vapor ceases to lift further up and the
condensed cumulus clouds give the appearance of forming a single
layer. In their work by [GN17], the parcels composing several lay-
ers are created and evolved in the 3D environment. Since we are
operating on the cloud map, we need to extend the original formu-
lation for our purpose. Firstly, the intended modification must allow
the original physics to operate on C p4. Secondly, clearly we should
be able to optimize both on the physics and rendering fronts com-
putationally since our method works on a single layer of clouds.

In order to work more efficiently on the cloud map, it is mapped
with a single initialized layer of parcels covering the entire map

or a specific region therein (see also Fig. 3). This connection en-
ables us to correlate the physical attributes from parcels and the
shape attributes in C 5. The parcels are assigned normalized coor-
dinates and dimensions in order to make any 3D to 2D mapping
(or vice-versa) easier. Thereafter, after executing the physics on the
single layer, we perform a planar projection of the parcels from
the unit domain directly on to the image in C to blend the cloud
physics and noise generating texture. Finally, this composite tex-
ture is mapped to the user specified 3D space for rendering. The
initialized parcels still undergo physics in the unit 3D domain but
the assumption of a single layer simplifies the computations, as we
explain next.

Each parcel is characterized by a tuple of physical attributes,
<1/0, height, fillDensity>. These physical values in each simula-
tion loop are projected on a 2D texture P (which is overlaid on
C aq) by rendering the parcels in an offline frame buffer object tex-
ture, storing the tuple with the three values as a rgb vector. The first
value of tuple for a pixel in the texture P (1/0) indicates whether
it is covered by a cloud parcel or not. Hence no clouds would be
formed in the region corresponding to this pixel if it has a value 0.
The second value of the tuple gives the normalized height of par-
cel center whereas the third one stores its filling density. The filling
density is obtained using the fraction of water content condensed in
a parcel, similar to the original work. The more the condensed frac-
tion, the higher the filling density and the denser the cloud appears.
The cloud coverage can also be tuned during noise generation step
to incorporate user specified preferences. P together with C 4 can
then be efficiently used for raycasting the obtained densities (see
also Fig. 4), , as explained in Sec. 3.2.3.

Algorithm 1 Cloud animation algorithm

1: Generate cloud map texture C rq
2: Generate parcels over C g
3: while (animating) do
// Physics part
for all parcel i do
simulate parcel physics in 3D
project parcel values in texture P
/I Visualize clouds by volume ray casting
for each ray and its sampling points do
10: - determine o visibility and physics parameters from P
11: - determine P: corresponding noise parameters from C ¢
12: - obtain accumulated density value from o and B

R A

3.2.3. Visualization

The next step in each frame after executing cloud physics is to ob-
tain the cloud visualization. In the original work, this is achieved
by shooting rays to the screen pixels and accumulating densities for
ray parts that hit a parcel. The disadvantage of using this method
is that its expensive. Even while taking into account the educated
guess of what parcels intersect an octree nodes, the number of in-
tersection tests grow rapidly with the parcels in the scene. It should
be noted that in order to cover a significant region in the sky, high
parcel counts are required. However, with our tuple values stored
in P, we can not only limit the number of parcels simulated but
also avoid traversing the regions that are of no interest to us. As

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map 75

mentioned here C, is mapped over the landscape for cloud distri-
bution. For each point on the ray traced, we check in the cloud map
at that position to generate the corresponding density(noise).

In order to achieve the cloud amplification, we specify a con-
stant vertical cloud span Ak = hyax — hyin in the world scene. This
value is obtained from the specified atmospheric conditions in the
temperature profile. The height mapped % and the other world co-
ordinates for a particular point on the ray while volume casting is
obtained from the tuple in P (parameter o in Alg. 1) and the cor-
responding noise values from Cpq (parameter). Therefore, for
each point on the ray being cast, this is the only interesting range to
check for the presence of clouds and the related cloud noise genera-
tion. In the absence of any noise obtained, we simply render it with
the background sky color. On the other hand, if for a given x —z
coordinate the map P contains cloud coverage, procedural noise is
generated for the point using C . This completely eliminates test-
ing repeatedly for each point traced on a ray if it lies within one of
the parcels, which is a very expensive operation. In essence, this op-
eration is replaced by a texture look-up for each point traced on the
ray which is much more lightweight both in terms of the memory
fetch and computation. As demonstrated in Fig. 3, the aforemen-
tioned ray tracing procedure is repeated for each sampled point on
the ray (shown as stacked planes), wherein the same C x4 and P is
employed. Additionally, only those screen pixels that do not con-
tain any other geometry have to make this check, since these pixels
qualify as the sky pixels where clouds could potentially exist. The
fill density corresponding to the proportion of the condensed va-
por at each associated point is also present in P which guides the
amplification.

We apply temporal sample anti-aliasing (TSAA) [JGY*11] to
the pixels across successive frames to smoothen the appearance of
the clouds generated. In the beginning when the clouds just begin
to emerge, the visible artifacts arise due to the fact that there are
insufficient density values to interpolate from the previous frames.
The correspondence between pixels in the current frame and the
previous one is obtained by shooting rays on a sphere in the scene.
The spherical coordinates used to generate ray direction help us
keep track of the pixel correspondences.

Figure 4: An example cloud map (Cpq) generated using Voronoi
tiling in [Nij18] (left). Projection of single-layered parcels contain-
ing physics attributes (‘P) represented as filled circles in 2D on C a4
(right). C oq guides the cloud shapes whereas P provides the macro
physics attributes for the cloud formation.

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

4. Results

The proposed method is implemented and tested using C++ and
GLSL on a Windows machine with Nvidia GTX 1080 graphics
card. Similar to the original method, we compute physics on the
CPU while ray casting is done on the GPU. The screen size is fixed
to a resolution of 640X480 in all the experiments. In addition to the
parcels, the background environment is also ray cast using the ren-
dering shaders. It is important to mention here that unlike original
method we completely eliminate the use of uniform buffer object
(UBO) in the fragment shader, which also helps us to optimize the
rendering part further. The variables in the UBO are instead now
made available through P texture making it more efficient.

Fig 4 shows an example cloud map C, together with the over-
lay of the projected parcels represented as circles in 2D (P).
Here the noise in the cloud map is generated with the Voronoi
tiling. Each of the pixels in PP store the aforementioned tuple
<1/0, height, fillDensity> from the macro-level physics primitives
which is passed on to the GPU every frame for the rendering. The
overlapping regions between two or more parcels are given the av-
erage values.

Fig 5 shows the graphs for a typical parcel undergoing dynamics.
In Fig 5a, the virtual potential temperature (©7%"! in Eq. 1) of the
parcel is plotted against that of the surrounding atmosphere (@“™).
@“™ first reduces with the altitude and then gradually increases. It
is for this reason that the rising parcel loses buoyancy after a while
and begins oscillatory motion around the point where its virtual
potential temperature graph intersects with that of the atmosphere.
This oscillation in the height of the rising parcel as a function of
time is also visible in Fig 5b. The fraction of the condensed water
present in the parcel is also affected by the change in altitude. In
the supporting movie clip showing animation, some fluctuations in
cloud development (condensation, height) are noticed due to this
oscillatory movement of the parcels. Finally due to the process of
entrainment and detrainment, the water content of the parcel re-
duces with time. This is due to the fact that detrainment rate is
higher than the entrainment for most of the lifetime of the parcel.
Both of these trends are visible in Fig 5c. Fig 1 and 6 show the
cloud development process for two different scenes. The fill den-
sity of hypertexture and the parcel height changes in accordance to
the condensed water fraction in different parcels (as a function of
the underlying physics parameters). The clouds in Fig 6 begin to
decay once the cloud development cycle reaches its maturity.

In Fig 7, the proposed method is compared with the original
technique with the help of panoramic images from both. It is clear
that our method with the cloud map achieves animation leading
to a much more realistic coverage and distribution as compared
to [GN17] when purely object domain parcels are used. Further-
more, the overall frame rates achieved in Fig 7b is roughly around
twice than in Fig 7a. Periodic textural repetition in the x — z plane
is allowed to enhance the cloud coverage in the latter case. In order
to achieve a similar coverage with the original method, one would
need a much larger parcel count. This not only makes the ray cast-
ing much more expensive (entails searching and rendering more
parcel volume), but also begins to strain the physics part since it
is executed on the CPU. Tab 1 gives the frame rates for anima-
tion and visualization of varying maximal coverage percentage of

76 P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map

clouds (specified by the user). 12 parcels are used in all the cases to
generate P to be overlaid on C 4 and the maximal cloud coverage
percentage is tuned by altering filling density of hypertexture as per
physics parameters. For 0.1% coverage very little cloud cover ex-
ists and this could be also be taken as the approximate frame rates
when no clouds are born.

Coverage (in %) | Frame rates
091 202
0.71 192
0.51 188
0.1 184

Table 1: Overall frame rates of the single-layered cumulus cloud
animation and visualization as a function of the maximal cloud cov-
erage which is specified in the approximate percentage of the sky
covered with the clouds. Images from the animation for the corre-
sponding coverage are shown in the third column.

Our experiments suggest that TSAA improves the rendering
quality of the clouds significantly, while the efficiency is not af-
fected much. Raytracing background scene (apart from sky) also
takes up a part of the computational time, which is variable and
depends on the scene complexity. We noticed a boost of around 50-
100 fps when switching off the rendering of the background terrain.
In Fig. 7, we have chosen the same background for the comparison
of the proposed method with the original technique. In [GN17], the
frame rate for the simulation and visualization combined drops to
7 fps when 85 parcels are employed. This high count is required in
their work to obtain a reasonable cloud coverage. A similar cover-
age obtained using our method together with the background scene
when raycast runs at around 200 fps (see Fig. 1). Our measurements
suggest that we spend less than 10% of the total computational time
on simulating the parcel physics and projecting them on the cloud
map, while the remaining time is spent on the rendering.

5. Conclusions

We have presented an efficient and realistic physics-inspired proce-
dural approach to animate single-layer of cumulus clouds in real-
time on the GPU. Modifying the original method, we have pro-
jected the parcel physics to 2D (instead of 3D) on top of a cloud
map to generate realistically evolving cloud patterns. This signif-
icantly reduces the computational overhead of visualization while
performing the volume ray casting, in addition to reducing the num-
ber of parcels that are needed to undergo physics. Our technique
is a perfect fit for cloud animation in the games, flight simulators
and other applications where in addition to convincing appearance,
real-time performance is a necessity.

One limitation of our method is that in its current form it can
only handle single-layered clouds. In future, it could be extended
to handle the multi-layered clouds efficiently. Another extension
would be to modify the cloud map noise as function of space or
time while keeping the same parcels for the physics to support the
cloud cover over an infinite landscape. Cloud rendering itself could
be improved by incorporating more accurate light interaction with
the surrounding environment.

6. Acknowledgements

We thank the anonymous reviewers for their valuable feedback. We
would also like to thank Inigo Quilez for the shadertoy scenes Rain-
forest and Terrain tubes and Dave Hostins for Mountains, which we
have employed in our visualization.

References

[BBZ*16] BI1 S., B1 S., ZENG X., LU Y., ZHOU H.: 3-dimensional
modeling and simulation of the cloud based on cellular automata and
particle system. ISPRS International Journal of Geo-Information 5, 6
(2016). 2

[BNO4] BOUTHORS A., NEYRET F.: Modeling Clouds Shape. In Euro-
graphics (short papers) (Grenoble, France, Aug. 2004), Galin E., Alexa
M., (Eds.), Eurographics Association, pp. —. URL: https://hal.
inria.fr/inria-00537462.2

[Day05] DAY J. A.: The Book of Clouds. New York, NY: Sterling Pub-
lishing Co, 2005. 2

[DG17] DUARTE R. P.,, GOMES A. J.: Real-time simulation of cu-
mulus clouds through skewt/logp diagrams. Comput. Graph. 67, C
(Oct. 2017), 103-114. URL: https://doi.org/10.1016/7.
cag.2017.06.005,doi1:10.1016/3j.cag.2017.06.005. 2

[DKY*00] DoBASHI Y., KANEDA K., YAMASHITA H., OKITA T.,
NISHITA T.: A simple, efficient method for realistic animation of clouds.
In Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques (2000), SIGGRAPH, pp. 19-28. 2

[DYNO6] DOBASHI Y., YAMAMOTO T., NISHITA T.: A controllable
method for animation of earth-scale clouds. In Proc. of CASA (2006),
pp. 43-52. 2

[FBDY15] FERREIRA BARBOSA C. W., DOBASHI Y., YAMAMOTO T.:
Adaptive cloud simulation using position based fluids. Computer Ani-
mation and Virtual Worlds 26, 3-4 (2015). 1,2

[GDO7] GRUDZINSKI J., DEBOWSKI A.: Clouds and atmospheric
phenomena simulation in real-time 3d graphics. In Computer Vi-
sion/Computer Graphics Collaboration Techniques (Berlin, Heidelberg,
2007), Gagalowicz A., Philips W., (Eds.), Springer Berlin Heidelberg,
pp. 117-127. 2

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

https://hal.inria.fr/inria-00537462
https://hal.inria.fr/inria-00537462
https://doi.org/10.1016/j.cag.2017.06.005
https://doi.org/10.1016/j.cag.2017.06.005
https://doi.org/10.1016/j.cag.2017.06.005

P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map 77

4
3,5

g 35

3 3

E 2,5 E 25

215 T 15

21,

1 1

o Atm Vi | Pot Te C)
05 tm Virtual Pot Temp (C) 0,5
Parcel Virtual Pot Temp (C)
[0
32 34 36 38 40 a2 4 0 5000 10000

(a)

Percentage (%)
o
Y

Condensed %

Water left %

15000 20000 25000 0 5000 10000 15000 20000 25000
Frame # Frame #

(c)

Figure 5: Plots for a typical parcel showing (a) variation of the atmospheric vs. parcel virtual potential temperature with the altitude,
(b) variation of the parcel height as the simulation progresses, (c) overall remaining and condensed water fraction in the parcel with the

simulation progression.

Figure 6: Timelapse of the cumulus cloud development using the
proposed approach. Only 12 parcels are used in the texture P to
generate this cloud cover. After the full development, the clouds be-
gin to decay. Note the distribution of clouds far towards the horizon
which is harder to obtain in the original method in [GN17].

[GN15] GoswaMI P., NEYRET F.: Real-time landscape-size convective
clouds simulation. In Proceedings of the 19th Symposium on Interactive
3D Graphics and Games (2015), I3D, pp. 135-135. 2

[GN17] GoswaMI P., NEYRET F.: Real-time landscape-size convective
clouds simulation and rendering. In VRIPHYS 2017 : 13th Workshop on
Virtual Reality Interaction and Physical Simulation, 23-24 April 2017,
Lyon, France (2017), pp. 1-8. 1,2,3,4,5,6,7

[HBSLO3] HARRIS M. J., BAXTER W. V., SCHEUERMANN T., LASTRA
A.: Simulation of cloud dynamics on graphics hardware. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware (2003), pp. 92-101. 2

[JGY*11] JIMENEZ J., GUTIERREZ D., YANG J., RESHETOV A., DE-
MOREUILLE P., BERGHOFF T., PERTHUIS C., YU H., MCGUIRE M.,
LOTTES T., MALAN H., PERSSON E., ANDREEV D., SoUsA T.: Fil-
tering approaches for real-time anti-aliasing. In ACM SIGGRAPH 2011
Courses (2011), SIGGRAPH 11, pp. 6:1-6:329. 5

[KMM*17] KALLWEIT S., MULLER T., MCWILLIAMS B., GROSS

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

M., NoVAK J.: Deep scattering: Rendering atmospheric clouds with
radiance-predicting neural networks. ACM Trans. Graph. 36, 6 (Nov.
2017), 231:1-231:11. 2

[KVH84] KAIJIYA J. T., VON HERZEN B. P.: Ray tracing volume densi-
ties. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 165-174. 2

[Mih11] MIHALIS L.: First Principles of Meteorology and Air Pollution,
vol. 19. 2011. doi:10.1007/978-94-007-0162-5. 1

[MM13] MACKLIN M., MULLER M.: Position based fluids. ACM Trans.
Graph. 32,4 (July 2013), 104:1-104:12. 2

[MMPZ12] MILLER B., MUSETH K., PENNEY D., ZAFAR N. B.: Cloud
Modeling And Rendering for "Puss In Boots". In ACM SIGGRAPH Talk
(2012). 1

[Ney97] NEYRET F.: Qualitative simulation of cloud formation and evo-
lution. In 8th Eurographics Workshop on Computer Animation and Sim-
ulation (EGCAS) (sep 1997), pp. 113-124. 2

[Nij18] NIHOFF R.: Himalayas, 2018.
shadertoy.com/view/MdGfzh. 4,5

[SMST] SOARES P. M. M., MIRANDA P. M. A., SIEBESMA A. P.,
TEIXEIRA J.: An eddy-diffusivity/mass-flux parametrization for dry and
shallow cumulus convection. Quarterly Journal of the Royal Meteoro-
logical Society 130, 604. 2

[SSEHO3] ScHPOK J., SIMONS J., EBERT D. S., HANSEN C.: A real-
time cloud modeling, rendering, and animation system. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2003), SCA, pp. 160-166. 2

[WCGG18] WEBANCK A., CORTIAL Y., GUERIN E., GALIN E.: Pro-
cedural Cloudscapes. Computer Graphics Forum 37, 2 (2018). URL:
https://hal.archives-ouvertes.fr/hal-01730789. 2

[YWI11] Yu C.-M., WANG C.-M.: An effective framework for cloud
modeling, rendering, and morphing. J. Inf. Sci. Eng. 27 (2011), 891—
913. 2

URL: https://www.

https://doi.org/10.1007/978-94-007-0162-5
https://www.shadertoy.com/view/MdGfzh
https://www.shadertoy.com/view/MdGfzh
https://hal.archives-ouvertes.fr/hal-01730789

78 P. Goswami / Interactive animation of single-layer cumulus clouds using cloud map

(a) Original method

(b) Proposed method

Figure 7: Panorma comparison of the cumulus cloud distribution and shape over landscape (textural periodicity enabled) using , (a) original
method and (b) proposed method. We employed 12 parcels in each case to generate this cloud cover in both (a) and (b). The proposed
animation method is running roughly at two times frame rates when compared to the original method.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

