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Abstract

In the domain of lattice and porous material geometric modeling, the problem of data size is central. When using full 3D
manifold Boundary Representations (BRep), even the smallest domains engender staggering amounts of 3D finite elements. A
partial solution has been implemented, which represents slender solid neighborhoods with non-manifold Boolean union of 1-
manifolds (curves) and/or 2-manifolds (surfaces), added with thickness information, called 1.5D and 2.5D models, respectively.
Automatic applications of these techniques requires the estimation of the medial axis of the porous media, to produce a truss or
frame FEA. Previous works require explicit synthesis of the skin of the porous domain. This manuscript presents an alternative
in which the medial axis and thus the 1.5D (truss) representation of the porous domain is directly obtained from the scalar field
(i.e., Computer Tomography -CT-) of the domain, thus avoiding the explicit calculation of the domain skin. The manuscript also
presents the noise removal and linearization of the medial axis data, to obtain the skeleton truss graph (including bar radii),
that represents the porous domain. Shear and tension load simulations are conducted with the Truss model, showing that the
generated model can be used in FEA software. Future work is required in extending this concept to lattice materials, where the

medial axis includes surfaces and not only curves, as in this manuscript.

1. Introduction

Porous and lattice materials (e.g. foams) are particularly important
in aerospace, medicine, additive manufacturing, etc. The geomet-
ric modeling of such materials presents intractably large data sets.
This circumstance, in turn, hinders computations, behavior assess-
ments, and design. In the particular domain of open pore materials,
it is possible to use a Truss or Frame modeling (called 1.5D mod-
eling) to study reasonable sized domains, which would be expen-
sive to model and simulate, in terms of human manual work time
and computational cost, by using full Boundary Representation (3D
BReps).

Computer Tomography (CT) is a common method to sample
foam or reticular materials. CTs basically produce a discrete scalar
function f : R — R that characterize the space occupancy of the
open pore material. In CTs, f is presented in form of voxel (Vol-
umetric Pixel) sets. Previous mechanical truss modeling of open
pore materials ( [COU*18]) takes CT as input, and explicitly pro-
duces the iso-surface 0B f(p) = ¢ which bounds the solid material
B. Then, the skeleton of 0B (SK(B)) is computed. Finally, SK(B) is
used to define the Truss graph, which is the input to FEA methods
to compute stress - strain models of B.

The present manuscript presents a method to avoid the explicit
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calculation of the skin dB to compute the skeleton SK(B). Our
method estimates SK(B) directly from the scalar field f. An in-
termediate step is to estimate the Medial Axis of B, MA(B). This
medial axis MA(B) presents a number of degeneracies which must
be corrected before SK(B) can be estimated in the form of a truss
graph and used to model the material. This manuscript presents
such a cleaning process.

This manuscript also presents an application of the direct f - to
- SK(B) skeleton extraction, in the particular area of strain - stress
computation. The Truss model of an open pore material is then used
for a FEA mechanical simulation, showing that the simplified truss
representation obtained from the scalar field is a viable alternative
to 3D Brep - based FE models.

Fig. 1(a) shows a portion of a porous material which in a large
extent accepts a characterization in the form of a truss or frame,
built with fastened struts or limbs.

Fig. 1(b) conveys the fact that the limbs have skeletons, which
are curves ¢; and have a local radius at each point of the curves.
The curves meet in general in non-manifold nodes, as more than 2
curves are incident to them. Nodes with n curves incident to them
are loci of the Star-n (Sn) type.

However, this example contains a non-processed subset (marked
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with a rectangular window), whose skeleton is a surface, and not
a curve. In this manuscript, we assume that the foam material con-
tains no such wall - like portions. A formalization of this discussion
follows.

k-manifold. A set M in R” is said to be k-manifold if for every
point p € M, there exists 8 > 0 such that for all radius 0 < r < 9,
the set M N Ball(p,r) is homeomorphic to an open disk in R¥ (
[Spi71]), where Ball(p,r) is an open ball centered at p with radius
r. Informally speaking, 1-manifolds are curves and 2-manifolds are
surfaces, with no self-intersections in both cases.

Open Pore Materials. These structures contain spaces empty of
material, or cavities, which are all connected.

ci(u)

non-manifold joint

_eml@)
&

(b) Skeleton from Solid in Fig. 1(a). Limbs are formed by curves
(e.g. ci(u),cw(u),0 < u < 1) and local radius r;.

Figure 1: Porous Material with mostly 1D skeleton. Materials con-
taining a 2D skeleton (see rectangular window) are not in the scope
of this work.

Medial Axis. Given a 2-manifold smooth closed surface dB which
bounds a solid B, the medial axis of dB, MA(B) (Fig. 1(b)), is the
set of all voxels v that are centers of balls Ball(v,r), centered in v
with some radius r > 0 such that each ball Ball(v,r) is tangent to
0B in exactly 4 points.

Skeleton. Is the graph of voxel centers with the same connectivity
as MA(B). It may be considered as the wire version of MA(B).
Each point of SK(B) contains the mass transferred to it by the mass
conservation strategy in the iterative thinning of B.

Truss Graph. The bar + node representation of SK(B), with the
radii and dimensions of bars and nodes being determined by the
mass information present in SK (B). The Truss graph includes kine-
matic and torque restrictions required to mimic joints of the physi-
cal equivalent frame.

Star-n sets in R. A star-n (Fig. 2) in this manuscript refers to
an open set of points p € RR?, which is the Boolean union of n =
2,3,4,... straight line segments. Each segment contains the origin
in one end, and is open in the other end (Fig. 3).

Bar Pore Material. A bar pore material B is the set of points
p € R whose medial axis MA(B) is composed by either (a) finite
points in B whose neighborhood in B is homeomorphic to a star Sn
with n > 2, or (b) infinite points in B, whose neighborhood in B is
homeomorphic to S2.

The point set B whose boundary dB is shown in Fig. 1(a) is not
a bar pore material because the portion in the rectangular window
has medial axis which is 2-manifold (surface) and not 1-manifold
(curve).

This manuscript refers to Bar Pore Materials and it is organized
as follows: Section 2 reviews the relevant State of the Art. Section
3 explains the applied methodology. Section 4 presents the results
of the implementation used and its application. Section 5 concludes
the manuscript and suggests domains for future work.

2. Literature Review

First, a recent survey on the state of the art in skeletonization
by [TDS*16] is discussed. Then, focus is made on (a) contraction
and (b) thinning methods. Finally, skeletonization of foams is dis-
cussed.

2.1. Skeletonization algorithms

Skeletonization provides an effective and compact representation
of an object by reducing its dimensionality to a medial axis or skele-
ton while preserving the topological and geometrical properties of
the object [SBS16]. For a 3D solid, a skeleton could be a surface
skeleton (2D) or a curve skeleton (1D). We are interested in objects
with 1D skeletons because they allow simplification and accelera-
tion [TDS™16] of the FEA problems.

The most common methods for computing analytical curve
skeletons are: (a) Medial Surface - based, (b) Contraction meth-
ods, and (c) mesh decimation methods. The Medial Surface - based
methods consist of identifying curves on the surface skeletons.

(© 2018 The Author(s)
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Figure 2: Open point sets Star-n, S2, S3, S4, S5, S6 in R2. Note: Sn sets are open as they exclude the branch ends. The term open set star

has no relation with open pore.

non-manifold
non-manifold S3 joint

S6 joint

wire skeleton

SK(B) voxel Medial
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Figure 3: Voxel Medial Axis MA(B), wire skeleton SK(B), S3 and
S6 non-manifold star joints.

Such methods are highly expensive [TDS*16] as they require accu-
rate computation of geodesics between all points in a surface skele-
ton [DS06].

Contraction methods establish a shape evolution from the shape
boundary to the curve skeleton [YTO8]. Another contraction
method is the discretization of the mean curvature flow in differ-
ential geometry. This method traces the surface-area loss through
time steps [RWO03].

Mesh decimation methods use iterative edge collapse on a tri-
angle mesh [LWTHO1] to converge towards the skeleton. How-
ever, the result is not necessarily smooth or centered, according
to [TDS*16].

Curve skeletons from CT. For Computer Tomography scalar
fields, contraction methods are directly applicable since they work
on voxels. Refs. [Pud98,PK99] present algorithms where voxels are
removed from the object boundary (skin) while preserving connec-
tivity. A method to classify voxels that can be removed is described
in [MB92,BM94]. It must be noticed that, in contraction methods,
the order of voxel removal (thinning order) severely affects the fi-
nal result [JST16]. Ref. [SBTZ02] presents a divergence - driven
thinning that uses a sorted heap to ensure the correct processing
order. Ref. [JST16] uses a voxel density order to prevent the jag-
ging in the curve medial axes. This reference also presents a scalar
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attribute of the surviving voxels. At each evolution step, the scalar
represents the mass of the voxels that have been removed, being
this mass transferred to the surviving voxels. However, the mass of
the whole domain cannot be retrieved from the final skeleton.

2.2. Models from Porous Materials

The generation of geometric models of foam microstructure and
properties can be classified into (a) statistically generated models
and (b) models from physical samples, as in [COU*18].

Statistically generated models. They characterize complex
solid geometry by using its morphological parameters [BAM*17].
The approaches generate typical structures, with statistical varia-
tions, spanning a large domain by using pre - defined local arrange-
ments. Used methods are: (a) arrays of identical cells (e.g. kelvin
cells [DTH*11]) or (b) stochastic approaches such as Voronoi tes-
sellations, ellipsoid overlapping, etc [JKK10]. In any case, all meth-
ods aim to generate a geometry and topology that mimics typical
physical specimens. It is difficult for these methods to grasp the
large variation in cell sizes and shapes [Lau08] and manufacturing
defects of physical samples. If 3D full Breps are generated, the 3D
meshing and simulation processes may not converge due to factors
such as data size, data quality, and even software license constraints
(as reported in [COU™18]). In this case, the relevance of the present
manuscript (direct skeletonization from CT data) is evident.

Models from Physical Specimens. Physical specimens from
foams, porous or reticular materials are usually sampled using
micro-computed tomography (mCT). The 3D scalar field of such
scans is expressed in voxel arrays with resolutions around 0.5
microns and domain sizes in the cm range [WS13]. Full 3D
modeling from these samples may be conducted by either keep-
ing the voxel set B, or computing a smooth boundary (skin) of
B, dB. FEA simulations and visualizations are then conducted
[MSOT10, SUJ*12, RNM15, NCSR*15]. The full 3D modeling is
very precise and faithful to the physical sample. However, it is in-
tractable for even the smallest cm-range samples, due to the stag-
gering amount of data and labor required. Computing of smooth
BReps from scalar fields is typically achieved by variations of the
Marching Cubes algorithm [LC87], followed by intensive human
labor in correcting the violations to 2-manifold properties that are
common in triangle meshing. After the BRep is obtained, the FEA
3D meshing and computing may not converge even with small do-
mains.

Ref. [COU™ 18] uses as input a correct BRep, dB of the porous
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Disadvantages

- Preservation of geometry and topology

- Efficient computing of stress - strain
models of foams using Truss graphs

- Computing- and labor- expensive Breps
required.
- Expensive Full 3D FEA required.

- Calculation of the number of holes or

- The proposition given to classify a sim-
ple voxel is correct, but the proposed
pseudo-code in Ref. [MB92] may mis-
classify a simple voxel v as non-simple.

- Thinning orderings for diverse applica-
- [JST16] keeps track of the mass of vox-

- Surface or curve skeleton available

Approach Refs. Advantages
Foam models from | [COU*18]
physical specimens. [SUJ*12] of the original sample.
[RNM15]
[NCSR*15]
[MSOT10] [COU*18].
3D characterization of | [MB92]
simple points for thin- | [BM94] genus not required.
ning algorithms.
Volume contraction us- [JST16]
ing thinning orderings. [SBTZ02] tions.
els in the surface.
through additional computation.

- Portion of initial mass of B missing in
skeletonization [JST16].

- Disconnection in the curve skeleton
topology [JST16].

- Boundary of the contracting shape not
explicitly available in Ref. [SBTZ02].

Table 1: Literature Review summary.

domain. It produces a Truss graph representation of the strut frame
implicit in dB. The Truss representation is then analyzed with finite
elements, taking advantage of the so called /.5D finite elements,
which are 1-dimensional ones equipped with local diameter (i.e.
rods). This work shows important advantages from the Truss (i.e.
1.5D) over the full 3D models, showing that the truss model is less
computationally expensive to simulate and that it can render rea-
sonable strain - stress results. The method also has shown a good
preservation of the porosity (ratio of empty to total volume) of the
real sample with the Truss model.

2.3. Conclusions of the Literature Review

The main advantages and disadvantages of the surveyed methods
are summarized in Table 1.

The contributions of this manuscript, with respect to the existing
methods are:

1. Synthesis of the Truss graph directly from the Voxel scalar field
B, without passing by the computing- and labor - expensive skin
0B. Notice that this is an important advantage with respect to
[COU*18], where a smooth, watertight, manifold, high-quality
triangular mesh is required to obtain the medial-axis using the
Mean Curvature Flow approach reported in [TAOZ12].

2. To achieve (1), we use and improve on [JST16] in the following
aspects:

a. Our algorithm keeps precise track of the mass of the initial
solid B. Each voxel of the final Medial Axis MA(B) accounts
for representing a quantified contribution to keep the initial
mass. This feature permits a precise estimation of the local
radii along the struts of the Truss graph.

b. Our algorithm conserves hanging branches of B for the pur-
pose of representing their medial axis.

c. Our algorithm avoids possible disconnections in the curve
skeletons that may occur in [JST16].

3. We illustrate an application of the synthesized Truss graph in
mechanical (stress - strain) computations.

3. Methodology

In this section we present the implemented method to estimate a
truss graph simplification from the skeleton SK(B). We use as in-
put the CT of the sample, expressed as a scalar field f in the form of
voxels. In Section 3.1, we calculate the medial axis of B (MA(B)),
which contains information about the mass of B. Then, in Section
3.2, we use MA(B) with the mass information to find a truss graph
simplification of B, which is well suited to model bar pore materi-
als.

3.1. Medial Axis from Scalar Field Extraction

Algorithm 1 displays the main features of the extraction of the
voxel Medial Axis from the domain B (voxels from the CT scan).
Our algorithm is inspired in the boundary density transport ap-
proach of [JST16].

Algorithm 1 Extraction of Medial Axis from Scalar Field (CT).
1: procedure MA = FIELD_TO_MEDIAL_AXIS(B : voxel set)
2: 0B = boundary(B)

3 superfluous = find_simple( dB )
4 while superfluous # [ ] do
5 v = first( superfluous )

6: n = inner_normal( 0B, v )

7.

8

9

N(v) = neighbors( dB, v, n )
mass( N(v) ) = mass( N(v) ) + mass(v)
superfluous = superfluous — {v}

10: 0B = update( B, v )

11: superfluous = update(superfluous, 0B, v)
12: end while

13: MA = 0B

14: end procedure

In the line 3, the superfluous set is chosen, which is com-
posed of voxels in the boundary dB which (a) do not change the
voxel set connectivity when missing (i.e. simple voxels [MB92,
BM94]), and (b) participate of a 1-manifold violation. We add the

(© 2018 The Author(s)
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condition (b) to avoid that the medial axes of hanging branches dis-
appear. Voxels which do not change connectivity but belong to a
hanging branch are not superfluous. This is an important dif-
ference with previous methods (e.g. [JST16]), where 1-manifold
wires are considered only if they have received a large amount of
mass from the boundary voxels. Since, by definition, every voxel of
a hanging or dead-end branch does not change connectivity of the
set, using only connectivity as elimination criterion would lead to
the whole dead-end branch to be eliminated. Condition (b) above
forces to eliminate only voxels of such branches which addition-
ally violate 1-manifoldness. Line 4 indicates that the iteration stops
when only essential voxels remain in B. Line 5 chooses for elim-
ination a voxel in the superfluous set which has a minimal
value of accumulated mass in it. Line 6 computes the inner point-
ing vector normal n to the skin dB at v using a gradient estimation
(Neumann et al [NCKGO00]). Line 7 identifies the 26-neighborhood
Ny [MB92] associated with the voxel v to delete.

(a) Medial Axis with Noise (hairs).

(b) Medial Axis without Noise.

Figure 4: Hair removal from the Medial Axis MA(B).

(a) Large Linearization Error.

(b) Small Linearization Error.

Figure 5: Recursive subdivision to obtain a small linearization er-
ror from MA(B).

(© 2018 The Author(s)
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Line 8 transfers the mass of voxel v to its neighbors in direction
n, using diffusive advection (Jalba et al. [JST16]). In this approach,
the major receptor of mass is the voxel in the neighborhood of v
that occupies the n direction. The other voxels in the neighborhood
of v also receive minor proportions of the v mass. At this time the
mass associated to v is null (fully transferred to its neighbors). In
lines 9 and 10, voxel v is eliminated from the superfluous, B
and 0B sets. Now, the boundary dB is updated around v. Line 11
recomputes the B connectivity since the absence of v changes it.
Thus, the superfluous voxel set must be updated.

When the superfluous voxel set is empty, B= 0B = MA(B).
Line 13 recognizes this fact.

P.  P;

P J2

(a) 3 - cycle in Medial Axis.

—_ P,

(b) 3 - cycle eliminated from Medial Axis.

Figure 6: Elimination of 3-cycles from MA(B).

Algorithm 2 Conversion from the Medial Axis MA(B) into the
Truss Graph (V,E)

1: procedure [V, E] = MEDIAL_AXIS_TO_TRUSS( MA : Me-

dial Axis Graph )

2 MA = hair_removal( MA )

3 MA = edge_linearization( MA )
4: SK = cycles_removal( MA )
5
6:

[V, E] = radii_estimation( SK )
end procedure

3.2. Truss Graph from Medial Axis

The Medial Axis MA(B) obtained from the thinning algorithm in
Algorithm 1 contains several characteristics, which make it useless
as skeleton for a Truss graph (Fig. 8(a)). These features are: (1) high
level of noise that manifests in small dead-end paths (hairs), (2)
oscillations and high curvatures in the node - to - node paths, and
(3) irreducible cycles of 3 edges (3-cycles). Algorithm 2 presents
a description of the procedure to obtain the Truss graph from the
Medial Axis. Steps 2-4 outline the cleaning of MA(B) by removing
features (1)-(3). Then, the mass information is used to produce the
truss graph.
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(a) Domain 1. Scalar Field Expressed in Voxels.

[

(d) Domain 2. Scalar Field Expressed in Voxels.

(b) Domain 1. Intermediate Medial Axis.

(c) Domain 1. Medial Axis Expressed in Voxels.

(e) Domain 2. Intermediate Medial Axis.  (f) Domain 2. Medial Axis Expressed in Voxels.

Figure 7: Voxel - based Scalar Field and its Medial Axis. Data Sets 1 and 2

To advance towards a Truss graph, noise in the form of hairs
must be removed (Fig. 4). The short excursions or short dead-end
paths are removed. An excursion is classified as short if its length
is smaller than a given parameter L. In this work, L is equivalent to
the biggest value of the Transform of Euclidean Distance [MRQO1]
from MA(B) to the original skin of B (dB).

Once the hairs have been suppressed, it is necessary to execute
a linearization of the resultant medial axis to eliminate oscillations
and high curvatures in the node - to - node paths. The high level of
noise in Fig. 5(a) is removed by replacing quasi linear paths with
a straight edge. If the path deviates in significant manner (Fig. 5)
from a straight one, a recursive subdivision is conducted until each
linear edge does not deviate more than a threshold P from its curved
equivalent. We have taken P = 0.2, which means that the polyline
can deviate at most 20% from the straight line.

Irreducible cycles of 3 edges (3-cycles) appear in the wireframe
Medial Axis MA(B) (Fig. 6). They are removed by replacing vertex
points p1, pp and p3 in Fig. 6(a) by the barycenter of the triangle
pc in all relevant graph topology. After the 3-cycles are suppressed,
the skeleton SK(B) is obtained.

Wire connectivity in SK(B) is used in conjunction with the mass
information to produce a truss graph [V, E] (e.g. Figs. 8(c), 8(g)).
Elements in V and E are assumed to be spheres and cylinders, re-
spectively. Finally, we estimate the radius of each element in V and

E by using its geometric and mass data, as shown in step 5 of algo-
rithm 2.

4. Results

Section 4.1 shows the result of the application of Algorithms 1 and
2 to two different samples, and gives a comparison of the poros-
ity (a characteristic parameter for porous media) between the Truss
graph and the initial shape. Section 4.2 shows an example in which
the Truss graph approximation can be used to generate relevant me-
chanical simulations.

4.1. Truss Representation of Voxel Sets

Fig. 7 presents an initial voxel - based scalar field and an inter-
mediate result of the Medial Axis extraction (Algorithm 1). It is
relatively simple to detect that the thinning has not finished since
Figs. 7(b) and 7(e) show solid lumps of voxels still present. These
lumps are in violation of 1-manifold or Sn (Fig. 2) conditions. Figs.
7(c) and 7(f) show the final medial axis representation, which in all
neighborhoods presents 1-manifold or Sn conditions.

Fig. 8 presents aspects of the processing of a medial axis MA(B)
to convert it into a usable skeleton SK(B) and then into a Truss
graph representation of B (Algorithm 2). The medial axis is usu-
ally very noisy (Fig. 8(a)), containing hairs, irreducible triangular

(© 2018 The Author(s)
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(a) Domain 1. Wireframe Noisy (b) Domain 1. Wireframe Clean Lin- (¢) Domain 1. Truss Graph Approxi- (d) Domain 1. Voxel Set and its Truss

Skeleton. earized Skeleton.

mation. Graph Approximation.

() Domain 2. Wireframe Noisy (f) Domain 2. Wireframe Clean Lin- (g) Domain 2. Truss Graph Approx- (h) Domain 2. Voxel Set and its Truss

Skeleton. earized Skeleton.

imation.

Graph Approximation.

Figure 8: Process of Approximation of a Voxel Set by a Bar / Sphere Graph. Data Sets 1 and 2

cycles, and strongly curved struts. Figs. 4, 5 and 6 intuitively ex-
plain the hair removal, recursive linearization and 3-cycle elimina-
tion, respectively. The result is a clean linearized skeleton SK(B),
as presented in Fig. 8(b).

Fig. 8(c) presents the equivalent Truss Graph (V,E). In this
graph, the nodes in V contain information about their (x,y,z) po-
sition in R? and the equivalent radius of an envelope sphere that
represents the material accumulated in the Sn joints. The edges in
E contain information of their end vertices as well as the equivalent
cylinder radius, as per the accumulated mass m(v) of the surviving
voxels in MA(B). The radii associated with the Sn joints are not
used in this manuscript, but are relevant to the void vs. full space
ratio (i.e. porosity) of the material. Fig. 8(d) contrasts the initial
(voxel) scalar field against its Truss graph approximation.

In order to get a measure of the quality of the truss graph ap-
proximation, the porosity (or void fraction) of the initial samples is
compared with the porosity of their respective truss approximations
(Table 2). The reader may notice that, for both samples, the differ-
ence of the porosity between the actual and the truss approximated
domain is lower than 1%.

4.2. Application on Open Pore Stress - Strain Calculation

This section presents a proof - of - concept in the sense of showing
that the Truss graph approximation of a voxel scalar field is indeed

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

Domain Actual Truss graph’s | Relative
porosity porosity error

Domain 1 | 93.90% 94.01% 0.12%

Domain2 | 93.32% 93.30% 0.02%

Table 2: Comparison of the Porosity of the Actual Samples vs. the
Porosity of the Truss Approximation.

advantageous for relevant mechanical analyses . The particular ex-
ample domain chosen is the stress - strain behavior of the porous
material, as computed with Finite Element Analysis (FEA).

Load direction I Load direction

I 7 e :Ilsum
A
¥

i Loaded nodes
"‘%5 -

= B

L. o
X Constrained nodes in Z

X Full constrained nodes

(a) Shear Test Conditions. (b) Tension Test Conditions.

Figure 9: Boundary Conditions for the Mechanical Tests.

In order to gain some insights on the computational savings of
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0.0  0.35x10um

(a) Shear Deformation in X direc- (b) Tension Deformation in Z di-
tion. rection.

0.0 0.79x10%um

Figure 10: Shear and Tension FE Analyses with Truss model. Dis-
placement scales are augmented by the FEA software for visualiza-
tion.

the Truss model against other traditional models, we have analyzed
the Porous Domain 1 by generating two case studies of shear and
tension loads (Fig. 9) for the corresponding (a) 3D voxel - based
model and (b) Truss - based model. The 3D voxel - based model
is generated by converting every Voxel into a hexahedral (cubic)
element. Despite this technique does not represent the geometry of
the domain with the same fidelity as a BRep model, it has been
used for multiple studies of the mechanical response (estimation
of apparent mechanical properties) of porous materials ( [CDB17,
SAKSO05]).

X == ]
0.0 0.40x10pm

0.0 0.93x10"%um

(a) Shear Deformation in X direc- (b) Tension Deformation in Z di-
tion. rection.

Figure 11: Shear and Tension FE Analyses with the Voxel Model.
Displacement scales are augmented by the FEA software for visu-
alization.

The results of the simulations are shown in Figs. 10 and 11.
These figures are generated using a feature of the FEA software
which allows to exaggerate the deformation for visualization pur-
poses. Taking the maximum displacements of the Voxel model as
reference values, the error of the Truss model in the estimation of
X displacements in the shear test is 12.5%. In a similar fashion,
the error in the estimation of Z displacements in the tension test is
15.1%.

Table 3 compares the FEA resources devoted to Voxel - based

model vs. Truss - based simulations. The saving factor in all cat-
egories (FE nodes, elements, equations and memory) in favor of
Truss graph data is in the order of 10%. To determine how such
saving factor impacts the computing time, we recur to the order of
growth O of the execution time in terms of the number of nodes.
In the worst-case scenario, the bandwidth of the stiffness matrix is
O(N 2), where N is the number of nodes. Hence, the time complex-
ity of a FEA simulation is given by the term O(N 3) ( [FSSC11]).
Then, a difference of 102 in the number of elements, implies a dif-
ference in the order of 10° in the number of operations that need to
be performed to simulate the models.

Model | Number | Number Number Memory al-
of of  Ele- | of Equa- | located by
Nodes ments tions Solver

Truss 729 786 3450 1.8MB

Voxel 95390 61039 230676 628.4MB

Table 3: Computing Expenses for Truss vs. Voxel - based Foam
Models.

5. Conclusions

This manuscript presents a method to directly synthesize a truss
graph representation from the scalar field (voxel CT) of an open
pore material domain B. This approach is an alternative to previ-
ous ones which first require the estimation of the skin or Boundary
representation dB. The implemented method enforces the conser-
vation of volume information of each original domain bar, thus al-
lowing to estimate the radii of the equivalent truss bars. The method
implemented estimates the medial axis of the domain B, removes
the noise (inherent to medial axes) and linearizes the local geome-
try. FEA computations are presented with the Truss model obtained
from the scalar field, showing that it is a viable alternative to the 3D
BRep - based models, which are much more expensive to generate
and simulate.

Future work is required in porous or lattice domains whose me-
dial axis includes surfaces (and not only curves). Additional work is
needed in comparing the 1.5D Truss vs. 3D Brep simulations (con-
sidering the 3D one as ground truth). Also, experimental work is
needed with actual porous material samples, to contrast the equiv-
alent mechanical parameters estimated with the simulations vs. the
laboratory values.
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