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Abstract

In environmental surveys a large sampling effort is required to produce accurate geostatistical maps representing the dis-
tribution of environmental variables, and the analysis of each sample is often expensive. Typically, the sample locations are
completely specified in the survey design phase, prior to data-collection. Usually, the sampling points are located on a regular
grid, or along directions that are selected with respect to any a-priori knowledge of the expert. No feedback is available during
the survey.
In this paper, we present a different sampling strategy, namely adaptive sampling. Our approach exploits geostatistics constructs
in order to determine on-the fly the next best sample location. After initializing the system with few sampling points, an iterative
routine predicts the variable distribution from the data sampled so far, and suggests the next sample to be acquired in order
to optimize the uncertainty of the estimates. At every iteration a new sample is acquired, and the variable distribution map is
refined, along with the uncertainty map related to that distribution. Our method allows to build a representation of the survey
area as precise as the one provided by the traditional methods, but with less samples, thus reducing both time and costs of the
survey. We show a preliminary evaluation of the adaptive strategy in the bi-dimensional case based on a synthetic scenario,
and describe the generalization of these encouraging results to the full 3D domain in the concrete setting of water quality
monitoring. A proper geometric representation of the three dimensional survey area, coupled with a proper visualization of
distribution and related uncertainty, will provide real-time feedback during the survey.

1. Introduction

Environmental monitoring includes the processes and activities
needed to observe and characterize the trend of environmental vari-
ables. Environmental sampling is carried out, for instance, when-
ever there is a need to monitor contaminants in water, air or soil,
and requires testing of hazardous sites, runoff into lakes, streams
and seas, and air emissions from industry.

The standard way to plan an environmental survey provides sev-
eral stages: first, all the locations where to collect physical samples
are predetermined. In general, the sampling points are located on a
regular grid, or along directions that are selected following a-priori
knowledge. Then, the data collection takes place (no feedback is
available during the survey); and finally, samples go under labora-
tory analysis. Afterwards, geostatistical maps are generated to rep-
resent the distribution of the examined environmental variables, and
on the base of the results, additional surveys might be planned on
subareas of the global domain, in order to refine the analysis only
where the operator considers that it is needed. The operator is in
charge of deciding where and how to refine the sampling, based on

previous acquisitions and own knowledge. The campaign is there-
fore expensive, both in terms of money and time.

Furthermore, the monitoring is typically required in hazardous
environments. In order to safeguard human operators, the use of
robotic platforms (e.g., drones) to collect samples in dangerous ar-
eas is being investigated. Fortunately, the technological improve-
ments now allow for direct measurements opposite to the sample
collection and laboratory analysis after the field campaign, for a
number of environmental parameters. Indeed, new dynamic posi-
tioning systems, lighter and cheaper sensors are available, and will
be even more in the near future, yielding to an explosion of geo-
referenced, highly accurate data for many different purposes. Hav-
ing a real-time punctual measurement of an environmental variable
opens the door to new on-the-fly sampling decisions. On the other
hand, this requires innovative computational solutions to make data
analysis precise and fast.

In environmental survey, beside an estimate map representing
the phenomenon under examination, it is crucial to know the ac-
curacy of the estimations, allowing experts to take more informed
decisions. In fact, human factors and the tools or analysis tech-
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niques applied can all introduce uncertainty in the data and, sub-
sequently, in the representation of the reconstructed reality. Until
now the concept of uncertainty has had a “passive” role, since it
was only used retrospectively as a tool to measure the accuracy of
the model. However, its role can become “active” by intervening
in the definition of a new sampling strategy, based on uncertainty
minimization.

We present an innovative adaptive sampling schema where the
optimization is based on a measure of uncertainty. The approach
does not require predefined samples, but conversely the adaptive
strategy follows an iterative selection of samples in a way that min-
imizes the uncertainty of the estimates. Our formulation of the con-
cept of "uncertainty" relies on making several estimates for the
value at each point and computing the variance: intuitively, this
measures how much such estimates are reliable. Since the analysis
occurs in real time it is possible to use the information just acquired
to take conscious decisions promptly.

In this paper, we provide an adaptive sampling algorithm to drive
a robotic platform during an environmental survey. When sampling
soil, water or air, many different types of equipment are needed.
We provide a general framework that can manage multiple sensors
in a modular fashion. We also evaluate the accuracy of the method
by implementing a remotely operated vehicle simulator. We present
our preliminary results on a bi-dimensional synthetic scenario, and
draft the ongoing generalization of these encouraging outcomes to
the full 3D domain for water quality monitoring in harbours. A
proper geometric representation of the three dimensional survey
area, which may be arbitrarily complex, beside encoding the do-
main constraints and optimizing the processing, allows for a proper
visualization of variable distribution and related uncertainty.

The contribution of this work is to pose the basis to develop an
integrated system where the adaptive sampling approach together
with the advanced representation and visualization of the uncer-
tainty will improve the efficiency and precision of environmental
surveys while reducing time and costs.

2. Background and State of the Art

Geostatistics (Matheron, [Mat62], [Mat63]) was born in the early
1980s as a hybrid discipline of mining engineering, geology, math-
ematics, and statistics. Geostatistics provides the mathematical
tools to build a complete distribution map over a domain given a
discrete set of known values. Environmental sampling provides real
measures of specific variables in a limited set of locations (sam-
ples). Environmental variables are characterized by a spatial rela-
tion among observations: close areas tend to have similar values
whereas ones that are farther apart differ more. Geostatistics ex-
presses this intuitive knowledge quantitatively and then uses it for
prediction.

Kriging (Webster & Oliver, [WO07]) is a regression method used
in geostatistics that allows a variable to be interpolated in space,
minimizing the average quadratic error. The unknown value in a
point is calculated with a weighted average of the known values.
The weights that are given to the known measurements depend on
the spatial relationship between the measured values in the neigh-
borhood of the unknown point. To calculate the weights we use the

variogram, a graph that relates the distance between two points and
the variance value between the measurements made in these two
points. The variogram shows, both qualitatively and quantitatively,
the degree of spatial dependence in the data. The semivariogram is
the function that interpolates the semivariance of the values Z(x)
observed in groups of pairs of points x at distance h while the dis-
tance h varies (directional distance).

For a given h, the semivariance is given by the following for-
mula:

γ(h) =
1
2

var[Z(x)−Z(x+h)] =
1
2

E[(Z(x)−Z(x+h))2]

where h, the vector representing a directional distance, is known
as the lag. This spatial relation depends on the lag and not on the
absolute position of the points x.

The semivariogram (the graph of the semivariance on the dis-
tance between the data) is normally interpolated with different
functions in order to determine the type of spatial autocorrelation
of the measured variable. The parameters to be estimated are:

1. Nugget: describes the random variability level;
2. Range: distance limit beyond which the data are no longer cor-

related;
3. Sill: describes the level of spatial variability, and is the maxi-

mum or asymptotic value that is reached at the Range.

Methods to estimate such parameters are described in the work
by Cressie, [Cre85].

There are several distinct kind of Kriging to tackle increasingly
complex problems in environmental studies (Webster & Oliver,
[WO07]). We use the linear Kriging, so that the estimate at a point
is simply a linear sum of the weighted average of the data in its
neighbourhood. The prediction estimates are obtained with:

Ẑ(x0) =
N

∑
i=1

λiz(x1)

where x0 is target point, N is the number of known points in the
neighbourhood and λi are the weights that must sum to 1. The es-
timate of λi relies on the variogram model and thus on the spatial
variability law among points. The weights describe the influence
of each neighboring point in the estimate of the target point. The
calculation of λi is beyond the scope of this paper. See the work by
Cressie [Cre85] for more details and how λi are calculated.

Beside traditional sampling schemes, there are some new iter-
ative approaches that exploit the Kriging model for optimization.
These methods have concentrated upon the minimization of the
Kriging variance related to the sampling pattern (van Groenigen
et al. [vGSS99] [vG99]; Lark, [Lar02]) or upon an approximation
of the variogram uncertainty (i.e variance-covariance matrix of the
fitted parameters of the variogram) (Marchant & Lark, [ML03]).

Another example of iterative approach is in the work by van
Groenigen et al. [vGSZ97]. The procedure is proposed to optimize
environmental risk assessment. Environmental risks are quantified
by the probability of exceeding the intervention level. Maps show-
ing these probabilities are obtained with indicator Kriging (Webster
& Oliver, [WO07]) and the next sampling points are selected on the
base of this maps.
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An alternative way, using a Bayesian approach, to optimize an
environmental sampling and to select the next point adaptively is
addressed in [XC11].

However, Kriging tends to underestimates values that are larger
than average and to overestimate those that are smaller. In gen-
eral, we obtain a smoothed representation of reality. In the works
of Goovaerts [Goo97] and Lin et al. [LCT01] Kriging is compared
with stochastic simulations and in these studies simulation tech-
niques yielded better results than Kriging. In particular, Sequential
Gaussian Simulation (SGS) provides a measure of uncertainty of
the estimates.

Like the above mentioned approaches, we present an iterative
method, but our sampling strategy uses a measure of uncertainty of
the current prediction as optimization function. In the field of ge-
ometric modeling a geometric model, named Fuzzy B-spline, has
been defined for the explicit representation of the uncertainty re-
lated to shapes (Anile et al., [AFG+00]). In our setting, the ex-
plicit representation of uncertainty could provide an effective tool
for communicating the quality of the reconstruction and for sug-
gesting refinements during the process. Using real-time uncertainty
information, either the human expert or an automatic software can
drive the survey in such a way to extract much more information
with less uncertainty. In this way we can achieve more reliable rep-
resentations of reality with fewer samples selected ad hoc.

Our work starts from some previous prototypes by Pittaluga
[Pit04], Sartori [Sar13] and Semino [Sem14]. The aim of this pa-
per is to demonstrate the potential of using adaptive sampling pro-
cedures able to select new points in real-time by minimizing the
uncertainty of the estimates. Furthermore, our work aims to take
advantage of geometry modeling and visualization methods to pro-
vide a real-time feedback to the final user.

3. Uncertainty-driven Adaptive Sampling

Our adaptive sampling approach is an iterative method. At each
iteration, our method estimates the best next point to be sampled
and updates the known information with new acquired data. Our
method requires a description of the area to be sampled (e.g. bound-
aries, constraints) and an initial set of sampled points where the
variable value is known. In the following paragraphs, we assume
the survey area to be represented as a regular grid with a user-
defined resolution. Section ?? describes the ongoing work on the
generalization to fully 3D areas bounded by arbitrarily complex
boundaries.

Starting from the initial set of sampled points, each iteration of
the adaptive sampling works as follow:

1. Definition of the spatial variability law describing the observed
environmental variable, based on sampled points (see Section
3.1);

2. Generation of the spatial prediction map and related uncertainty
map (see Section 3.2);

3. Exploitation of the uncertainty map to determine the next point
to be sampled (see Section 3.3);

4. Sample the new point and enrich the set of sampled points with
the new measure (see Section 3.3).

The iterative loop stops when a specific desired condition is sat-
isfied. Our current implementation considers a user-defined number
of iterations as a stop condition.

3.1. Definition of the spatial variability law

The goal of this phase is to describe the spatial variability of the ob-
served environmental variable by exploiting the set of points where
the actual value is known. At the beginning of the process, the sys-
tem is initialized with a small set of samples (i.e. 1% of the domain
size in our experiments). At each iteration, the set of known values
is enriched with newly acquired samples.

At the beginning of each iteration, we preprocess the set of
known values to guarantee they follow a normal distribution. This
is a requirement of geostatistics methods used to define the spatial
variability low. If this condition is not satisfied, we transform them
through a normal scores transformation (NST) (Deutsch & Jour-
nel, [DJ98]), which assumes a mean value of 0 and standard error
of 1 and adjusts each sample value by mapping it from its orig-
inal probability to the S-shaped curve corresponding to a normal
distribution (Coburn, [Cob12]; Isaaks & Srivastava [HIRS91]). An
advantage of using NST is that estimated values can be transformed
back to real values by applying an inverse NST.

We describe the spatial correlation among real observations
through the variogram, fitting it with a mathematical function de-
fined in terms of range, sill and nugget. Our implementation esti-
mates the three parameters using the ordinary least squares method
(Cressie, [Cre85]). Once the spatial variability has been estimated,
we proceed with estimating the prediction over unsampled areas
and calculating the uncertainty related to that prediction.

3.2. Variable prediction and uncertainty evaluation

We use the Sequential Gaussian Simulation (Webster & Oliver,
[WO07]) to estimate the variable over the domain and measure the
uncertainty at each point. SGS is a method for simulating a multi-
variate Gaussian field, where each value is simulated sequentially
according to its normal conditional cumulative distribution func-
tion, which must be determined at each location to be simulated.

The input data of a SGS is the set of known values and their
spatial variability low, together with the description of the survey
area. A single SGS works as follows:

1. Determine the sequence in which the points in the domain will
be visited for each simulation (e.g., randomly).

2. Simulate at each point p:

• Use kriging to obtain Ẑ(p) and σ̂
2
K(p)

• Draw a value v at random from a normal distribution:
N(Ẑ(p), σ̂2

K(p))
• Map point p to value v and add it to the SGS set of known

values.

The output of a single SGS is a map where each point is asso-
ciated to its estimated value. We run a set of SGSs (i.e. 20 in our
implementation) and we finally map each point to the average of its
estimations. By assigning each point its average estimated value,
we generate a global prediction map, while a global uncertainty
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map is built by assigning each point the variance of its estimations.
These two maps provide a global overview of the variable distribu-
tion and uncertainty information. Eventually, the uncertainty map
enables the adaptive selection of the next point to be sampled as the
one where the uncertainty is highest.

3.3. Next point to be sampled

The final goal of our method is to provide a representation of real-
ity as reliable as possible. Thus, the next point to be sampled must
improve the reliability of the estimations. With this final goal in
mind, the selection of the next point to be sampled is guided by
the uncertainty map generated in the previous step, from which we
can easily detect the points where the variance of the estimates is
highest. The addition of new sampled points in regions of high un-
certainty leads to a better representation of reality while reducing
the estimation uncertainty. The point with highest uncertainty will
be the next to be sampled. While moving from the current position
Xc to the selected next point Xn, we can imagine two cases: only
the extremes of the path Xc and Xn are sampled, or the sampling is
continuously performed along the path (Xc,Xn), adding all points
in between to the set of known points. The two situations depend on
the modality in which the survey is carried out and on the sensors
employed. For example, if we imagine a human operator perform-
ing soil sampling with a X-ray fluorescence spectroscopy (XRF)
hand-held sensor, only the locations at Xc and Xn will be measured.
Conversely, in the case of an underwater vehicle equipped with a
sensor for salinity able to measure continuously, it makes no sense
to discard measurements that are anyway performed by the sensor
along the way, and therefore all points along (Xc,Xn) will be mea-
sured.

Although this approach actually increases the reliability of the
representation of the reality, it only aims to minimize the uncer-
tainty of the estimations, and does not take into account other pos-
sible costs coming from real applications (i.e. the cost of moving
from one point to a point very far away). In theses cases, the min-
imization function needs to be adapted to the specific costs to be
optimized. An improvement of this approach considers uncertainty
areas rather than punctual uncertainty. This is because a single point
may have high uncertainty, but the representation of the surround-
ing area may be already sufficiently reliable. Then, the next point to
be sampled should be selected as the one surrounded by the most
uncertain area. Thus, our implementation provides the possibility
to minimize the uncertainty while trying to optimize the displace-
ment of the mobile platform (human operator) by selecting, among
the N points with higher uncertainty, the one with minimum dis-
tance to the current position. N is a parameter that can be tuned as
appropriate. The selection procedure of the new sampled point is
represented in the Algorithm 1 with a pseudo-code. Other imple-
mentations may consider different costs and specific weights.

4. Results and Discussion

We implemented a prototype of the uncertainty-driven adaptive
sampling using the R software ( [R C]) and set up an experiment
to evaluate the approach.

For the experiment, we generate an input synthetic survey area

Algorithm 1
input← Grid points in the uncertainty map
out put← Next sample
N← user’s parameter

1: Sort points in input by uncertainty in decreasing order.
2: Calculate the distance of each point respect with current position
3: Select first N points in ranking
4: Among the N points return the point with the minimum distance
to the current position.

by exploiting a library providing geostatistics methods, GSLIB
(Deutsch & Journel [DJ98]). We set different variogram parame-
ters (nugget, sill and range) and different sets of synthetic sam-
ples to control the shape of the statistical distribution. The survey
area is represented as a bidimensional grid of values that mimics
the real area to be sampled (Figure 4(a)). The variable distribu-
tion in our synthetic datasets satisfies the normality condition. We
consider in particular the complex case of an underwater robotic
platform equipped with sensors and implemented a simulator to
replicate the uncertainty-driven adaptive sampling of the synthetic
survey area. The simulator implements the kinematics law to mimic
the platform motion from a start point to an end point. The exper-
iment is set in a bi-dimensional space, but our goal is to extend
the approach to the 3D case, specifically to address the path plan-
ning of a ROV for water quality monitoring in harbours. The cruise
speed and acceleration of the vehicle is defined by the user. For the
sake of generality, the hardware simulator is highly customizable
and enables the possibility to virtually equip the platform with dif-
ferent sensors, each of them responsible for sampling a different
variable and having its own sampling rate and communication de-
lay. Results in this paper, however, consider a single variable at a
time.

4.1. Experimental results

The input of our experiments is a synthetic survey area with res-
olution 100x100. From the input survey area, we select an ini-
tial set of sampled points through the adaptive procedure. The set
S = {p1, p2, ..., pn} of initial samples points can be enriched by
the measurements acquired by sensors along the path between each
pair of consecutive points pi and pi+1 in S. In our experiments, n is
set to 10.

Figure 1 shows an example of spatial prediction map (on the left)
and the corresponding uncertainty map (on the right) of the simu-
lated survey area at the end of the whole iterative process (20 iter-
ations). At each iteration, the next point to be sampled is selected
as the one having the maximum uncertainty while trying to avoid
too long displacements. This is done by selecting the new point as
the most uncertain one among the points closest to the current po-
sition. Figure 2 shows how the variogram and its fitting change at
each iteration.

4.2. Validation

Our simulated synthetic environment enables the possibility to
compare results with the “real data” (i.e., the synthetic survey area),
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Figure 1: Spatial prediction map (left) and uncertainty map (right).
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Figure 2: Variograms and their fits (red line) for each iteration of entire sampling.

which is impossible in the real world. We use this information as
a ground truth to evaluate the reliability of our approach. Reliabil-
ity is measured as Mean Square Error (MSE) between reality and
estimated values:

MSE =
n

∑
i=1

(Ŷi−Yi)
2

where n is the number of cells in the grid, Ŷ are the estimated values
from SGS and Y are the real data. Our simulated field is shown in
Figure 4(a).

In Figure 3 two graphs are shown. The graph on the left under-
lines a decreasing trend of the MSE while increasing the number
of samples. However, when a sufficiently good number of sampled
point is reached (i.e. thirty in our case), the MSE seems to be stable
and its decrease is not relevant anymore. Similarly, the graph on
the right shows the difference between MSE in two subsequent it-
erations. In other words, it measures the improvement provided by
a new adaptively sampled point. Again, after about thirty adaptive
samples this difference tends to zero. These two graphs suggest the
choice of a feasible stop criterion. Indeed, adding new samples af-

ter a certain number does not add enough information compared to
the costs of sampling. Nevertheless, in the real case, the real data
is unknown and, thus, MSE with respect to the reality cannot be
evaluated this way.

4.3. Comparison with traditional sampling

To demonstrate that adaptive sampling actually allows to get an
informative result as precise as the traditional methods (sampling
on regular grid) while reducing sampling efforts, we compare the
prediction maps and measure their reliability with respect to real-
ity (Figure 4(a)) using the MSE. For the sake of a fair comparison,
we discard values acquired during the mobile platform displace-
ment and keep only measures at the begin and end of route, and
set the number of adaptive sampled points to a fixed amount (i.e.
100 in our experiment). Figure 4(b) shows the prediction map re-
ferred to our adaptive sampling scheme, while Figure 4(c) shown
the prediction map of traditional sampling on regular grids using al-
ways SGS. By looking at the MSE values, it is evident that, for the
same number of samples, adaptive sampling is more reliable than
the traditional method. The regular grid sampling indeed studies
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Figure 3: Behavior of the MSE for each iteration (left) and of the
differences between two successive iterations (right).

the environmental phenomenon at a predefined resolution: the cell
dimension corresponds to the minimum sampling interval. If this
value is not small enough, we risk to loose important information
about the behavior of the variable between the sample points, and
the estimate will be rough in these zones. If the minimal sampling
interval is too small, we risk to over-sample the field.

4.4. Computational complexity

To evaluate the computational complexity we studied the running
time of the algorithm on fields of different resolutions. In particular,
we simulated a field on 1024x1024, 768x768, 512x512, 256x256
and 128x128 grids and we estimated the environmental variable.
In Table 1 we report, for each resolution, the timing of the first and
last of the ten iterations, the average iteration time, the average time
for the SGS procedure, which is the most demanding, and the total
computation time.

Table 1: Running time of the algorithm at different resolutions of
the same field (1024x1024, 768x768, 512x512, 256x256, 128x128).

Running time
Iteration 1 Iteration 10 Mean Of

iterations
Mean of
SGSIM

Total (10
iterations)

1024x1024 00:02:05 00:02:09 00:02:09 00:01:49 00:21:29
768x768 00:01:07 00:01:09 00:01:09 00:00:59 00:11:29
512x512 00:00:30 00:00:28 00:00:29 00:00:24 00:04:50
256x256 00:00:07 00:00:08 00:00:07 00:00:06 00:01:11
128x128 00:00:02 00:00:02 00:00:02 00:00:01 00:00:19

Obviously, the running time increases with the resolution. Figure
5 depicts the running time with respect to the grid resolution in
terms of number of cells. The plot nicely exhibits a nearly linear
behaviour.

The part of the algorithm that weighs more on the running time
is the calculation of the SGS with GSLIB. In the case of maximum
resolution, at each iteration the algorithm must estimate (ten times,
if the parameter of the number of simulations is set to ten) about

one million cells and this effort has strong repercussions on the
timing. In a real-world scenario experts should find a compromise
between the running time and the desired resolution.

5. Conclusions and Future works

We propose a new approach to adaptively sample environmental
variables. Using the uncertainty map as a criterion for optimization,
the adaptive sampling provides the same level of information of
traditional methods with a minor number of samples. Thanks to
the uncertainty map, our method detects those points where more
information is needed (i.e. the more uncertain ones) and enables the
possibility to iteratively enhance precision and reliability by adding
to the model salient information.

We implemented a simulator to carry out preliminary testing of
the system. In our experiment, adaptive sampling showed an ex-
cellent performance for environmental survey with respect to the
traditional techniques.

This result motivates further research towards the definition of
new efficient and cost-effective environmental surveys. Other defi-
nitions of uncertainty could be investigate and new selection strat-
egy of next point could be considered in a future implementation.
For example, we are evaluating to consider the parameter N as a
distance threshold, that set a radius of a circumference with the
center in the current position. In this circumference the next uncer-
tain point must be selected. On this new strategy we still have to
verify convergence.

The most important future work addresses the shift to volumetric
representations of survey areas. So far, the description of our adap-
tive sampling algorithm assumes the survey area to be described as
a regular 2D grid. This representation, valid in other environmental
sampling surveys, is used in this paper as a preliminary case study
and is suitable to represents planar and rectangular survey areas.
Nevertheless, in real applications the survey area may easily have
arbitrarily complex boundaries and may have a volumetric nature.
We are particularly interested in water quality estimation in har-
bours, where a ROV can move in the three dimensions, in an area
typically constrained by non-convex boundaries (e.g., pier struc-
tures). Our method is general and can be theoretically applied to
any survey area, as far as the domain can be represented as a 3D
geometric model where the boundaries are explicitly encoded (see
Figure 6 and 7)

Structured voxelizations are the direct extension of 2D regular
grids and enable to represent rectangular areas with a specific reso-
lution. Nevertheless, representing free-form areas through a regular
voxelization may end up with a high resolution model made of mil-
lions of small elements, difficult to be handled by our algorithm
due to the high dimensions. Tetrahedral meshes are more suitable
to represent free-form areas, and they allow a multi-resolution rep-
resentation of the area where the discretization resolution can be
locally adapted where needed. Beside the state of the art, polyhe-
dral meshes including cells of different form are even more flexible
and will be investigated in the next steps.

Starting from these considerations, we aim to improve our tool to
support free-form height field and volumetric areas and to consider
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(a) (b) (c)

Figure 4: (a) Synthetic variable distribution representing reality in our experiment, (b) Spatial prediction map with adaptive sampling
(MSE = 8838.204) and (c) sampling on regular grid (MSE = 13757.02).
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Figure 5: Behaviour of running times (in seconds) with the increas-
ing of the number of cells of the grid (in millions) on which algo-
rithm estimates the environmental variable.

the geometric and physics constraints given by the morphology of
the surveyed area. Furthermore, we aim to visually represent the
uncertainty information on the 3D model so that experts can super-
vise the adaptive sampling in real time.

Figure 6: An example of height field survey area with arbitrarily
complex boundary constraints. The survey area is represented as a
2.5D triangle mesh.

Figure 7: An example of a volumetric survey area, represented as
a tetrahedral mesh. In the bottom left frame, an internal layer is
shown. The color associated to each vertex represents the value
of the simulated environment variable at the vertex position. The
variable satisfies the normality condition.
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