
STAG: Smart Tools & Apps for Graphics (2015)
Silvia Biasotti and Marco Tarini and Andrea Giachetti (Editors)

Distributed Processing of Large Polygon Meshes

D. Cabiddu1 and M. Attene1

1CNR-IMATI Genova, Italy

Abstract
A system is described to remotely perform complex geometry processing on arbitrarily large triangle meshes. A
distributed network of servers provides both the software and hardware necessary to undertake the computations,
while the overall execution is managed by a central engine that both invokes appropriate Web services and han-
dles the data transmission. Nothing more than a standard web browser needs to be installed on the client machine
hosting the input mesh. The user interface allows to build complex pipelines by stacking geometric algorithms and
by controlling their execution through conditions and cycles. Besides the technological contribution, an innovative
mesh transfer protocol is described to treat large datasets whose transmission across scattered servers may repre-
sent a bottleneck. Also, efficiency and effectiveness are guaranteed thanks to a novel divide and conquer approach
that the engine exploits to partition large meshes into smaller pieces, each delivered to a dedicated server for
parallel processing. Based on this paradigm, a distributed simplification algorithm has been implemented which
proves that the overhead due to data transmission is negligible, as it is much lower than the gain in speed provided
by parallel processing.

1. Introduction

Nowadays, the evolution of 3D data acquisition techniques
provides fast and efficient means for generating extremely
detailed digital representations of real objects in diverse in-
dustrial and research areas such as design, geology, arche-
ology, medicine and entertainment. Since digital 3D models
generated in these application areas (eg. original raw scans
and their elaborations) are easily made of millions of geo-
metric elements, processing and analysing them are non triv-
ial tasks.

Geometry processing is now a mature research area where
new algorithms and methods are continuously being devel-
oped on the top of the state-of-the-art previous works and
allow to analyse and process 3D models. Traditional algo-
rithms require the input to be small enough to be completely
loaded into main memory and sequential approaches are fol-
lowed to perform the task. When large datasets appeared that
could not fit into main memory, existing approaches needed
to be redesigned.

Out-of-core approaches can be exploited to deal with
large-size inputs. Many of these methods subdivide the input
into subparts, each of them sufficiently small to be processed
with traditional incore approaches. In some cases the input
can be partitioned using an incore algorithm: this is appro-
priate when memory is enough to store the model, but no fur-

ther space is available to host all the support data structures
necessary for elaboration which are often more memory-
demanding than the input itself. Conversely, when even the
plain mesh is too large, out-of-core partitioning is required
to produce the sub-meshes.

An important aspect that should be taken into account
when designing methods for processing large input datasets
is efficiency. Typically, multi-core technologies are exploited
since they provide the possibility to process different sub-
parts of the input simultaneously, but the available memory
is shared among the current processes and imposes a sequen-
tialization of I/O operations in any case.

The well-known client/server model allows to distribute
the computation on different machines that may be geo-
graphically scattered and communicate through a traditional
Internet connection. This approach already provides the pos-
sibility to perform remote computantion in many life science
areas, but it is scarcely considered in geometry processing
literature where the transmission of large 3D models can eas-
ily slow the process down too much.

In this paper we prove that distributed environments can
be actually exploited for geometry processing too, while
making efficient sharing of 3D geometric data possible and
giving the possibility to remotely run algorithms from dif-
ferent machines with no need of any local software installa-

c© The Eurographics Association 2015.

DOI: 10.2312/stag.20151301

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20151301

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

tion or any specific hardware or software requirement. Our
system allows to define geometry processing pipelines as a
composition of several existing algorithms and exploits Web
services to remotely run them.

Since the possible slow data transfer among available
servers and their possible limited main memory would rep-
resent a limitation, specific approaches are necessary to
avoid bottlenecks and crashes during the remote process-
ing of large-size inputs. Specifically, we designed an opti-
mized mesh transfer protocol to reduce the amount of data
to be transmitted among distributed servers, and an innova-
tive partitioning method for large input meshes that enables
distributed parallel processing. As a proof–of–concept, we
have implemented an innovative distributed mesh simplifi-
cation algorithm that exploits our partitioning to distribute
the computational load across multiple servers.

2. Related Works

2.1. Remote Geometry Processing

Running experiments is a fundamental activity in geometry
processing research. A typical experiment in this area con-
siders an input data set, performs a sequence of operations on
it, and analyzes the results. Sometimes a fixed sequence of
operations is used to process a variety of data sets, whereas
some other times the operation list is slightly changed while
keeping the input constant. In computer graphics and geom-
etry processing, polygon meshes are the dominant represen-
tations for 3D objects, and diverse mesh processing software
tools exist. Among them, MeshLab [CCR08] and OpenFlip-
per [MK12] allow to interactively edit a mesh, save the se-
quential list of executed operations and locally re-execute
the workflow from their user interfaces. Pipelines can be
shared in order to be rerun on different machines where the
stand-alone applications need to be installed.

To get rid of any specific software, hardware, and oper-
ating system, Campen and colleagues published an online
service called WebBSP [Cam] which is able to remotely run
a few specific geometric operations. The system is accessi-
ble from a standard web browser and the user is required
to upload an input mesh; then, a single geometric algorithm
must be selected from a set of available operations. The al-
gorithm is actually run on the server and a link to download
its output is sent to the user by email. The available opera-
tions are not customizable by users, only one of them can be
run at each call, and the service is accessible only from the
WebBSP graphical interface.

It is worth mentioning that geometric Web services were
previously considered by Pitikakis [Pit10] with the objec-
tive of defining semantic requirements to guarantee their in-
teroperability. Though in Pitikakis’s work Web services are
stacked into hardcoded sequences, users are not allowed to
dynamically construct workflows, and geometric issues such

as the evaluation of mesh qualities (necessary to support con-
ditional tasks and loops) and the transmission of large mod-
els are not dealt with.

2.2. Out-of-core and Parallel Mesh Processing

Traditional incore algorithms are not suitable for manag-
ing large input datasets. In these cases, the exploitation of
out-of-core techniques is mandatory and parallel approaches
may be used to reduce the overall elaboration time. The
state-of-the art includes several different solutions, and most
of them focus on mesh simplification methods.

In parallel algorithms [BP02] [DLR00] [FS00] [TJL07] a
“master” processor partitions the input mesh and distributes
the portions across different “slave” processors that perform
the partial simplifications simultaneously. When all the por-
tions are ready, the master merges the results together. The
many slave processors available in modern GPU-based ar-
chitectures are exploited in [SN13], while multi-core CPUs
are exploited in [TPB08]. In these methods the main goal is
to speedup the process and, with the exception of [BP02],
the typical approach to partition the input exploits in-core
algorithms.

Besides [BP02], other effective out-of-core partitioning
techniques are described in [Lin00] [LS01]. These methods
typically require their input to come as a triangle soup. When
the input is represented using an indexed format, it must be
dereferenced using out-of-core techniques [CSS98], but this
additional step is time-consuming and requires significant
storage resources. As an exception, the method proposed
in [SG01] is able to work with indexed representations by
relying on memory-mapped I/O managed by the operating
system; however, if the face set is described without local-
ity in the file, the same information is repeatedly read from
disk and thrashing is likely to occur. Instead of partition-
ing the input into fixed portions, processing sequences are
used in [ILGS03]. This approach is very elegant and does
not need to deal with boundary coherence. Even in this case,
however, conversion to appropriate processing sequences is
a non-trivial process that requires a significant time [IG03].

In [Lin00] the vertex clustering approach by Rossignac
and Borrel [RB93] is modified to use a quadric error met-
ric to compute the representative vertex. With respect to
[RB93], this choice improves the quality of the resulting
mesh, and the use of a clustering-based simplification guar-
antees that adjacent mesh portions have coherent common
boundaries. The adaptive clustering employed in [SG01]
leads to an even higher quality result, whereas in [CMRS03]
boundaries are kept consistent at each iteration thanks to
a smart octree-based external memory data structure. Both
[Lin00] and [SG01] solve the problem of boundary coher-
ence, but the quality of their simplifications is still not com-
parable with traditional methods based on global priority
queues [GH97]. On the other hand, [CMRS03] provides

c© The Eurographics Association 2015.

140

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

high quality simplifications, but the approach is not suitable
for a distributed setting.

The possibility to exploit distributed environments is
scarcely treated in the literature. In [BP02] this possibility is
considered but, due to the use of a distributed shared mem-
ory, the approach proposed is appropriate only on high-end
clusters where local nodes are interconnected with particu-
larly fast protocols. To the best of our knowledge, the only
existing technique that can operate without any shared mem-
ory is described in [TJL07], but out-of-core partitioning is
not supported.

3. The Geometric Workflow System

Our system have been designed with the objective of sup-
porting computer graphics and geometry processing re-
search activities. A standard Web browser is sufficient to re-
motely run complex geometric pipelines by distributing the
various sequential steps on different servers that expose al-
gorithms in form of Web services.

The framework architecture is organized in three lay-
ers, according to [Hol95]. The first layer includes a graph-
ical user interface that allows building new workflows from
scratch, and uploading and invoking existing workflows. The
second layer contains the workflow engine responsible of
runtime execution, while the third layer includes the web
services that wrap geometry processing tools.

3.1. The Graphical User Interface

A dedicated user-friendly interface supports the creation of
new geometry processing workflows. First, the user is asked
to provide the information directly related to the workflow,
such as its name, description and the list of geometry pro-
cessing algorithms that constitute the pipeline. The user may
define a new workflow by selecting atomic tasks from a list
of available ones. Besides atomic tasks, the user is allowed to
define possible conditional tasks or loops by specifying their
conditions and by delimiting their execution bodies. Once
the whole procedure is defined, the user can turn it into an
actual experiment by uploading an input mesh. If no input is
associated, the workflow can be stored on the system as an
abstract procedure that can be selected later for execution.

3.2. The Workflow Engine

The workflow engine is the core of the system and or-
chestrates the invocation of the various algorithms involved.
From the user interface it receives the specification of a ge-
ometry processing workflow, which can be either a new one
or the identifier of one of the available pre-defined work-
flows, and possibly the address of an input mesh to be down-
loaded from the Internet. When all the data is available, the
workflow engine reads the encoded pipeline and sequentially

invokes the various algorithms. For each operation, the en-
gine searches the net to find an available Web service able to
perform the task. When the selected Web service is triggered
for execution, it receives from the engine the address of the
input mesh and possible parameters, runs its task and returns
the address of the generated output to the engine. This latter
information is sent to the next involved Web service as input
mesh or returned to the user interface when the workflow
execution terminates.

In order to enable the definition of non-trivial workflows,
the engine is also able to manage the execution of condi-
tional tasks and loops, and the evaluation of the condition
itself is delegated to specific Web services.

3.3. The Web Services

A Web service can be considered as a black box able to per-
form a specific operation. A single server (i.e. a provider)
can expose a plurality of Web services, each implementing
a specific algorithm and identified by its own address. The
system supports the invocation of two types of Web services,
namely atomic and boolean. The former are required to:

• run a simple operation on a 3D triangular mesh using pos-
sible input parameters;

• store the output on the server where it is located;
• make the output available by returning its address

while the latter just analyze the mesh and return a boolean
value. Boolean Web services are used to support the execu-
tion of conditional tasks and loops.

4. Mesh Transfer Protocol

To support the idea of including Web services provided by
third parties, and to allow input models to be stored on re-
mote servers, we require that web services are designed to
receive the URL of the input mesh and to download it lo-
cally; also, after the execution of the algorithm, the output
must be made accessible through a standard URL to be re-
turned to the calling service. Not surprisingly, we have ob-
served that the transfer of large-size meshes from a server
to another according to the aforementioned protocol con-
stitutes a bottleneck in the workflow execution, in particu-
lar when slow connections are involved. Mesh compression
techniques can be used to reduce the input size, but they
do not solve the intrinsic problem. In order to improve the
transfer speed and thus efficiently support the processing of
large meshes, we designed a mesh transfer protocol inspired
on the prediction/correction metaphor used in data compres-
sion [TG98].

We have observed that there are numerous mesh process-
ing algorithms that simply transform an input mesh into an
output by computing and applying local or global modifica-
tions. Furthermore, in many cases modifications can be only

c© The Eurographics Association 2015.

141

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

 (a) (b)

 (c) (d)

 -

GUI ENGINE Server 1 Server 2 Server 3
 - =

 -

 + = + =
 +

 + =

Figure 1: Mesh Transfer Protocol Example. Three servers are involved into the workflow execution. Each of them exposes a
web service to support a geometry processing algorithm and two modules able to download (D) meshes and update (U) the
previously downloaded mesh by applying the corrections. (a) The engine shares in parallel the address of the input mesh with
all the involved servers that proceed with the download. (b) The first service runs the task, produces the corrections and returns
the corresponding address to the engine that shares it in parallel to the successive servers involved. Both download the file and
correct the prediction. (c) The second service is invoked, runs the task and makes the correction available, so that the third
server can download it and update its local copy of the mesh. (d) The engine triggers the third service that runs the algorithm
and makes the modified output mesh available so that it can be directly downloaded by the user.

local (e.g. sharp feature restoration), may involve the geom-
etry only while keeping the connectivity unaltered (e.g. most
mesh deformation algorithms), or may modify both geome-
try and connectivity while minimally changing the overall
shape (e.g. remeshing). In all these cases it is possible to
predict the result by assuming that it will be identical to the
input, and it is reasonable to expect that the corrections to be
transmitted can be more compactly encoded than the explicit
result of the process.

The aforementioned observation can be exploited in our
setting as shown in Figure 1, where an example of execu-
tion of a simple workflow composed by three tasks is shown.
Through the user interface, the user selects/sends a work-
flow and possibly the URL of an input mesh to the workflow
engine. The engine analyses the workflow, locates the most
appropriate servers hosting the involved Web services, and
sends in parallel to each of them the address of the input
mesh. Each server is triggered to download the input model
and save it locally. At the first step of the experiment, the
workflow engine triggers the suitable Web service that runs
the algorithm, produces the result, and locally stores the out-
put mesh and the correction file (both compressed). Their
addresses are returned to the workflow engine that forwards
them to all the subsequent servers involved in the workflow.

Each server downloads the correction and applies it to the
mesh it already has in memory in order to update the lo-
cal copy of the model. Then, the workflow engine triggers
the next service for which an up-to-date copy of the mesh is
readily available on its local server. At the end of the work-
flow execution, the engine receives the address of the output
produced by the last invoked web service and returns it to
the user interface, so that the user can download it.

In this scenario, the entire input mesh is broadcasted only
once at the beginning of the process, whereas the final re-
sult is transmitted only once at the end. Inbetween, only the
corrections are broadcasted to the subsequent servers. Thus,
when the corrections are actually smaller than the partial
results, this procedure produces significant benefits. In any
case, each web service produces both the correction and the
actual result so, should the former be larger than the latter,
the subsequent web services can directly download the out-
put instead of the corrections. Thus, our mesh transfer proto-
col improves the overall performances when the aforemen-
tioned conditions hold, while no degradation is introduced
otherwise.

c© The Eurographics Association 2015.

142

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

5. Distributed Processing

Although our system theoretically allows to process any in-
put mesh, remote servers may not satisfy specific hardware
requirements (eg. huge main memory, high computational
performance) necessary to efficiently process large data. As
a consequence, the remote server that is invoked may require
a very long time to finish its task or, even worse, a mem-
ory leak may occur and interrupt the elaboration. In order
to avoid these situations, the workflow engine is responsible
of managing the runtime execution by exploiting the tradi-
tional divide and conquer approach. Hence, it is able to par-
tition a huge mesh into smaller subparts and to merge the
processed subparts at the end of the elaboration to generate
the final output. Both partitioning and merging operations
are performed through out-of-core approaches in order to
support input meshes that are too large to fit into main mem-
ory. Also, we assume that the input mesh is encoded as an
indexed mesh, since the most diffused file formats are based
on this representation.

In the reminder, the input mesh M is defined as a pair
〈V,T 〉, where V is a list of vertices and T is a set of tri-
angles. Each vertex vi in V is encoded by its three coordi-
nates, whereas each triangle ti in T is encoded by three in-
teger indexes: an index k identifies the k’th vertex in the list
V . An analogous encoding is used to describe each submesh
Mi = 〈Vi,Ti〉. Also, we distinguish between local indexes and
global indexes: a local index k in a submesh Mi = 〈Vi,Ti〉
identifies the k’th vertex in the list Vi, whereas a global in-
dex j identifies the j’th vertex in the overall V .

5.1. Mesh Partitioning

Our solution requires two integer parameters: the number of
vertices Nv that we wish to assign to each submesh (based
on the memory available on each server) and the number of
available servers Ns that will run the partial mesh processing.

First, the mesh bounding box B(M) is computed by read-
ing once the coordinates of all the vertices V . At the same
time, a representative vertex down-sampling V ′ is computed
and saved to a file. Starting from B(M), an in-core binary
space partition (BSP) is built by iteratively subdividing the
cell with the greatest number of V ′ points. Each cell is split
along its largest side. The root of the BSP refers to the whole
downsampling file V ′. For each subdivision, each vertex in
the parent cell is assigned to one of the two children accord-
ing to its spatial location. If the vertex falls exactly on the
splitting plane, it is assigned to the cell having the lowest
barycenter in lexicographical order. The process is stopped
when the number of vertices assigned to each BSP cell is at
most equal to a given threshold, based on the available mem-
ory on each of the servers and the ratio between M and the
subsample size.

Once the BSP is built based on V ′ as described above, all
the vertices V and triangles T of the original M need to be

assigned to the appropriate BSP cell. Vertices are read one
by one and assigned based on their spatial location as above.
Then, for each BSP cell Ci, a corresponding file Vi is created
where both the global index and the coordinates of all the
assigned vertices are stored (see Figure 2). Simultaneously,
a global vector file Vf ile is created where, for each vertex,
the ID of the corresponding BSP cell is stored.

Figure 2: Partitioning of vertices. For each BSP cell, a cor-
responding file is created. Vertices are read one by one and
assigned based on their spatial location. Global indexes are
shown on the left of the original V , while local indexes are
on the left of each Vi. Global indexes and coordinates are
written on each Vi. Vf ile stores, for each vertex, the ID of the
corresponding BSP cell.

Then, the partitioner classifies the triangles. For each BSP
cell, a corresponding file Ti is created where triplets of global
indexes are stored for all the triangles assigned to that cell.
Triangles are read one by one from T and assigned depend-
ing on their vertex position as follows:

1. All the three triangle vertices belong to the same BSP cell
CA. The triangle is assigned to that same cell.

2. Two vertices belong to cell CA while the third vertex be-
longs to cell CB. The triangle is assigned to cell CA and a
copy of the third vertex is added to VA.

3. The three vertices belong to three different cells CA, CB,
and CC. The triangle is assigned to the cell having the
smallest barycenter in lexicographical order (let it be CA),
and a copy of each vertex belonging to the other two cells
is added to VA.

To compute the cell containing each triangle vertex, the
partitioner takes advantage of Vf ile.

At the end of the triangle classification, the BSP leaf cells
represent a triangle-based partition of the input mesh geom-
etry. Each sub-mesh is stored as a pair of files representing
its vertices and triangles. Also, an additional file Bi is cre-
ated where the submesh boundary is described as a list of
vertices, each encoded as its local index and the list of cells
sharing it.

c© The Eurographics Association 2015.

143

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

5.1.1. Independent Sets

When a divide and conquer approach is exploited and sub-
parts of the original input are processed in parallel, ex-
plicit communication and synchronization among processes
is often required. Typical multi-core methods communicate
based on a fast-access shared memory which is not available
in a standard distributed environment. We propose a method
to support distributed elaborations involving processes that
require only local information (eg. elements that are inside or
on the boundary of the considered submesh), but are allowed
to modify any part of the submesh, including its boundary.

The idea is to exploit the concept of independent sets to
reduce communication among servers. During partitioning,
generated submeshes are grouped into independent sets so
that submeshes in the same group do not share any vertex.
Thanks to this grouping, submeshes in the same independent
set can be processed simultaneously by different processes
without the need to communicate. Each process is asked to
return both the output result and the list of applied modifica-
tions that involve neighbor submeshes (eg. boundary modifi-
cations). The synchronization among neighbor submesh can
be handled in a dedicated computational step before starting
the processing of the other independent sets.

To provide this feature, an adjacency graph for the sub-
meshes is defined where each node represents a BSP cell,
and an arc exists between two nodes if their correspond-
ing BSP cells are “mesh-adjacent”. Two cells are consid-
ered to be mesh-adjacent if their corresponding submeshes
share at least one vertex, that is, at least one triangle is inter-
sected by the splitting plane between the two cells. Based on
this observation, the adjacency graph is built during triangle
partitioning and kept updated at each assignment. For each
triangle whose vertices are assigned to different BSP cells,
corresponding arcs are added to the graph. The problem of
grouping together submeshes that are independent (e.g. no
arc exists between the corresponding nodes) is solved by ap-
plying a greedy graph coloring algorithm [HKK14]. Clearly,
the maximum number of nodes included in the same group
is limited by Ns.

The final output of the partitioning algorithm is a list of
groups of sub-meshes where each group contains indepen-
dent sub-models.

5.2. Output Merging

When all the sub-meshes have been processed, the engine is
responsible of merging them and generating the output in-
dexed mesh. To achieve the goal, each processing service
is required to return both the output submeshes M′i and an
extra file B′i where the list of boundary vertices of M′i is
saved, sorted by their local index. Each boundary vertex is
described as a pair 〈local index, global index〉 (Figure 3).

Two temporary files (Vf and Tf for vertices and triangles

Figure 3: Merging vertices. First, vertices in M′1 are read
one by one and coordinates are added to Vf . For each bound-
ary vertex in M′1, its global index is saved in Map. Map is
sorted by global indexes (gl1 < gl2 < gl4 < gl5). Then, ver-
tices in M′2 are read and coordinates are added to Vf . Vertex
1 in M′2 is not added to Vf since it is on the boundary and
its reference is already in Map, that is, its coordinates are
already written in Vf .

respectively) are incrementally built to represent the overall
mesh M′. A counter Vc is initialized to 0 and used to store the
number of vertices written in Vf . Also, an in-core map Map
is used to store, for each boundary vertex already written to
Vf , a mapping between its global index and its position in Vf
(i.e. final index).

Iteratively, each M′i is handled. First, an additional in-core
vector V (M′i) is allocated to host the final index of each ver-
tex in M′i . Then, the first pair 〈l,g〉 in B′i is loaded into main
memory and the list of vertices in M′i and B′i are read “in
parallel” as follows. For each vertex v in M′i , corresponding
coordinates are read. If the local index of v is not equal to
l, v is an inner vertex of M′i . In this case, its coordinates are
added to Vf , V (M′i) is updated by storing Vc as final index
of v and Vc is incremented. This procedure is followed until
a boundary vertex is found. When it happens (i.e. when v’s
local index is l), the master checks if v is already in Vf . This
check is performed by searching the global index g of v in
Map. Since Map is sorted by global index, this search re-
quires log2 n operations, where n is the number of boundary
vertices already added to Vf . If it is found, the final index of
v is retrieved from Map and used to update V (M′i). If not,
coordinates of v are added to Vf , V (M′i) is updated by stor-
ing Vc as final index of v, the mapping between the global
index of v and its final index Vc is added to Map, and Vc is
increased. When the boundary vertex v has been handled, the
next pair in B′i is read and loaded into memory.

6. Distributed Mesh Simplification

In our reference scenario, the user wants to simplify a large
mesh by exploiting the system. To achieve this goal, the en-
gine stores the model on its local disk and invokes the re-

c© The Eurographics Association 2015.

144

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

quired services. For the sake of simplicity, our exposition
assumes that all the Ns available servers have an equally-
sized memory and a comparable speed.

The distributed simplification algorithm works as follows.
In the first step, the engine partitions the mesh into a set of
submeshes using the previously described algorithm (Sec.
5.1). Submeshes are then grouped into independent sets.
Each independent set is guaranteed to contain at most Ns
submeshes to be simultaneously sent to the services for sim-
plification. In the first iteration, each submesh is simplified
in all its parts according to the target accuracy. Besides the
simplified mesh, each service is required to produce an addi-
tional file identifying which vertices on the submesh bound-
ary were removed during simplification. This information is
appended to adjacent submeshes and used as a constraint
during their own simplification. When all the independent
sets are been processed, the engine employs our out-of-core
algorithm (Sec. 5.2) to join the simplified submeshes along
their boundaries, which are guaranteed to match exactly.

6.1. Adaptivity

Each submesh is simplified by a single Web service through
a standard iterative edge-collapse approach based on quadric
error metric [GH97]. Every edge is assigned a “cost” that
represents the geometric error introduced should it be col-
lapsed. On each iteration, the lowest-cost edge is actually
collapsed, and the costs of neighboring edges are updated.
In order to preserve the appearance of the original shape and
support adaptivity, the simplification algorithm applied by
each service stops when a maximum error maxE is reached.

Edge collapses are performed exploiting three different
approaches, according to the position of the selected edge
with respect to the submesh boundary. Half edge collapse is
performed when one or both endpoints are on the border. In
the former case, the edge collapses to its boundary vertex,
while in the latter it collapses to the endpoint whose associ-
ated error is the lowest. Full edge collapse with optimal point
placement [GH97] is performed otherwise.

6.2. Boundary Problem

Besides geometry and connectivity information, each server
also receives one more file Bi that describes the submesh
boundary and the (possibly empty) set of Rem files, each
containing the list of boundary vertices shared with the al-
ready processed neighbor k and removed during the simpli-
fication process.

Before starting the simplification, the service is asked to
check if some part of the boundary were previously simpli-
fied by some neighbor and, if so, reapply the same modifica-
tions before starting the simplification. Then, the service is
required to create a set of n files {Remk | k = 1, ...,n}, each

containing the list of boundary vertices shared with the un-
processed neighbor k and removed during the simplification
process.

Thus, the service returns to the engine the simplified sub-
mesh M′i , the corresponding set of Rem files, and and ad-
ditional file B′i storing the global index of all the remaining
(i.e. unsimplified) boundary vertices of M′i . The engine is re-
sponsible of sharing each Remk with the service that will be
further invoked to manage the neighbor submesh k. Simpli-
fied sub-meshes along with B′i files are used by the engine to
generate the final output by exploiting the aforementioned
out-of-core merge algorithm.

Our simplification algorithm proves the benefits provided
by our partioning/merging approach, but it also has other
noticeable characteristics. However, their description would
bring us too far from the scope of this paper, hence we refer
the reader to [CA15] for details.

7. Results

For the sake of experimentation, the proposed Workflow En-
gine has been deployed on a standard server running Win-
dows 7, whereas other web services implementing atomic
tasks have been deployed on different machines to constitute
a distributed environment. However, since all the servers in-
volved in our experiments were in the same lab with a gigabit
network connection, we needed to simulate a long-distance
network by artificially limiting the transfer bandwidth to 5
Mbps. All the machines involved in the experimentation are
equipped with Windows 7 64bit, an Intel i7 3.5 GHz proces-
sor, 4GB Ram and 1T hard disk.

Then, to test such a system we defined multiple processing
workflows involving the available web services. The dataset
has been constructed by selecting some of the most com-
plex meshes currently stored within the Digital Shape Work-
bench [dsw12]. As an example, one of our test workflow is
composed by the following operations: Removal of Smallest
Components (RSC), Laplacian Smoothing (LS), Hole Fill-
ing (HF), and Removal of Degenerate Triangles (RDT). The
same workflow was run on all the other meshes in our dataset
to better evaluate the performance gain achievable thanks to
our concurrent mesh transfer protocol. Table 1 reports the
size of the output mesh and the size of the correction file
after each operation (both after compression) whereas Table
2 shows the total time spent by the workflow along with a
more detailed timing for each single phase.

As expected, the corrections related to tasks that locally
modify the model (eg. RSC, HF, RDT) are significantly
smaller than the whole output mesh by several orders of
magnitude; corrections regarding more “global” tasks (eg.
LS) are also smaller than the output mesh, although in this
latter case the correction file is just two/three times smaller
than the whole output. Nevertheless, these results confirm
that the proposed concurrent mesh transfer protocol provides

c© The Eurographics Association 2015.

145

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

Mesh RSC LS HF RDT

Rome*
14.915 15.551 14.915 13.166

1 1.425 1 1

Dolomiti*
11.146 11.637 11.146 10.588

1 1.402 1 1

Isidore
20.573 23.333 23.717 25.497

11 9.433 154 2

Nicolo
19.498 21.447 20.601 20.171

3 9.296 48 2

Neptune
39.881 40.131 39.891 39.937

1 15.237 1 1

Ramesses
17.484 19.544 19.934 19.802

3 8.754 149 3

Dancers
16.457 18.037 18.325 18.116

1 7.220 80 1

Table 1: Output sizes (in KB). For each mesh and for
each task, the first line shows the size of the compressed
output mesh, while the second line reports the size of the
compressed correction. Average compression ratio is 5:1.
Acronyms indicate Removal of Smallest Components (RSC),
Laplacian Smoothing (LS), Hole Filling (HF), and Removal
of Degenerate Triangles (RDT). A modified version of the
Hole Filling algorithm has been run to process “2.5D”
geospatial data (*) in order to preserve their largest bound-
ary.

significant benefits when the single steps produce mainly lit-
tle or local mesh changes.

For each mesh in our dataset, Table 2 reports the time
spent by each algorithm to process the mesh (columns RSC,
LS, HF, RDT), the time needed to transfer the correction file
to the subsequent web service (columns T1 . . .T3), and the
time spent to update the mesh by applying the correction
(columns U1 . . .U3). For the sake of comparison, below each
pair (Ti,Ui) we also included the time spent by transferring
the whole compressed result instead of the correction file,
and the overall relative gain achieved by our protocol is re-
ported in the last column. It is worth noticing that, in all our
test cases, the sum of the transfer and update times is smaller
than the time needed to transfer the whole mesh, with a sig-
nificant difference when the latter was produced by applying
little local modifications on the input.

To test our partitioning and simplification algorithm,
large meshes extracted from the Stanford online reposi-
tory [sta96], from the Digital Michelangelo Project [mic09]
and from the IQmulus Project [iqm13] were used as inputs.
Some small meshes have been included in our dataset to
evaluate and compare the error generated by the part-by-part
simplification.

For each input model, we ran several tests by varying the
number of involved web services and the maximum error
threshold. We fixed the number Nv of vertices that should
be assigned to each submesh to 1M for very large input

meshes. Even if available servers can manage more data,
lower thresholding were used for the smaller meshes to pro-
vide a fair comparison with existing work. The initial vertex
down-sampling is always performed with ratio 1:1000, since
we empirically found that it provides a sufficiently represen-
tative subset. Table 3 shows the time spent by the system
to finish the elaboration. The achieved speedup Si is also
shown, computed as Si =

Time1
Timei

, where Time1 is the sequen-
tial time and Timei is the time required to run the simplifi-
cation on i servers. As expected, speedups are higher when
the number of available services increases. More noticeably,
speedup increases as the input size grows.

To test the quality of output meshes produced by our al-
gorithm, we used Metro [CRS98] to measure the mean error
between some small meshes and their simplifications. Re-
sults show that the number of services does not significantly
affect the quality of the output.

For larger models, Metro cannot be used and quality can
be assessed based on a visual inspection only. Figure 4 and
5 show that high quality is preserved in any case and is not
sensibly affected by the number of involved services.

 25

10

1

Figure 4: Detail of St. Matthew model simplified by exploit-
ing 1, 10 and 25 available services (original: ≈ 187M ver-
tices, simplified: ≈ 119K vertices).

8. Conclusions

We proposed a workflow-based framework to support col-
laborative research in geometry processing. It allows scien-
tists to remotely run geometric algorithms provided by other
researchers as Web services and to combine them to create
executable geometric workflows.

The platform is accessible from any operating sys-
tem through a standard Web browser with no hard-
ware or software requirements. A prototypal version
is available at http://visionair.ge.imati.cnr.
it/workflows/. Expert programmers can avoid reimple-
menting known algorithms, while scientists in other areas do

c© The Eurographics Association 2015.

146

http://visionair.ge.imati.cnr.it/workflows/
http://visionair.ge.imati.cnr.it/workflows/

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

Mesh IB RSC T1 U1 LS T2 U2 HF T3 U3 RDT Total Benefits(# vertices)

Rome*
20,4 5,8

0,0 0,0
8,4

2,3 9,4
5,5

0,0 0,0
6,9

58,7
104%(957.456) 23,9 24,9 23,9 119,7

Dolomiti* 15,8 4,9
0,0 0,0

7,2
2,2 7,8

4,6
0,0 0,0

5,7
48,2

92%(810000) 17,8 18,6 17,8 92,4

Isidore 33,0 7,7
0,0 5,8

12,4
15,1 7,1

8,4
0,2 6,0

13,8
109,5

67%(1071671) 32,9 37,3 37,9 183,4

Nicolo 31,2 6,5
0,0 4,8

10,5
14,9 6,1

7,5
0,1 4,9

11,5
98,0

69%(945924) 31,2 34,3 33,0 165,7

Neptune 63,8 13,0
0,0 0,0

18,6
24,4 11,0

12,6
0,0 0,0

14,4
157,8

99%(1321838) 63,8 64,2 63,8 314,2

Ramesses 28,0 6,7
0,0 4,3

9,6
14,0 5,4

7,0
0,2 4,5

10,3
90,0

70%(775715) 28,0 31,3 31,9 152,8

Dancers 26,3 4,9
0,0 0,0

7,3
11,6 4,3

5,2
0,1 3,6

7,0
70,3

92%(703207) 26,3 28,9 29,3 135,2

Table 2: Elaboration times (in seconds). Acronyms indicate Input Broadcast (IB), Removal of Smallest Components (RSC),
Laplacian Smoothing (LS), Hole Filling (HF), and Removal of Degenerate Triangles (RDT). Cells labelled by Ti indicate the
time needed to transfer the correction file. Cells labelled by Ui indicate the time needed to update the mesh by applying the
correction. A modified version of the Hole Filling algorithm has been run to process “2.5D” geospatial data (*) in order to
preserve their largest boundary.

Input

#ISs
Output

Times

SpeedupMesh
Nv maxE Ns Partitioning Simplification Merging Total(# vertices) Vertices

Lucy
1000000 1.92355

1 25 9453
50.5

56.40
0.5

107.40 –

(14027872)
3 9 9474 28.40 79.40 1.35
5 6 9469 20.25 71.25 1.51

Terrain
1000000 0.00006

1 117 12166
497

302
1

800 –

(67873499)
10 13 11697 64.45 562.45 1.42
25 6 11660 13.37 511.37 1.56

St. Matthew
1000000 3.01716

1 285 119121
1225.5

805.65
2.5

2033.65 –

(186836670)
10 29 119035 104.05 1332.05 1.53
25 13 119308 47.65 1275.65 1.59

Atlas
1000000 3.35350

1 395 234084
1441

1481.25
4.5

2926.75 –

(245837027)
10 42 234081 157.05 1602.55 1.83
25 18 234091 72.95 1518.45 1.93

Table 3: Execution times (in seconds). The speedup increases with the input size. Column labels: Nv is the number of vertices
per-service, maxE is the threshold error (one thousandth of the bounding box diagonal of the input in all these experiments)
expressed in absolute values, Ns is the number of available services, #ISs is the number of generated independent sets.

no longer need to be skilled programmers or experts in geo-
metric modelling to exploit state-of-the-art algorithms. Also,
available pre-defined workflows can be reused by other re-
searchers. Hence, results of short-lasting experiments can be
recomputed on the fly when needed and there is no more
need to keep output results explicitly stored on online repos-
itories. Since experiments can be effciently encoded as a list
of operations, sharing them instead of output models sensi-
bly reduces required storage resources.

Currently, our framework provides some “in-house” ge-
ometry processing algorithms, but the architecture is open

and fully extensible by simply publishing a new algorithm
as a web service and by communicating its URL to the sys-
tem.

Moreover, we have demonstrated that the computing
power of a network of PCs can be exploited to significantly
speedup the elaboration of large triangle meshes and we have
shown that the overhead due to the data transmission is much
lower than the gain in speed provided by parallel processing.

In its current form, our system has still a few weak-
nesses: experiments can be reproduced only as long as the

c© The Eurographics Association 2015.

147

D. Cabiddu & M. Attene / Distributed Processing of Large Polygon Meshes

Figure 5: Detail of Terrain model. Nearly height fields are
naturally supported (original:≈ 68M vertices, simplified:≈
11.5K vertices).

involved Web services are available and are not modified by
their providers. To reduce the possibility of workflow de-
cay [ZGPB∗12] a certain level of redundancy would be re-
quired, for example by uploading the same Web service on
different machines.

Finally, our system can load a single indexed mesh and
produces a single file. Part of our future plans include the
study of methods to efficiently represent big meshes through
several files that can be hosted on different machines.

References
[BP02] BRODSKY D., PEDERSEN J. B.: Parallel model simplifi-

cation of very large polygonal meshes. In Procs. of Parallel and
Distributed Processing Techniques and Applications - Volume 3
(2002), PDPTA ’02, pp. 1207–1215. 2, 3

[CA15] CABIDDU D., ATTENE M.: Large mesh simplification
for distributed environments. Computers & Graphics 51 (2015),
81 – 89. 7

[Cam] CAMPEN M.: WebBSP 0.3 beta.
http://www.graphics.rwth-aachen.de/webbsp. URL:
http://www.graphics.rwth-aachen.de/webbsp. 2

[CCR08] CIGNONI P., CORSINI M., RANZUGLIA G.: Meshlab:
an open-source 3d mesh processing system. ERCIM News, 73
(April 2008), 45–46. 2

[CMRS03] CIGNONI P., MONTANI C., ROCCHINI C.,
SCOPIGNO R.: External memory management and simpli-
fication of huge meshes. IEEE Transactions on Visualization
and Computer Graphics 9, 4 (oct 2003), 525–537. 2

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro:
Measuring error on simplified surfaces. Comput. Graph. Forum
17, 2 (1998), 167–174. 8

[CSS98] CHIANG Y. J., SILVA C. T., SCHROEDER W. J.: Inter-
active out-of-core isosurface extraction. In IEEE Visualization’98
(1998), pp. 167–174. 2

[DLR00] DEHNE F., LANGIS C., ROTH G.: Mesh simplification
in parallel. In Procs. of Algorithms and Architectures for Parallel
Processing (2000), ICA3PP 2000, pp. 281–290. 2

[dsw12] DSW v5.0 - visualization virtual services., 2012. URL:
http://visionair.ge.imati.cnr.it. 7

[FS00] FRANC M., SKALA V.: Parallel triangular mesh reduc-
tion. In Procs. of Scientific Computing (2000), ALGORITMY
2000, pp. 357–367. 2

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification
using quadric error metrics. In Procs. of SIGGRAPH ’97 (1997),
pp. 209–216. 2, 7

[HKK14] HUTTER M., KNUTH M., KUIJPER A.: Mesh parti-
tioning for parallel garment simulation. In Procs. of WSCG 2014
(2014), pp. 125–133. 6

[Hol95] HOLLINGSWORTH D.: Workflow Management Coalition
- The Workflow Reference Model. Tech. rep., Jan. 1995. 3

[IG03] ISENBURG M., GUMHOLD S.: Out-of-core compression
for gigantic polygon meshes. In Procs. of SIGGRAPH ’03 (2003),
pp. 935–942. 2

[ILGS03] ISENBURG M., LINDSTROM P., GUMHOLD S.,
SNOEYINK J.: Large mesh simplification using processing se-
quences. In Visualization, 2003. VIS 2003 (October 2003),
pp. 465–472. 2

[iqm13] Iqmulus: A High-volume Fusion and Analysis Platform
for Geospatial Point Clouds, Coverages and Volumetric Data
Sets., 2013. URL: http://www.iqmulus.eu. 8

[Lin00] LINDSTROM P.: Out-of-core simplification of large
polygonal models. In Procs. of SIGGRAPH ’00 (2000), pp. 259–
262. 2

[LS01] LINDSTROM P., SILVA C. T.: A memory insensitive
technique for large model simplification. In IEEE Visualization
(2001), pp. 121–126. 2

[mic09] The Digital Michelangelo Project., 2009. URL: http:
//graphics.stanford.edu/projects/mich/. 8

[MK12] MÖBIUS J., KOBBELT L.: Openflipper: An open source
geometry processing and rendering framework. In Procs. of
Curves and Surfaces (2012), pp. 488–500. 2

[Pit10] PITIKAKIS M.: A Semantic Based Approach For Knowl-
edge Management, Discovery and Service Composition Applied
To 3D Scientif Objects. PhD thesis, University of Thessaly,
School of Engineering, Department of Computer and Commu-
nication Engineering, 2010. 2

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3d approx-
imations for rendering complex scenes. In Modeling in Computer
Graphics. 1993, pp. 455–465. 2

[SG01] SHAFFER E., GARLAND M.: Efficient adaptive simplifi-
cation of massive meshes. In Procs.of Visualization ’01 (2001),
pp. 127–134. 2

[SN13] SHONTZ S. M., NISTOR D. M.: CPU-GPU algorithms
for triangular surface mesh simplification. In Procs. of Meshing
Roundtable (2013), pp. 475–492. 2

[sta96] The Stanford 3D Scanning Repository., 1996.
URL: http://graphics.stanford.edu/data/
3Dscanrep. 8

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh compression.
In Graphics Interface (1998), pp. 26–34. 3

[TJL07] TANG X., JIA S., LI B.: Simplification algorithm for
large polygonal model in distributed environment. In Advanced
Intelligent Computing Theories and Applications, vol. 4681 of
Lecture Notes in Computer Science. 2007, pp. 960–969. 2, 3

[TPB08] THOMASZEWSKI B., PABST S., BLOCHINGER W.:
Parallel techniques for physically based simulation on multi-core
processor architectures. Computers & Graphics 32, 1 (2008),
25–40. 2

[ZGPB∗12] ZHAO J., GOMEZ-PEREZ J. M., BELHAJJAME K.,
KLYNE G., GARCIA-CUESTA E., GARRIDO A., HETTNE K.,
ROOS M., DE ROURE D., GOBLE C.: Why workflows break:
understanding and combating decay in Taverna workflows. 2012,
pp. 1–9. 10

c© The Eurographics Association 2015.

148

http://www.graphics.rwth-aachen.de/webbsp
http://visionair.ge.imati.cnr.it
http://www.iqmulus.eu
http://graphics.stanford.edu/projects/mich/
http://graphics.stanford.edu/projects/mich/
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep

