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Figure 1: We address mesh generation for the simulation of AM processes, proposing a tool that converts sliced data (left) directly into a
volumetric mesh which endows in its connectivity the temporal evolution of the object to be printed (right).

Abstract

Accurately simulating Additive Manufacturing (AM) processes is useful to predict printing failures and test 3D printing without
wasting precious resources, both in terms of time ad material. In AM the object to be fabricated is first cut into a set of slices
aligned with the build direction, and then printed, depositing or solidifying material one layer on top of the other. To guarantee
accurate simulations, it is therefore necessary to encode the temporal evolution of the shape to be printed within the simulation
domain. We introduce s1iceZmesh, to the best of our knowledge the first software capable of turning a sliced object directly
into a volumetric mesh. Our tool inputs a set of slices and produces a tetrahedral mesh that endows each slice in its connectivity.
An accurate representation of the simulation domain at any time during the print can therefore be easily obtained by filtering
out the slices yet to be processed. s1iceZmesh also features a flexible mesh generation system for external supports, and
allows the user to trade accuracy for simplicity by producing approximate simulation domains obtained by filtering the object
in slice space.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction puted, translated into machine code, and transmitted to the 3D

printer for the actual fabrication. For industrial printers the com-

Additive manufacturing (AM) enables the fabrication of a three-
dimensional object by depositing successive layers of material one
on top of the other. The process starts by cutting the object with
a collection of planes orthogonal to the build direction, defining a
set of 2D cross sections (or slices). The machine tool paths along
which the printer will deposit or solidify material are then com-
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putation of the tool paths can be extremely complex and machine
dependent. Therefore, these printers usually input a file containing
the slices and calculate machine tool paths in a computer directly
installed into the machine. A popular format to represent sliced data
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is the Common Layer Interface (CLI), which defines each slice as
a set of piece-wise linear curves.

In AM the 3D printer is oblivious of the original shape. The
fabrication is completely based on the geometry of the slices. In
other words, the printer fabricates a proxy shape obtained by ex-
truding the geometry of each slice along the build direction by an
amount corresponding to the local layer thickness. The accuracy of
the proxy depends on many factors, such as the build direction and
the spacing between adjacent slices. The optimization of these pa-
rameters has been the subject of extensive research in recent years
(see [LEM*17] and references therein).

Despite the huge amount of research in the field, preparing an
object for fabrication with AM is still a trial-and-error operation
in which the user experience plays a fundamental role [ALL*18].
Poor quality objects and even printing failures occur quite often
for inexperienced users, increasing the production cost and limit-
ing the scalability of 3D printing. Simulating fabrication processes
provides an efficient way to study mitigation strategies to prevent
failures [MVSC16,HL14] and possibly damages induced by a mis-
use of the printer. Furthermore, simulation allows to predict the
ultimate product quality.

In this paper we focus on the generation of proper domains to
simulate additive fabrication. From a meshing perspective the sim-
ulation poses three main challenges:

e Domain: the shape evolves in time, growing one layer at a time.
To accurately simulate AM processes it is therefore necessary
to generate a mesh that embeds in its connectivity the temporal
evolution of the object. Doing so, a faithful representation of
the domain at any time during the simulation can be obtained
by simply filtering out all the mesh elements belonging to the
slices yet to be processed. Notice that in principle one could also
decide to re-mesh the domain at each time step, but this solution
can be dramatically expensive from a computational standpoint;

e Refinement: especially in metal printing, the areas just hit by the
laser reach very high temperatures, producing huge thermal gra-
dients. In order to accurately catch the thermal and mechanical
phenomena it is therefore important to be able to locally refine
the mesh to improve the accuracy of the simulation;

e Supports: professional software such as Materialise Magics
[Mat] define the support structures used to sustain the part dur-
ing fabrication directly in the CLI file, in the form of piece-wise
linear 1D curves. An accurate digital representation of the sup-
ports never exists into the machine, but rather supports are di-
rectly created by asking the printer to deposit material along
these curves. Their ultimate size and shape will therefore depend
on the machine precision (e.g., the diameter of the laser beam for
SLS/SLM machines, or the thickness of the plastic filament for
FDM printers). Support structures have a fundamental role in 3D
printing, therefore a method to synthesize their shape and incor-
porate them into the simulation domain must be devised.

Current AM simulation approaches rely on standard meshing al-
gorithms which do not specifically address these issues. Approx-
imate domains such as rectilinear grids (i.e. voxels) are popular,
but they need to be very dense to conform with the mesh slices
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Figure 2: Detailed structure of the Piece-wise Linear Complex
(PLC) we create and eventually fill with tetrahedra. Incorporat-
ing both the boundary and the inner slices into the PLC produces
non-manifold edges which are not supported by variational tetra-
hedralization approaches such as [ACSYDO0S5].

and hardly support local refinement. Supports can be simulated as-
suming they are one voxel thick, but this assumption may be too
rough and lead to inaccurate results. This is particularly true in
metal printing, where the principal function of supports is to dis-
sipate heat, and therefore small variations of their thickness may
heavily affect the final result.

We present s1ice2mesh, to the best of our knowledge the first
software capable of turning a sliced object directly into a volumet-
ric mesh. Our meshing strategy starts with a CLI file and generates
a tetrahedral mesh which embeds in its connectivity all the slices
contained in such file. In other words, any tetrahedral element is
fully contained in a single slice, with no element spanning across
adjacent slices (Figure 1). This feature enables for an easy and ef-
ficient extraction of the simulation domain at any time during the
fabrication process. Furthermore, being unstructured the mesh can
be locally refined to improve the simulation accuracy.

We incorporated in our tool also practical features such as the
meshing of support structures (Figure 12) and the generation of ap-
proximate simulation domains with lower elements count, obtained
by filtering the object in slice space (Figures 8 and 10). This is very
important to control the trade-off between simulation accuracy and
running times. Indeed, high fidelity printers may use very thin slices
with layer thicknesses in the order of microns, leading to meshes
with millions of elements that can make the simulation prohibitive
from a computational point of view. To this end, working in slice
space makes our software independent from the complexity of the
object to be printed, resulting in a robust simplification strategy.

In this article we discuss both technical solutions and algorithms
at the basis of slice2mesh. A critical evaluation of the capa-
bilities and limitations of our tool, as well as a view on its future
improvements, are included at the end of the paper.

2. Related works

Our work relates to both volumetric mesh generation and FEM
analysis of AM processes. We review here the most relevant works
in the aforementioned research areas.

(© 2018 The Author(s)
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2.1. Volume mesh generation

Scientific literature offers a variety of methods for both hexahe-
dral [XWHIJ16, LVS*13, LLX*12] and mixed element [GJTP17,
SRUL16] meshing. However, these methods do not permit to con-
trol the interior of the volume, therefore cannot be used to generate
a mesh that conforms with both the boundary and the slices of a 3D
printed object. Furthermore, they act like re-meshing tools, mean-
ing that they are not able to turn a surface mesh directly into a volu-
metric one, but rather rely on a temporary volumetric discretization
of the shape (typically a tetrahedral mesh).

For the tetrahedral meshing case, variational and Voronoi-based
are the most popular approaches. Variational methods like [AC-
SYDOS5] require the input to be a 2-manifold. Being conforming
with both the boundary and the slices imposes the presence of non-
manifold edges (Figure 2), therefore such methods cannot be used
in this context. Voronoi-based methods such as Tetgen [Sil5] can
mesh any Piece-wise Linear Complex (PLC), possibly containing
non-manifold edges. In the last step of our approach we use Tetgen
to turn our PLC into a full tetrahedral mesh.

Besides manifoldness, a surface mesh must satisfy other impor-
tant requirements to be turned into a volumetric one: it must be
watertight (i.e., it must fully enclose a solid), and it must not con-
tain self-intersections. Although mesh repairing [ZGZJ16, ACK13,
JKSHI13] can alleviate these defects, most of the repairing tools
available do not support non-manifoldness. Furthermore, mesh re-
pairing often uses rational arithmetic and may be a huge bottle-
neck for the performances of the shape generation pipeline. The
piece-wise linear complexes generated with our method are guar-
anteed to enclose a solid and do not contain self-intersections. As
such, they do not need to be repaired and can be directly turned
into tetrahedral meshes using Tetgen [Sil5] or similar tools. Re-
cent research in the field has shown that solid meshes can be also
constructed starting from defective inputs that do not fulfill the all
these requirements [HZG™ 18]. This tool was released while this ar-
ticle was in preparation, and we could not test it for our specific
use case. We plan to evaluate it, and possibly include it in future
releases of s1ice2mesh (Section 7).

2.2. Simulation of AM processes

The simulation of AM processes has fostered a lot of research in
recent years, especially from the FEM community. The majority of
the methods in literature focuses on the simulation of heat dissipa-
tion and residual stresses, two major issues for current 3D printing
technologies. Here we summarize the current trends in terms of
mesh generation for the simulation of AM processes; we point the
reader to [SCS15] for a more comprehensive survey.

Uniform size meshing. Matsumoto and colleagues [MSOAQ2]
proposed a layer by layer simulation performed on a regular 2D
grid. In heat diffusion the major temperature gradients are those
developed in the build direction, between the top layer and the
substrate. As a result, 3D models should be preferred to 2D ones
for obtaining accurate results [SCS15], even for the simulation
of residual stresses [VBVBI12]. Other methods employ discrete
rods to simulate the plastic filament of FDM [STA17] or voxel-
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based approaches, performing the simulation on regular 3D lat-
tices [DKS00, DS01, DS02, DS03, MB07, AAS14]. Although the
horizontal component of the lattice can be forced to align with the
slices (if a uniform strategy is used), too thin layers may produce
excessively dense voxel grids, leading to computationally expen-
sive simulations. Furthermore, voxelized objects do not faithfully
reproduce the outer boundary of the prototype and may miss tiny
or off-axis features, negatively affecting the result of the simula-
tion.

Local refinement. In Selective Laser Melting (SLM), Selective
Laser Sintering (SLS) and many others AM processes the biggest
thermal gradients are localized nearby the melting pool. In order
to better catch this behaviour and keep the simulation cost af-
fordable recent methods exploit local mesh refinement. Many au-
thors employ rather simple hexahedral meshes [YZC* 16, HMR15,
dSLCC14,CCL11,HHYE13], with finer elements nearby the melt-
ing pool (where the powder is molten by the heat source) and
coarser elements elsewhere (where the thermal gradients are very
low). Deposition layers are usually 1 element tall and 2 elements
wide, thus generating elements being approximately equal to %
of the laser diameter, as suggested in [HMR15]. Both [RSM14]
and [KBG*04] use a full structured adaptive hexahedral mesh with
T-junctions. This mesh has the same limitations of voxels-based ap-
proaches. Furthermore, note that additional constraints on the so-
lution values should be added on T-nodes so as to guarantee the
continuity of the solution. Liu and colleagues [LZZ*12] proposed
a micro scale tetrahedral mesh with consideration of powder ar-
rangement. They experimented with a single layer sintering with
the sample dimension of 6.13mm x 6.08mm x 1.54mm, which al-
ready counts 60K tetrahedra. The authors do not discuss how to
adapt their meshing to general 3D shapes and, even if so, mesh-
ing the entire domain according to such strategy would lead to ex-
tremely dense meshes, making the simulation prohibitive from a
computational point of view. Zhang and colleagues [ZCL*10] use
a mixed element mesh, with the top layer meshed as a regular array
of hexahedra and the stack of layers below meshed with a progres-
sively coarser tetrahedral mesh. Since the mesh is not conforming
with the previous layers, a new mesh needs be generated for each
slice.

Summarizing, none of the meshing methods presented in Sec-
tion 2.1 supports the generation of volumetric meshes which are
specific for the simulation of AM processes and encode in their in-
terior the slice geometry. Additionally, all the settings described in
Section 2.2 either rely on manually generated meshes or are too
simple to scale on complex shapes. With s1ice2mesh we offer a
meshing method that successfully addresses all these shortcomings.

3. Anatomy of a CLI file

The Common Layer Interface format [CLI] serves to encode sliced
data for 3D printers and is supported both from commercial [Mat]
and academic software. CLI files are accepted by a variety of desk-
top and industrial 3D printing machines (e.g. the EOS M270 laser
sintering metal printer). We briefly explain here how data is orga-
nized and what data we extract for our purposes.

The header presents global information, such as the number of
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Figure 3: Extruding each slice along the building direction (left) by an amount corresponding to the local layer thickness produces a digital
copy of the object to be printed. If this process is performed locally, each extruded slice will be disconnected from its adjacent slices,
thus generating a non-conforming mesh that cannot be used to produce a volumetric discretization of the domain (middle). Our method
is guaranteed to produce a conforming Piece-wise Linear Complex (PLC) that can be turned into a valid simulation domain with any

off-the-shelf volumetric mesher available (right).

slices encoded in the file and the metric unit in which coordinates
are expressed. Slices are then listed as a sequence of layers. Each
layer begins with the keyword $$LAYER and is followed by a se-
quence of hatches ($$HATCHES) and polylines ($$POLYLINE).
Hatches are sets of independent straight lines, each defined by
one start and one end point. The purpose of hatches is to define
both external structures and the machine tool paths along which
the printer deposits or solidifies material. Polylines can be of three
types: closed CCW, closed CW or open. Closed CCW polylines are
used to represent the external boundaries of the slice. Closed CW
polylines are used to represent the internal boundaries of the slice
(i.e. holes). Open polylines are similar to hatches and can be used
for the same purposes. The only difference is that hatches are in-
terpreted as disconnect segments, whereas open polylines are line
strips (the endpoint of the current edge is also the start point of
the subsequent one). In our tool we rely on CinoLib [Liv17] for
CLI processing, which for simplicity assumes that hatches are used
only for machine toolpaths, and open polylines only for external
supports. We therefore read from the file only polylines data, and
this is the actual input s1ice2mesh uses for mesh generation.

4. Method

We input a CLI file containing a set of 2D slices and (optionally)
a thickening radius for support structures; we output a simulation
ready discrete domain in the form of a tetrahedral mesh. In case no
thickening radius is provided, the support structures contained in
the CLI file will not be included in the output mesh.

The algorithm works in two steps. The goal of the first step is to
create a Piece-wise Linear Complex (PLC) that encodes both the
outer and inner structure of the simulation domain. On the outside,
the PLC will conform to the input slices, exposing the typical stair-
case effect produced by the slice extrusion (Figure 4). On the inside,
the PLC will contain the geometry of the slices, so as to incorporate
the temporal evolution of the simulation domain (Figure 2). In the
second step, the PLC is filled with tetrahedral elements to produce
the output mesh.

The first step is based on novel ideas described in Section 5. For
the second step we rely on off-the-shelf third party software (i.e.,
Tetgen [Si15]) to turn our PLC into a tetrahedral mesh.

5. Generation of the PLC

The PLC generation is based on the idea of lifting vertices and
edges of each slice one layer above, splitting edges to resolve in-
tersections wherever necessary. Note that, even in absence of in-
tersections, naively duplicating each slice and lifting it to the layer
above would double the number of vertices and edges, resulting in
a PLC where each thickened slice is disconnected from the others
(Figure 3). As an example, the reader may consider a slicing com-
posed of a stack of perfectly aligned quads. When lifted, each quad
should be aware that it is a copy of an already existing quad, and
no additional vertices should be added in the PLC.

‘We propose here a method which is able to address these issues
and produce a correct PLC. Our approach is based on four steps.
We first thicken the support structures, converting 1D lines to 2D
polygons (Section 5.1). Then, we pre-compute all the lifting infor-
mation and store it in a data structure (Section 5.2). We eventually
proceed with the meshing of the PLC, which is composed of two
types of elements: triangles aligned with the build direction (Sec-
tion 5.3), and triangles that are orthogonal with respect to the build
direction (Section 5.4).

Figure 4: Slicing a flat surface misaligned with the build direction
creates the staircase approximation error typical of additive manu-
facturing. The staircase effect is lower for nearly vertical surfaces
w.r.t. the build direction, and becomes much higher for nearly hor-
izontal surfaces [LEM*17].

(© 2018 The Author(s)
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Figure 5: Two different tetrahedral meshes of a T shape, obtained by using growing thicknesses for supports structures. Supports are often
seen by the printer as 1D entities, and their fabricated size depends on hardware (e.g. laser beam or filament diameter). s1iceZmesh can
be tuned to generate simulation domains specifically tailored for a particular hardware.
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merging coincident points (see oval) facets of the PLC

Figure 6: A schematic 2D representation of our edge lifting strategy. Each edge is lifted from its current slice to the slice above, and tested
for intersection and coincidence with all the edges in it. The resulting quad-like domains are eventually triangulated to produce the vertical
facets of the PLC (right). Detected intersections are marked with a red star, newly added vertices with a yellow circle.

5.1. Thickening of external supports

The open 1D curves representing external supports must be thick-
ened before triangulation and require special treatment. We thicken
them by applying the buffering algorithm implemented in the
Boost Polygon Library (Figure 5). Note that many popular pat-
terns for support structures are based on intersecting lines (e.g.
lattices [LEM™17]). Furthermore, depending on the thickening ra-
dius, supports may also intersect other polygons on the same slice.
A union of all the thickened lines and polygons must therefore be
computed to resolve intersections (Figure 7). We do this using the
Boost Polygon Library, which offers boolean facilities for curves
and polygons. Note that, from this point on, it is impossible to dis-
tinguish between the sliced object and its support structures: all
we have is a set of closed curves representing the outer and inner
(holes) profile of 2D polygons. We eventually sanitize polygons, re-
moving all the degenerate or quasi-degenerate edges that may have
been created during boolean operations. We do this by using the
Douglas-Peucker simplification algorithm [DP73], using 1% of the
thickening radius as maximum deviation distance. In our experi-

© 2018 The Author(s)
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Figure 7: Details on a slice of the Nugear (with linear supports).
Thickening 1D support structures and converting them into poly-
gons may generate intersections with other polygons living in the
same slice. We avoid intersections by performing a boolean union
of all the polygons in the slice.

ments we observed that this latter simplification is fundamental to
avoid failures and corner cases (e.g. computing intersections be-
tween degenerate edges).
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5.2. Pre-processing

To facilitate processing we pre-compute all the intersection data
and store it in a data structure to have it ready when meshing
the PLC. We test for intersections using Shewchuck’s predicates
[She97], thus ensuring the necessary numerical robustness.

We initialize V as an array containing all the slice vertices, and
a E as an array containing all the edges. Edge endpoints in E are
indexed with respect to the vertices in V. Ideally, at the end of the
pre-processing we would like to have an updated version of V and
E such that: V contains all and only the vertices of the PLC, and
for each edge e € E we know

e what are the ids of its lifted endpoints (they may be vertices of
the slice above, or newly generated vertices appended in V);

e how many edges from the slice above intersect the lifted copy of
e (and where);

e how many edges lifted from the slice below intersect e (and
where);

We obtain this information with a progressive approach. where we
process one edge at a time. We lift each edge to the next slice, and
we test it against all the edges in such slice. The complete procedure
is given in Algorithm 1. A simplified 2D illustration can be found
in Figure 6.

5.3. Horizontal meshing

With all the lifting data pre-computed, we can easily proceed with
the generation of the PLC. Here we descibe how to generate its
horizontal facets, that is, the ones that are aligned with the build
direction. We will complete the PLC with its vertical facets in the
subsequent section.

Horizontal meshing is local w.r.t. each slice and the slice imme-
diately below (if any). For each slice s;, we first go through each
of its edges e C E, and split it at any of the intersection points
found in pre-processing. This generates n + 1 intersection-free sub-
edges, where 7 is the number of intersection points detected in pre-
processing. We augment the edge set of slice s; by adding the lifted
images of edges ¢’ C E in the slice below s;_{, which we also split
at their intersection points. Note that processing s; and s;—; sep-
arately may produce duplicated edges (e.g. if the slices perfectly
overlap). We encode edges in a symbolical way (as pairs of vertex
ids), thus avoiding the generation of duplicated entities.

We eventually mesh the slice s; by generating a Constrained De-
launay Triangulation (CDT) of the so generated set of vertices and
unique intersection-free edges, using the Triangle [She96] library.
Triangle first constructs a CDT of the convex hull of the input set,
and then removes the unnecessary triangles proceeding from the
outside towards the interior until the input edges are revealed. Note
that internal holes will be also filled with triangles. To clear holes
we therefore filter the triangle list, discarding elements that do not
project inside s; or s;_1. Triangles are either completely inside or
outside the slice, therefore this check can be done considering tri-
angle centroids and performing a point-in-polygon test. Repeating
this procedure for each slice, we produce all the horizontal facets
of the PLC.

5.4. Vertical meshing

Here we describe how to produce the PLC faces orthogonal to the
build direction with a local, per edge, meshing strategy. Once again,
we exploit the information pre-computed in Section 5.2.

Given an edge e and its lifted copy ¢’, we define a quad having
as bottom vertices the extrema of e and as top vertices their lifted
image (the extrema of ¢’), The lower base of this quad is split into
as many sub-segments as the number of split points computed for e.

Data: Slice vertices V and edges S

Result: PLC vertices V, and edge split info

for each edge e(vq,vp) lifted from slice s; do
for each edge ¢’ (ve,vy) from slice s;y | do

P = avp) N (ve,va);

I try to lift vy
if p =v, = v, then
| set v as lifted image of v,
else
if p =v, = v, then
| setwvy as lifted image of v,
else
if p = v, then
| add vertex p to V and set it as lifted image of v,
end
end
end

/] try to lift vy
if p =v, = v, then
| setw, as lifted image of v,
else
if p = v, = v, then
| setwvy as lifted image of v,
else
if p = v}, then
| add vertex p to V and set it as lifted image of v,
end
end
end

//'update split info for e(vq, vp);
if p = ve and p # vq and p # vy, then
| add v as split point of lifted edge e(vq, vp)
else
if p = vy and p # vq and p # v;, then
| add vy as split point of lifted edge e(vg,vp)
else
if p # va # vy # v # v then
| add vertex p to V and set it as split point of lifted edge e(vg,vp)
end
end
end

// update split info for e’ (vq,vy);
if p=vq and p # ve and p # v, then
| add v, as split point of edge e’ (v, vy)
else
if p = vy, and p # vy and p # v, then
add vy, as split point of edge e’ (v, vg)
else
if p £ va #vp #ve # vg then
\ add vertex p to V and set it as split point of edge e’ (vesva)
end
end
end

end
end

/1ift unlifted vertices;
for each vertex with no lifted image yet do
‘ lift it to the slice above and append the new vertex to V;

end
Algorithm 1: Our edge pre-processing strategy. Note that in the
actual implementation we substituted the inner loop with a query
on a spatial data structure (a quad-tree) to avoid useless intersec-
tion tests, thus reducing complexity from O(n?) to O(nlogn).

(© 2018 The Author(s)
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Figure 8: Two different slicings for the Anchor model, with their associated volumetric meshes. Right: a finer slicing better approximates
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Figure 9: A gallery of sliced CAD models meshed with s11iceZmesh.

The same goes for the upper base, which is split into as many sub-
segments as the number of split points computed for ¢’. Having
this information, we can trivially triangulate the resulting convex
polygon starting from the bottom-left corner and connecting it with
all the split points of ¢’ plus the top right corner, and starting from
the top right corner and connecting it with all the split points of e.
The result of this procedure is illustrated in the right part of Fig-
ure 6. Repeating it for all the edges of all slices but the top one we
produce all the missing faces of the PLC, which is now ready for
tetrahedralization.

6. Results

We implemented slice2mesh using CinoLib [Liv17] for CLI
and geometry processing, the Boost Polygon Library for curve

(© 2018 The Author(s)
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thickening and 2D booleans, Triangle [She96] for planar triangu-
lations, and Tetgen [Sil5] for the final tetrahedralization. In Fig-
ures 1, 8 and 9 we show a variety of results. In Table 1 we report
statistics and timings. We release our tool to the public domain,
making available at the following link https://github.com/
mlivesu/slice2mesh.

Conforming vs non-conforming meshes. slice2mesh gener-
ates meshes that encode the temporal evolution of the domain and
are therefore more accurate than a mesh produced with general pur-
pose meshing tools. For general meshes the temporal evolution of
the domain can be artificially simulated by filtering out all the tetra-
hedra with centroid above the quote of the current slice (Figure 11).
Note however that the surface exposed by this naive mesh filtering
will be much higher, possibly resulting in unfaithful estimation of
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Figure 10: Precisely simulating the activity of industrial printers may be too ambitious, due to the extremely thin slices they use.
sliceZmesh can generate approximate representations of the simulation domain by filtering the shape in slice space (i.e. sub-sampling
the input slices). This allows to perform approximate simulations, in which bundles o multiple adjacent slices are activated at at each time

step.

physical phenomena such as heat dissipation, where the augmented
surface area artificially boosts heat exchange.

Conforming voxels vs tets. With a proper choice of mesh den-
sity, voxel grids can be forced to be slice conformal and encode
the temporal evolution of the printed object. Our method results
in a more accurate simulation domain, which is 100% compliant
with the proxy shape the printer is asked to fabricate. The same
does not hold for voxels, where tiny or off-axis features cannot
be represented and may require excessive refinement for a faith-
ful simulation. Moreover, unstructured grids trivially support local
refinement, whereas for voxel grids refinement is global (thus more
complex and costy).

Supports. slice2mesh naturally incorporates external supports
into the simulation domain (Figures 5 and 12). The algorithm mim-
ics the action of the printer, thickening 1D lines with a value that
adapts to the specifics of the printer. The user can prescribe as thick-
ening radius the laser beam (for laser printing) or the section of the
plastic filament (for FDM), thus generating an extremely accurate
discrete representation of the real fabricated object. To the best of
our knowledge, no commercial or academic tool has a similar fea-
ture. Furthermore, thickening happens in slice space, making the
algorithm oblivious of the complexity of the supports, leading to a
robust and scalable tool.

Simplification. Simulating industrial printers can be expensive
due to the extremely small layer thicknesses these machines use
(order of microns). A way to make computations affordable without
using clusters or extremely powerful machines is to activate bun-
dles of n adjacent slices all together. s1ice2mesh supports this

Figure 11: Left: a general tetrahedral mesh, where all the elements
having their centroid above the current slice have been filtered out.
Right: our slice-conformal tetrahedral mesh. Simulations of phys-
ical phenomena such as heat dissipation may be unreliable due to
the area of the exposed surface, which is artificially increased in
the left example (1 308.54mm? vs 778.23mm”>).

simplification by allowing the user to sub-sample the input slices,
considering only a sub-set of them for the generation of the PLC.
As for supports, everything happens in slice space, therefore com-
putations are oblivious of the complexity of the object to be printed,
making simplification scalable and robust. Numbers regarding slice
filtering are given in Table 1 (see models with two line entries). Vi-
sual representations of the so generated domains are given in Fig-
ures 8 and 10.

PLC. Besides simulation, the PLC has its own value and could be
used for other AM-related purposes. Having a digital representation

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.
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Figure 12: An example of volumetric mesh which includes both the
object and its thickened support structures. Matching the thickening
factor with the specifications of the printer (e.g. filament thickness
or laser beam) the user can generate simulation domains which are
tailored for a specific hardware.

Figure 13: Left: a slice conformal tetrahedral mesh with minimal
Steiner points. Right: a refinement of the mesh aside, obtained with
the —q flag of Tetgen. When adjacent slices are very similar but not
identical, s11iceZmesh tends to introduce extremely tiny features
which make the meshing challenging and trigger over-refinement if
quality bounds are prescribed on tetrahedra.

of the printed object can be useful for rendering and education, but
also for estimating quantities such as the staircase error and the
volumetric loss, which are extensively used in the process planning
pipeline, for example to optimize the build orientation or surface
finish [ALL* 18, LEM* 17]. With optional flags, s1ice2mesh can
be asked to output the PLC. The user can choose whether to include
the inner faces, or to export only the external boundary.

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

Model Slices tpre thoriz tvert ter Verts Tets

Ancl01 76 407 293 0.02 4598 | 141K 478K
38 193 144 0.01 18.08 68K 238K

Anchor 86 039 024 <0.01 793 33K 110K
29 0.12 007 <0.01 2.53 11K 38K

CAD5 71 275 1.81 0.02 30.10 | 148K 492K
Fandisk 35 026 0.18 <0.01 4.59 20K 67K
Joint 83 0.08 005 <0.01 12.63 53K 171K

31 0.02 002 <0.01 210 11K 35K

Nugear 88 2.69  1.05 0.01  53.1 200K 620K

19 0.05 002 <0.01 094 5K 15K
Pyramid 33 0.02 002 <0.01 0.84 6K 17K
Sphere 83 055 039 <0.01 8.17 44K 139K
33 021 0.15 <0.01 30.6 18K 56K
Stab 95 125 081 0.01 17.26 74K 239K
T 60 0.02 001 <0.01 0.47 3K 6K

Table 1: Statistics of our method. We implemented s1iceZmesh
as a single threaded C++ application and run it on a Mac Book Pro
equipped with a 2.9GHz Intel i5 and 16GB or RAM. For each model
we report: number of slices; execution times (in seconds) for edge
pre-processing (tpre), horizontal meshing (i, ), vertical meshing
(tverr) and tetmesh generation te;; and output statistics (number of
vertices/elements of the tetmesh). Running times are dominated by
tetrahedral mesh generation, for which we rely on Tetgen [Sil5].
Note that we report the time necessary to produce a tetrahedral
mesh with as few Steiner points as possible (i.e., no quality bounds
were set when calling Tetgen).

7. Limitations

In its current version s1ice2mesh suffers from a number of lim-
itations, mostly regarding the generation of the tetrahedral mesh.
Currently the PLC may contain incredibly tiny features that are
difficult to handle for Tetgen, possibly resulting in failures. Even if
failure does not occur, these features may trigger over refinement,
resulting in tetrahedral meshes that are overly dense in some iso-
lated spots (Figure 13). This behaviour seems to be triggered by ad-
jacent slices which almost perfectly project one on top of the other
and, when lifted, generate tiny details that are beyond the capabil-
ities of the finite arithmetic used in Tetgen. To generate our results
we always called Tetgen with the —~T1e-13 flag, which sets a very
low tolerance for the coplanarity test. Without this flag, most of the
times Tetgen is not able to produce a mesh. Nonetheless, when a
quality bound is provided (i.e. with the —q flag), Tetgen often en-
ters in a refinement loop which may keep the machine busy even for
hours. We are currently considering different strategies to simplify
the PLC in post-processing, removing tiny details before calling
Tetgen. The recently released TetWild [HZG™* 18] (which uses ra-
tional arithmetic) may also be a suitable alternative, although we
haven’t tested it enough in depth yet.

8. Conclusions and future works

We presented s1ice2mesh, a tool that offers dedicated meshing
facilities that are specifically tailored for the simulation of additive
manufacturing processes. In the paper we show that the simulation
of AM processes poses a number of challenges for mesh genera-
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tion tools, and that general purpose meshing techniques fall short,
offering either rough approximations of the domain (e.g. voxels),
or meshes that fail to encode the temporal evolution of the printed
object.

We believe the solutions we proposed are just a scratch on the
surface of the problem. At the moment, the limitations on tetrahe-
dral mesh generation reported in Section 7 severely limit the usabil-
ity of s1lice2mesh, making it more an academic toy than a real
meshing tool. To make it a concrete option for practitioners and
professionals, all such limitations should be addressed and robustly
handled.

For future works, the next natural step is to validate our meshes
in real simulations. We aim to conduct rigorous experiments to
measure the performances of our slice conformal meshes when
compared with other “fabrication-unaware” meshing techniques.
Other interesting venues for future research are: the inclusion of
machine tool paths into the tessellation (which would allow not
only to activate one slice at a time, but also to literally follow the
actual path the machine uses), and the generation of hexahedral
(or prism) meshes, which would help us to reduce the number of
degrees of freedom and produce coarser meshes for faster simula-
tions.
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