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Abstract

Shape analysis of cell nuclei is becoming increasingly important in biology and medicine. Recent results have identified that the
significant variability in shape and size of nuclei has an important impact on many biological processes. Current analysis tech-
niques involve automatic methods for detection and segmentation of histology and microscopy images, and are mostly performed
in 2D. Methods for 3D shape analysis, made possible by emerging acquisition methods capable to provide nanometric-scale 3D
reconstructions, are, however, still at an early stage, and often assume a simple spherical shape. We introduce here a framework
for analyzing 3D nanoscale reconstructions of nuclei of brain cells (mostly neurons), obtained by semiautomatic segmentation
of electron micrographs. Our method considers an implicit parametric representation customizing the hyperquadrics formula-
tion of convex shapes. Point clouds of nuclear envelopes, extracted from image data, are fitted to our parametrized model, which
is then used for performing statistical analysis and shape comparisons. We report on the preliminary analysis of a collection of
92 nuclei of brain cells obtained from a sample of the somatosensory cortex of a juvenile rat.

1. Introduction

In biology, the nucleus is a membrane-enclosed organelle found in
eukaryotic cells, including the ones composing the brain. It repre-
sents the control center of the cell, since, in particular, it organizes
activities by regulating gene expression. The nuclear envelope sep-
arates the cell nucleus and cytoplasm. It consists of an inner and
outer membrane, separated by peri-nuclear space and perforated by
nuclear pores. All active and passive transport processes in and out
of the nucleus take place via the nuclear pores.

Geometrically, the cell nucleus has been often studied as a spher-
ical structure [FHWV97]. This approximation is increasingly prov-
ing way too coarse for a number of applications. Recently, the anal-
ysis of proteins associated with the nuclear envelope in rat hip-
pocampal neurons provided evidence that the geometry of nuclei
is far more complex [QWBWOS], and that the shape of cell nuclei
is likely to influence the nucleo-cytoplasmic exchange of macro-
molecules and ions, in particular calcium, which is a key regulator
of neuronal gene expression. Moreover, the size and shape of nu-
clear envelopes can vary not only among species, abut also within
species and even within single individuals, depending on cell types
and other, even transient, conditions. The analysis of shape prop-
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erties is thus gaining importance in biology and medicine, since
shape variability can provide indicators of different conditions and
can provide hints for classifying cells.

A major field in which cell nucleus analysis is considered
of paramount importance is computer aided diagnostics [XY16],
where a series of methods have been developed for automated 2D
detection and segmentation on microscopy images, with the aim
of providing support for various quantitative analyses, including
calculating cellular morphology, including size, shape, or texture.
However, most of nuclear analysis is performed directly on 2D im-
ages, and only few efforts have used 3D reconstruction, in partic-
ular for studying the dynamics of nuclear infoldings in response
to neuronal activity [WQE™09]. It is only very recently, with the
emergence of digital acquisition methods capable to provide 3D
reconstructions at nanometric resolution scale [CBB*16], that col-
lections of 3D shape measurements of nuclei are starting to be-
come available. Hence, the need is arising to develop shape analysis
frameworks to support domain scientists in performing 3D quanti-
tative measures, classification and clustering operations, e.g., for
associating different shapes to different nuclear conditions.

In this paper, we consider digital 3D reconstructions of nuclei of
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Figure 1: Method overview: from 3D nanoscale reconstructions of neuron nuclei obtained from electron microscopy image stacks, we fit
specific implicit surface representations in a way to derive parameter sets that can be used for shape analysis and classification.

brain cells (mostly neurons), obtained by segmenting serial elec-
tron micrographs at nanoscale resolution, and we propose a shape
analysis framework based on an implicit surface parametrization,
which provides a simple but effective representation of nuclear en-
velope shapes. The obtained parameters can be used for providing
measures, features, and indicators for shape classification. To this
end, we adapted the hyperquadrics [Han88] implicit representation
of convex shapes (see Fig. 1) using a formulation that provides us
increased control in fitting the discrete point clouds representing
the nuclei shapes as identified by image segmentation (see Sec. 4).
‘We show how the fitting can be computed using a constrained op-
timization method (Sec. 4). From this implicit representation we
then create an explicit radial representation by sampling (Sec. 5),
which can be used for tessellation and shape comparison.

Our method makes it possible to obtain a parametric represen-
tation of shapes that can be used for measuring sizes, perform-
ing comparisons and for classifying nuclei with respect to different
cells and conditions. Here, we demonstrate the method on a collec-
tion of 92 nuclear envelops of brain cells. The input data came from
semiautomatic segmentation of electron micrographs of a sample
of somatosensory cortex of a juvenile rat. We provide preliminary
results of fitting performance of the proposed parametric model, as
well as a discussion of a preliminary shape analysis performed by
domain scientists with our framework.

The proposed framework is built around a specific implicit rep-
resentation, hyperquadrics, that was chosen after visual assessment
of neural nuclei envelopes according to domain scientists indica-
tions. The proposed model is shown to have increased sensitivity
than the usual spherical approximation. It is accurate for convex
neuron nuclei, but its accuracy suffers on concave and other con-
torted shapes. However, the described methodology can be consid-
ered general, and can be easily adapted to other parametric rep-
resentations, based on implicit surface representations or function
basis [SFM09], which can be able to describe more accurately gen-
eral shapes presenting concavities.

2. Related work

The proposed method consists of creating a 3D shape analysis
framework based on an implicit surface parametrization to be used
for the study of 3D shapes obtained from nanoscale cell nuclear
envelopes reconstructions. We discuss here the state-of-the-art in

nuclei detection, shape analysis in neuroscience, and implicit rep-
resentations in visual computing, by limiting our analysis to the
methods that mostly relate to our techniques.

Cell nuclei segmentation. Accurate detection of individual cell
nuclei in microscopy images is an essential and fundamental task
for many biological studies. A comprehensive review of cell de-
tection and segmentation algorithms can be found in [XY16]. The
accuracy of segmentation and reconstructions determines the qual-
ity of morphology features extracted and is in some cases crucial
for identifying and grading diseases. Broadly, three popular strate-
gies are used for nucleus/cell segmentation: (a) separate the fore-
ground from the background, and split the object groups into in-
dividual nuclei or cells [QXFY12, WHS"12]; (b) identify mark-
ers of nuclei or cells, and then, expand the markers to the object
boundaries [VVDK*13, JKCO10, VVLVDDHI13]; (c) generate a
sufficient number of region candidates, and then, select the best
ones as final segmentation [AM12,AK13,KVRRI12]. Very recently,
Ram et al. [RR16] presented a cell nucleus detection system using
the fast radial symmetry transform (FRST), to be used in fluores-
cence in-situ hybridization (FISH) images obtained via confocal
microscopy. To the best of our knowledge, all models are applied
to 2D segmentation of cell nuclei. Our method fits parametric rep-
resentations to 3D reconstructions of cell nuclear envelopes. It con-
siders an extension of a generic implicit surface model that proves
to be a simple but effective 3D parametric representation, expres-
sive enough to perform statistical analysis and shape comparisons
of rodent brain nuclear shapes.

Implicit representations in visual computing. A parametric rep-
resentation of shape allows for the definition of geometrical ob-
jects using a few parameters and incorporating prior knowledge.
Because implicit surfaces can be designed so that the algebraic
distance to them can be quickly computed by evaluating a sim-
ple differentiable function, they are better suited to fitting 2D and
3D data that the most common explicit models [DG95]. One of
the most common implicit representation is the superquadric, in-
troduced by Barr in 1888 [Bar81] and, then widely applied to
many problems, such as object representation [Pen86], shape re-
covery [SB90], image segmentation [GB93] and object model-
ing [TM90]. Superquadrics are, however, constrained to repre-
sent symmetrical-section volumes. This limitation was removed by
Hanson [Han88] with the introduction of the hyperquadric primi-
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tives, which include quadrics and superquadrics as special cases.
Hyperquadrics are not symmetric and support taperings and dis-
tortions that are not naturally present within the conventional su-
perquadric framework. The application of hyperquadrics can be
mainly found in shape recovery [HGB93], but also in fitting models
to sparse data [CC96]. Their 2D versions were used for 2D segmen-
tation of nuclei shapes in nuclei observed with an epi-fluorescence
microscope [CPOO]. In this paper, we customize the hyperquadrics
formulation for building a 3D shape analysis framework targeted to
3D nanoscale representations of brain cell nuclear shapes.

Shape analysis in neuroscience. The availability of 3D recon-
structions of brain structures is driving the development of various
frameworks for shape analysis in order to classify and account for
variability to be associated to different structures and conditions.
For a recent overview of the main methods employed in general
for the analysis of brain structures, we refer reader to [NTDS14].
In general, shape analysis methods are mainly targeted to the full
cortex acquired with MRI methods [WGK™ 15]. Recently, a study
for 3D morphological analysis of asymmetric neuronal morpho-
genesis in developing zebrafish has been proposed [HJLC18], but
in general shape analysis studies of brain structures at nanometric
resolution are still lacking [CBB*16]. In the context of the spe-
cific analysis of nuclear envelopes, Queisser et al. [QWBWO08] de-
veloped a tool to retrieve the 3-D view of cell nuclei from laser
scanning confocal microscopy data. Their method extract surface
information of the membrane by creating an isosurface with a
marching tetrahedra algorithm combined with a modified Dijkstra
graph-search algorithm, and it have been used to show how synap-
tic activity induces dramatic changes in the geometry of the cell
nucleus [WQE*09]. Recent methods on 3D morphometric anal-
ysis consider frequency decomposition frameworks [SFMO09], or
functional spaces like Wesserstein space [SZW16], or Random
Markov Fields [XBC18], and they are mostly used for studying
hippocampi shapes [XBC18] or full cortex affected by Alzheimer
disease [SZW16]. Here we focus on 3D reconstructions of brain
cell nuclei, and, as far as we know, our method is the first attempt
of 3D shape analysis based on implicit parametrization.

3. Method overview

The full pipeline of the proposed shape analysis framework is
schematized in Fig. 3.

Data acquisition. The general workflow for 3D reconstruction and
visual analysis of brain structures begins with sample preparation
and 3DEM [KMWLO8] imaging. Acquisition of biological tissues
can be performed automatically at a z-resolution of 5-50 nanome-
ters depending on the cutting technique [KMWLOS8]. After imag-
ing, image stack needs preprocessing prior 3D reconstruction of
the various cellular structures. First, the image stack needs to be
aligned with the Stackreg tool available for ImageJ [TRU98]. Fol-
lowing image registration, the stack is then segmented, by means of
manual or semi-automatic segmentation techniques [KVRKB*15].
Automated and semi-automated segmentation techniques reduce
tremendously the time and effort needed to generate a first-pass
three-dimensional model. In any case, this model then needs to be
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painstakingly proofread and corrected manually to achieve best re-
sults. The dataset so obtained includes high-resolution, segmented
image stacks that can be visualized, explored and analyzed with
a variety of tools based on either volume data representation, or
surface mesh generated from the segmentations. Currently many
neuroscientists take advantage of commercial or free software solu-
tions [CSS™12,SSKH11] for 3D segmentation and reconstruction.
In our case, we employ a semiautomatic method [HBK*16], and
we perform surface reconstruction of the various nuclear envelopes
with marching tetrahedra [TPG99]. For each nucleus, the vertices
of the obtained 3D closed triangulated surfaces are used as input
data for shape analysis.

Problem statement. Given a 3D point cloud representing a closed
shape of a cell nucleus, we can define our fitting/analysis prob-
lem as finding the parameters of a surface model which better ap-
proximates the point cloud. Given a 3D surface, a surface repre-
sentation can be defined implicitly as the function H(x,y,x) such
that the points of the surface respect the equation H(x,y,z) = 1. In
this work, starting from qualitative assessment of nuclear shapes
performed by domain scientists, we came out with the hypothesis
that implicit Hyperquadrics [Han88] could provide effective rep-
resentations of nuclear envelopes. Hence, we decided to develop
our fitting/analysis framework around that model. In general, the
fitting/analysis method is composed of three tasks:

e define and compute the parameters of the implicit representation;

e evaluate fitting by tessellating the fitting surface through com-
puting an explicit representation;

e use the extracted parameters for statistical computations and
analysis, and as predictive model for classifying different cell
nuclei at varying conditions.

Figure 2: Hyperquadrics examples: at varying of parameters of
equation (1), various surfaces can be represented.

Hyperquadrics representation. Hyperquadrics are implicit mod-
els defined by a sum of an arbitrary number of linear terms raised
to powers, generating shapes whose bounding polytopes have an
arbitrary number of faces [OSO1]. A hyperquadric model is thus
defined by the set of points satisfying:

H(x,y,2) = Y [[Hi(x,y2)|" =1, (1)
i=1

=
where H;(x,y,z) = aijx+ by + ciz+d;.

At varying of parameters defining the individual components,
different convex shapes can be represented (see figure 2). The re-
quirements for having closed surfaces are that the exponents 7; are
positive, and that ||H;(x,y,z)|| < 1 (the geometric meaning is that
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|H;(x,y,2z)| <1

Figure 3: Hyperquadric definition: for each component, all points
of the surface are contained between the plane strip represented by
equations H;(x,y,z) = 1 and H;(x,y,z) = —1.

for each component, all points of the surface are contained be-
tween the plane strip represented by equations H;(x,y,z) = 1 and
Hi(x,y,z) = —1 (see figure 3).

4. Point cloud fitting

Point cloud fitting consists in finding the optimal parameterization
of an hyperquadric given a set of points known to be on its bound-
ary. In this section, we describe our approach to efficiently perform
this task.

Figure 4: Hyperquadric parametrization: the center of mass of the
point cloud C is the origin of the reference system. For each patch
H;, plane strip width r; is parametrized by applying a scale factor
G; to the bounding distance p; which is computed by projecting the
point cloud with respect to the plane normal n;.

Parametrization. Given the equation of the hyperquadrics, each
component can be parametrized with respect to the point cloud
to fit. The original formulation (see Eq. 1) describes each compo-
nent as a plane equation represented by coefficients (a;, b;,c;,d;),
which are difficult to manage since they can vary indefinitely and
they have no specific physical meaning. Hence, in order to reduce
the number of parameters and to have better control of constraints,
we derived a specific parametrization. We considered the center of
mass of the point cloud C as origin of the reference system (see
Fig. 4). Thus, the components H;(x,y,z) can be written as

NyiX +Nyiy +nziz2 = i, 2

where n; = (ny;,ny;,nz;) = (cos¢;cos8;,sin¢;cos8;,sin@;) is the
unit vector representing the plane normal, and r; is the plane
distance from the center of mass. The latter can be further
parametrized as r; = p;(1 + ©;), where p; is the bounding distance
for the point cloud with respect to the normal r;, and s; is a scale
factor for stretching or compressing the plane strip (see figure 4).
Given that the bounding distance p; can be computed for each plane
with respect to the point cloud, for each patch H; of the hyper-
quadrics we can control the width of the plane strip just by modify-
ing the scale factor s;. Finally, the exponent factor can be written as
¥i = 2¢&;, in order to remove the norm operation. In this way, each
component H;(x,y,z) can be represented by four parameters:

n(H;) = (¢:,8;,0i,€;) 3)

Figure 5: Least-square problem: the optimal implicit parametriza-
tion is found by minimizing the square distance of the input points
with respect to the algebraic surface. Euclidean distance is approx-
imated by using first order Taylor expansion.

Least-square problem. Given a point cloud (py,p»,..,pk), the
problem of fitting an hyperquadric surface can be expressed as a
non-linear optimization problem where the target is to find the op-
timal parametrization I1(H) = (n(H;),n(H>), ...,i(Hy)) that min-
imizes the distance of the samples with respect to the surface rep-
resented by implicit function H (x,y,z):

K
TI(H) = argmin' Y. d*(py. H), @
k=1

where the distance between a given sample p; and the surface can
be computed algebraically,

d; (peH) = (H (v z) — 1)%, )

but better accuracy can be obtained by estimating the Euclidean
distance between the sample p; and the hyperquadric surface (see
figure 5). Specifically, considering the first-order Taylor expansion
of the hyperquadric function, we have

H(x) =~ H(p) + VH(pk) - (x = pr)s (©)
and imposing H(x) = 1, we get
da(pi H)
IVH (pi)|I*’

that can be used for computing the cost function. To this end, we
can note that the gradient operator can be computed in analytical

&*(p,H) = ||x — pell* ~ %)
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form from the hyperquadric definition:

VH(x,y,2) = Y vilax+biy+ciz+d)" ' (ai.bic;).  (8)
i

For solving the constrained minimization problem, we consider the
Levenberg-Marquardt method [Lou05], using as a first guess an el-
lipsoid approximation with the plane normals and distances com-
puted with respect to the oriented bounding box of the input point
cloud [KHGBOS]. For each iteration, bounding distances of plane
strips are computed with respect to the plane normals defined by
parameters 0;,0;, and the scale factors s; are applied over it.

5. Explicit representation

p(¢.0)

x = pggcos(8) cos(¢p)
¥ = popcos() sin(e)
Z = pggsin(8)

10um

Figure 6: Explicit representation: given the implicit representa-
tion of an hyperquadrics, the explicit representation is computed by
considering spherical coordinates and computing radii on a regu-
lar sampling basis.

While the implicit representation recovered in the previous sec-
tion provides a very good shape descriptor, for a number of tasks,
e.g., tessellation, it is handy to also have an equivalent explicit rep-
resentation, capable to generate 3D points given a few parameters.
However, given an implicit representation of an hyperquadric, there
is no way to recover and explicit representation in closed form. We
thus compute, through numerical optimization, a best fit spherical
coordinates formulation

x = p(6,0)cosOcosd
y = p(6,0)cosBsind
z = p(0,0)sinb,

where the function p(8,¢) varies according to the angles, and needs
to be computed for a given sampling of the unit sphere. In our case,
we consider a regular sampling, and for each couple of angles (8,¢)
we solve an optimization problem with Levenberg-Marquardt to
find the optimal radius p such that the algebraic distance from the
implicit function is minimal:

p(8,9) = argmin(H(x,y,z) — 1)°. )

Fig. 6 shows a schematic representation of the optimization process
and the graphic representation of the explicit parametrization of an
hyperquadric implicit function. The obtained samples are used for
tessellating the hyperquadrics surface, for evaluating the fitting er-
rors, and for visual comparisons with respect to the original shape.
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Figure 7: Input nuclei envelopes: the analysis framework was
tested on a collection of 92 3D reconstructions of brain cell nu-
clei extracted from a sample of layer VI somatosensory cortex of a
Jjuvenile rat (Fig. 8).

Figure 8: Dataset acquisition. Left: dataset obtained by imaging a
volume of brain parenchyma from layer VI somatosensory cortex of
a P14 rat, using a serial block-face scanning electron microscopy
(SBEM) with a 3View module. Right: neuronal nuclei present the
dark artifact typical of electrons accumulating in portions of the
sample where there is low density of biological material.

6. Results

Our framework was implemented in C++, by adapting the levmar
implementation of the Levenberg-Marquardt algorithm [Lou05].
Our test case was a collection of 92 3D reconstructions of brain
cells nuclei (Fig. 7). The models were extracted from dense recon-
structions obtained by semiautomatic segmentation of nanometric
scale electron microscopy stacks, obtained after imaging a volume
of brain parenchyma from layer VI somatosensory cortex of a P14
rat using a serial block-face scanning electron microscopy (SBEM)
with a 3View module (Fig. 8 left).

Fitting analysis. Given the collection of nuclear point clouds, we
evaluated the quality of fitting by considering a hyperquadrics im-
plicit representation containing N = 3 patches. The fitting pro-
cedure used the following constraints for the patch parameters:
—n < ¢i <m, —% < 9,‘ < %, —-0.1< c; < 05,075 < g < 2.5.
Table 1 shows the statistics about the nuclear envelopes which were
fitted with our implicit model: specifically the number of cells for



120 M. Agus et al. / Hyperquadrics for shape analysis of brain cell nuclear envelopes

. —04 10

0.2 0.2 i . ; H
D Io.z Loa +04 o1 048 —os
01 041E 0.1 45 i
[X]= 4 EHo1 X X ; 0.3
+0.0 01 %1Z00 B1=81 +0.2
Al Astrocyte Microglia Neuron Pericyte Unknown All

—0.3 0.3 H —0.9
i —03 03 I 708 08

i ] 0.3' 0.3 i i 0.7
H ; 0.2 0.7 0.7 I

i | 6 065

: : 0.2 028 Iu 6 '

o 0.5
0.4

Astrocyte Microglia Neuron Pericyte Unknown All

. —09 —09
; —o08

o i i !
. 07, 4 0.8 0.8 0.8 ! o7

° 0.7 07907
. 06 064

0.6
T1e ;
09p ~04

Io.s 0.4 To4

T07 o7 0.35 0.3E 0.3 ~o03

—o7 ! ] - I 03
i 02 g,k 0.3 Io_z

057 : ’
04 H 0.2
’ lM 0.4I8:ﬂ ; 02%0.1

H
H : .
~0.2 0.0 .

Astrocyte Microglia Neuron Pericyte Unknown

Figure 9: Fitting error: three metrics are considered for evaluating the quality of fitting. The average distance error in um(left), the maximum
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Figure 10: Visual assessment of cellular envelope parametrization: for each nuclear shape, from left to right, the input shape, the fitting
hyperquadric and the computed explicit representation, the models superimposed, and the input model color-mapped with distance error in
um. The color-map employed is the BuPu Colorbrewer scheme [HB03], and the models are rendered using MeshLab software [CCC*08].

a given category, the average number of point samples, the average
volume and the standard deviation and the average fitting time (a
maximum of 1000 iteration was considered during the optimization
process). All fitting sessions were performed on a laptop equipped
with a CPU Intel i7-4700HQ running Linux Ubuntu Kernel version
3.13. For each nuclear envelope, we considered three evaluation
metrics: the average and max distance error for the points in the
shape (computed by using equation 7), and the percent of points
whose distance error is below 0.1um. Fig. 9 shows boxplots of these
error metrics for the various cell categories: it appears that the fit-

ting is more accurate for neuron nuclei, while it is less accurate for
shapes with concavities like microglia or pericytes. For visual ref-
erence, Fig. 10 shows some examples of fitting obtained with our
model for various kind of nuclear shapes. The original input shape
is shown together with the tessellated hyperquadric representation,
as well as its explicit radial representation (for explicit representa-
tion we consider a regular sampling of 64x64 on the angle domain
(0,0)). Moreover, the fitting error is color mapped to the original
shape, by employing the BuPu colorbrewer scheme [HB03] (color
scale from O to 0.2 um). From Fig. 10, it appears that our paramet-
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Type #Cells | #Avg Verts | Volume(um?®) | Time(m)
Neurons 58 9261 715.7+£13.01 | 3.68
Astrocytes | 11 9467 349.3+18.88 | 4.28
Microglia 11 7780 185.5+£18.7 3.62
Pericytes 8 7224 120.1+£13.3 4.21
Unknown 4 10085 427+£24.9 442

Table 1: Nuclei statistics: listing showing the number of nuclear
envelopes, the average number of point samples, the volume size in
,um3 with the standard deviation, and the average processing time
for finding the hyperquadric parametrization for each class of cells.

ric model is accurate for convex shapes, like neurons, astrocytes
and unknown cells (see the first two rows in figure 10), while it
suffers in cases where the original shape is irregular, like microglia
and pericytes (see last row in figure 10).
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Figure 11: Principal component analysis: the implicit parameters
were reduced in order to evaluate clustering of various cell types.

Nuclei analysis. Cells and their nuclear envelopes were first clas-
sified by domain scientists through visual assessment of morphol-
ogy features. Starting from neurons, their nuclei appeared to be al-
most spherical, and also the largest on average compared to the
other cell types. Interestingly, all neuronal nuclei presented the dark
artifact typical of electrons accumulation occurring in portions of
the sample where there is low density of biological material, and
therefore are poorly conductive, like the lumen of the blood ves-
sel (Fig. 8 right). On the other hand, astrocyte nuclei have an irregu-
lar shape, and are smaller than in neurons, and the microglial nuclei
are smaller than neurons and appear squashed. For statistical anal-
ysis, domain scientists considered as main parameter the size of the
volume. For the considered brain portion, the volume size computa-
tion showed that neurons had the biggest nuclei, followed by astro-
cytes and unknown cells, last two being statistically similar (Holm-
Sidak’s multiple comparison test; t = 1.54). Microglia and peri-
cytes were similar (Holm-Sidak’s comparison test, = 1.72) (see
numerical values in table 1). In order to improve nuclei analysis,
we considered our implicit parametrization model, and we per-
formed a preliminary Principal Component Analysis [Sh114] on the
hyperquadrics parameters (namely distances r; and exponents €;),
as a way to automatically cluster nuclear envelopes. Fig. 11 shows
the results of data reduction on hyperquadrics parametrization pro-
jected in 2D. It can be seen that our implicit model coupled with
PCA efficiently discriminates particular classes of cells, while it is
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not reliable for recognizing other nuclear envelopes. Specifically,
neurons (green) form a well-defined cluster which is clearly sepa-
rated from all other classes. On the other side, two main clusters are
recognizable, formed by astrocyte and unknown cells (blue and vi-
olet), and by microglia and pericytes(orange and red). These results
confirm and extend the original classification by domain scientists
that was based on the volume of nuclear envelopes.

7. Conclusions

We presented a framework for shape analysis of 3D nuclear en-
velopes of brain cells obtained from nanoscale digital reconstruc-
tion of mouse brain samples imaged with face-block scanning elec-
tron microscope. Our method is based on an implicit parametriza-
tion of 3D surface derived by adapting the classical hyperquadrics
formulation [OSO1]. We preliminary tested our model on a collec-
tion of 92 brain nuclear envelopes extracted from a sample of brain
parenchyma from layer VI somatosensory cortex of a P14 rat. Our
preliminary results show that the model can accurately represent
convex neural nuclei, while the fitting performances degrade for
other envelopes exhibiting concavities (specifically microglia and
pericytes). We also performed a preliminary classification by em-
ploying principal component analysis, which showed that our im-
plicit model can be considered reliable for discriminating neural
nuclei shapes, but it cannot be considered accurate for discrimi-
nating other classes. To this end, in future we plan to explore the
potentialities of our shape analysis framework by considering dif-
ferent parameterizations, like spherical harmonics [SFM09], and
different data reduction techniques, like t-SNE [MHO08]. We expect
that more general function-based decompositions should be able to
correctly represent also nuclear envelopes exhibiting concavities.
Finally, we plan to extend the analysis to other 3D nuclear enve-
lope collections characterized by different conditions.
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