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Abstract
This paper proposes a segmentation scheme jointly exploiting color and depth data within a recursive region split-
ting framework. A set of multi-dimensional vectors is built from color and depth data and the scene is segmented
in two parts using normalized cuts spectral clustering. Then a NURBS model is fitted on each of the two parts
and various metrics based on the surface fitting results are used to measure the plausibility that each segment
represents a single surface or object. Segments that do not represent a single surface are recursively split in a
tree-structured procedure until the final segmentation is obtained. Different metrics based on the fitting error and
on the curvature of the fitted surfaces are presented and tested inside this framework. Experimental results show
how a reliable scene segmentation can be obtained from this procedure.

1. Introduction

Many scene segmentation schemes based on color data have
been proposed, based on graph theory [FH04], on various
clustering schemes [CM02, SM00], on region splitting and
merging, and on many other techniques, but none of them is
able to provide a completely satisfactory solution in all sit-
uations, due to the many challenging issues associated with
this ill-posed problem. The recent introduction of consumer
depth cameras (e.g., Microsoft Kinect or Intel RealSense
cameras) has led to the development of several approaches
based on the joint usage of color and depth data (see Section
2). The 3D spatial information provides a very informative
description of the scene that allows to solve many critical
situations which color alone could not disambiguate. In par-
ticular the joint usage of color and depth data resembles what
happens inside the human brain where the disparity between
the images seen by the two eyes is one of the clues used to
separate the different objects in a scene together with prior
knowledge and other features extracted from the color data
acquired by our eyes.

This paper proposes a novel scene segmentation scheme
that extends the approach of [PZ14]. The input data is firstly
represented as a set of 6-dimensional vectors containing both
color and geometry information for each sample. Then the
scene is segmented in two parts using normalized cuts spec-
tral clustering. A NURBS parametric surface is fitted on
each of the two parts and various metrics based on the sur-
face fitting error and on the curvature of the fitted surfaces
are used to measure the plausibility that each segment repre-

sents a single surface or object. This idea is exploited inside
an iterative scheme where the segmentation is progressively
refined by recursively splitting the segments that do not rep-
resent a single surface in the 3D space. In the experimental
results the impact of the usage of different surface fitting
metrics has been evaluated and compared with state-of-the-
art segmentation methods.

Compared to [PZ14] there are two main contributions.
The first is the evaluation of different criteria in order to
decide which segments need to be iteratively split. While
in [PZ14] only the MSE of the surface fitting was consid-
ered, in this work several different metrics have been used.
They belong to two main families, one considering metrics
evaluating the accuracy of the fitting and the other instead
based on the analysis of the curvature of the fitted surfaces.
The second improvement is the use of a more refined surface
fitting algorithm, in particular the new algorithm adaptively
changes the number of control points, thus avoiding the bias
towards smaller segments of the previous approach.

The paper is organized in the following way: after review-
ing the related work in Section 2, Section 3 presents the
work-flow of the segmentation algorithm. More in detail,
subsection 3.1 briefly recalls the employed joint color and
depth segmentation scheme, while subsection 3.2 presents
the employed surface fitting algorithm and subsection 3.3
shows how these elements are combined into the proposed
approach. The different metrics used to evaluate the surface
fitting are presented in Section 4. The results are presented
in Section 5 and Section 6 draws the conclusions.
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2. Related work

Even if it is a recent research field, various works addressing
scene segmentation by means of color and depth informa-
tion have been published. A first possible solution is to per-
form two independent segmentations from the color image
and the depth data, and then join the two results [CM09].
In [WZYZ10] two likelihood functions, based on color and
depth data, are combined together in order to segment the
background from the foreground. Two different approaches
for the segmentation of binocular stereo video sequences are
presented in [KCB∗05]: one, based on Layered Dynamic
Programming and the other based on Layered Graph Cuts.
Some recent works try to jointly solve the segmentation
and stereo disparity estimation problems, e.g., [LSR∗10] and
[BRK∗11]. Clustering techniques can be exploited for joint
depth and color segmentation as in [BW09] and [WFFD11].
In [DMZC12] a segmentation scheme based on spectral clus-
tering that is able to automatically balance the relevance
of the two clues is presented. The approach of [PZ14] ex-
ploits spectral clustering inside a recursive approach where
a surface fitting scheme is used to recognize if each seg-
ment needs to be further split. In [EPD12] superpixels pro-
duced by an over-segmentation of the scene are combined
together in segments corresponding to planar surfaces us-
ing an approach based on Rao Blackwellized Monte Carlo
Markov Chain. An extension to the segmentation of multiple
depth maps has been also proposed [SD14]. The approach of
[GAGM14] exploits instead hierarchical segmentation based
on the output of contour extraction. A combined approach
for segmentation and object recognition has been presented
in [NSF12], that also exploits a hierarchical scheme start-
ing from an initial over-segmentation. Finally the approach
of [RBF12] exploits a MRF superpixel segmentation and a
tree-structured scheme.

3. Proposed segmentation scheme

The proposed approach exploits a pre-processing step fol-
lowed by a tree-structured iterative segmentation algorithm.
In the first step a set of multi-dimensional vectors (one for
each pixel) is built from the color image and the depth map.
Normalized cuts spectral clustering is then used to recur-
sively segment the scene into two parts. At each iteration a
NURBS model is fitted over each of the two segments and a
set of different metrics related to the fitting operation is com-
puted. These metrics are compared to the results obtained in
the previous steps for the same cluster (except for the first
iteration). If the segmentation has allowed to obtain a better
fitting according to the selected criterion (the criteria are de-
scribed in Section 4), the process is iterated by recursively
splitting the two segments, otherwise it is stopped on this
branch. The procedure continues until it is not possible to
further subdivide any of the produced segments. A schematic
representation of the approach is shown in Figure 1.
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Figure 1: Overview of the proposed approach.

3.1. Joint segmentation of color and depth data

This stage exploits an approach derived from [DMZC12]
and [DZC11] that firstly represents the scene as a set of 6-
dimensional vectors built from the geometry and color data
and then apply spectral clustering. The depth and color cam-
eras are firstly jointly calibrated. With the calibration data it
is possible to compute the 3D coordinates x,y and z of each
3D scene point (i.e., each pixel in the depth map) and to asso-
ciate to it a vector representing its color in the R, G, B color
space. In order to properly segment this representation ge-
ometry and color need to be represented in a consistent way.
To this purpose color values are converted to the CIELab
perceptually uniform space in order to give a perceptual sig-
nificance to the distance between colors that will be used in
the clustering algorithm. The color of each sample pi is thus
represented by the vector

pc
i = [L(pi),a(pi),b(pi)]

T , i = 1, ...,N (1)

Geometry is simply represented by the 3D spatial position
x(pi), y(pi), and z(pi), i.e., as:

pg
i = [x(pi),y(pi),z(pi)] , i = 1, ...,N (2)

The segmentation procedure should allow to compare ge-
ometry and color distances independently on the size of the
scene or on the light conditions. For this reason the x,y and
z components are normalized by the average σg of the stan-
dard deviations of the point coordinates obtaining the vectors
[x̄(pi), ȳ(pi), z̄(pi)]. Following the same rationale, the color
information vectors [L̄(pi), ā(pi), b̄(pi)] are obtained by nor-
malizing color data with the average σc of the standard de-
viations of the L, a and b components. Using the normalized
geometry and color information, each point is finally repre-
sented as:
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p f
i =


L̄(pi)
ā(pi)
b̄(pi)
λx̄(pi)
λȳ(pi)
λz̄(pi)

 , i = 1, ...,N (3)

the parameter λ controls the relative contribution of color
and geometry (i.e., the higher λ is, the more relevant is ge-
ometry information). An approach for the automatic tuning
of this parameter in a similar framework has been presented
in [DMZC12].

Various clustering techniques can be used to segment the
6D vectors built in this way. For this work normalized cuts
spectral clustering [SM00] has been used since it provides
very good performances. The main drawback of this algo-
rithm is that it is very computationally expensive. For this
reason we used the method based on the integral eigenvalue
problem proposed in [FBCM04]. This approach allows to
compute a first solution on a randomly subsampled subset
of the points and then propagate the solution to the whole
points set by a specific technique called Nyström method. A
very good approximation of the initial solution with limited
computation and memory resources can be obtained with
this method. Finally, in order to avoid the creation of very
small regions in proximity of edges and other artifacts due
to noise a final refinement stage removing regions smaller
than a pre-defined threshold Tp is applied.

3.2. Surface fitting on the segmented data

NURBS (Non-Uniform Rational B-Splines) are piecewise
rational polynomial functions expressed in terms of proper
bases (a complete overview of this topic can be found in
[PT97]). They allow to represent freeform parametric curves
and surfaces in a concise way, by means of control points. A
parametric NURBS surface is defined as

S(u,v) =
∑

n
i=0 ∑

m
j=0 Ni,p(u)Nj,q(v)wi, jPi, j

∑
n
i=0 ∑

m
j=0 Ni,p(u)Nj,q(v)wi, j

(4)

where the Pi, j are the control points, the wi, j are the corre-
sponding weights, the Ni,p are the univariate B-spline basis
functions, and p,q are the degrees in the u,v parametric di-
rections respectively.

In our experiments, we set the degrees in the u and v di-
rections equal to three. We set the weights all equal to one,
thus our fitted surfaces are non-rational (i.e., spline). The
points to fit are a subset of the rectangular grid given by the
sensor pixel arrangement, and we exploit this by setting the
corresponding (uk,vl) surface parameter values as 2D loca-
tions on the image plane of the camera. Since the number
of surface control points gives the degrees of freedom in our
model, we set it adaptively depending on the number of in-
put samples. To achieve this, we consider the horizontal and

vertical extents of the segment to fit. We set 20 as maximum
number of control points to use in a parametric direction for
a segment extending over the whole image, while for smaller
ones we determine the number proportionally to the segment
extents. This choice of parameters provides enough degrees
of freedom to represent the shape of any common object,
and the adaptive scheme at the same time prevents the fitting
to always be more accurate for smaller segments, indepen-
dently on how the segmentation algorithm was successful in
detecting the objects in the scene. Notice that this adaptivity
is an improvement over the fitting scheme used in [PZ14],
since in the previous work a fixed number of control points
was always used, favoring small segments and then possibly
leading to over-segmentation, as underlined in the experi-
mental results section.

Once determined the (uk,vl) parameter values corre-
sponding to the points to fit, the surface degrees and the
number of control points in the u, v parametric directions,
we consequently obtain the NURBS knots (needed for the
definition of the Ni,p basis functions) as in Chapter 9 of
[PT97]. Finally, by considering Eq. 4 evaluated at (uk,vl)
and equated to the points to fit, we obtain an over-determined
system of linear equations. We solve it in the least-squares
sense by means of singular value decomposition (SVD), thus
obtaining the surface control points.

Figure 2: A 3D NURBS surface fitted over two clusters orig-
inated by segmentation of one of the test scenes. The red ar-
eas correspond to larger MSE values. Notice how the large
fit error between the teddy head and the monitor portion re-
veals that the two segments do not actually belong to the
same object. (Best viewed in color)

3.3. Iterative tree structured fitting and segmentation

After presenting the main building blocks the iterative seg-
mentation procedure is now presented. The recursive tree-
structured approach of [PZ14] has been extended by using
the surface fitting metrics and criteria presented in the next
section, and improved by adaptively setting the number of
control points of the fitted surfaces dependently on the ex-
tents of the segments to fit. The 6-dimensional representa-
tion of Eq. 3 is used as input. The complete 6D point cloud
P is firstly segmented into two parts P0 and P1 using normal-
ized cuts spectral clustering as described in subsection 3.1.
A NURBS surface is then fitted on each of the two segments,
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obtaining the two surfaces S0 and S1. At this point the values
of the various metrics presented in Section 4 are also com-
puted for the two segments S0 and S1. In order to proceed to
the next step a set of conditions must be satisfied, i.e.,:

• The size of P0 and P1 must be bigger than 2Tp. If one
of the two segments does not satisfy the constraint it is
kept as part of the final solution and it is not split any-
more. This is consistent with the choice of not allowing
segments smaller than Tp made in subsection 3.1 since
the split would produce at least one segment smaller than
Tp.

• A maximum number Td of recursive splits on each seg-
ment is set, when the segmentation tree of Fig. 3 reaches
the maximum allowed depth the procedure is stopped on
the corresponding branch.

• A maximum number of splits (i.e., segments) Ts is also
set. Again when it is reached the procedure is stopped.

However at this first iteration the stop conditions are very un-
likely to be reached and the procedure continues recursively
by splitting the two point clouds P0 and P1 into two parts
obtaining the sets P00,P01 and P10,P11 respectively. The var-
ious metrics are also computed on this newly obtained seg-
ments. Note that the point clouds are sorted on the basis of
the selected fitting accuracy metric (i.e., if the MSE is being
used at each step the point cloud with the maximum MSE
is processed). In order to describe the general case let us
assume that the segment Pi is considered for splitting (e.g.,
i = 0 or i = 1 at the first iteration): the segment is split into
two sub-segments Pi0 and Pi1 as before, the two NURBS ap-
proximations Si0 and Si1 and the various fitting metric values
vi0 and vi1 are computed. At this point the weighted average
of the considered metric on the two sub-segments is com-
pared with the one of the original segment Pi:

vi0|Pi0|+ vi1|Pi1|
vi|Pi|

< T (5)

where vi can be vMSE
i , vMAE

i or any other of the measures
presented in Section 4 depending on the selected fitting met-
ric. The weights are the cardinalities of the two sets, while
the impact of the setting of T is discussed in the experi-
mental results section. If the constraint of Eq. 5 is satisfied
it means that the segmentation has improved the accuracy
of the scene representation by recognizing the different sur-
faces (i.e., objects) in the scene. In this case it must be kept
and the two sub-segments Pi0 and Pi1 are further subdivided
with the same procedure. If the constraint is not satisfied the
segmentation is discarded, the segment Pi is kept as a single
object and no further processing is done on this branch of the
tree. Before proceeding the previously introduced conditions
are also checked on each segment before splitting, i.e.:

(|Pi|> 2Tp)∧ (Depth(Ti)< Td)∧ (count(i)< Ts) (6)

where Depth(Ti) is the depth of the i− th node and count(i)
is the number of splits made until the current iteration.

The same procedure is applied recursively to all the sub-
segments generated during the computation until the condi-
tion of Eq. 5 is satisfied and none of the stopping conditions
is violated leading to a tree structure similar to the one of
Figure 3.
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Figure 3: Tree structure for the segmentation of a sample
scene. The colored nodes correspond to the final segments.
Red segments: further segmentation was attempted but re-
jected since not satisfying the surface fitting criteria (this ex-
ample refers to the MSE metric). Orange: the segmentation
was rejected since one of the resulting sub-segments would
be smaller than Tp. Light green: not split since smaller than
2Tp. Green: stopped since the maximum tree depth Td was
reached. (Best viewed in color)

4. Surface fitting metrics

The key idea exploited in this work is that if the segment
correctly represents a single object or surface in the scene
it should be accurately fitted by a smooth surface computed
with the approach of subsection 3.2, while if the segment
contains multiple objects (and so should be recursively split)
at different depths or edges between different surfaces these
issues will affect the fitting. Two main insights can be ex-
ploited for this purpose. The first is to analyze the difference
between the position of the samples on the fitted NURBS
surface and on the original data. For this work 4 different
metrics based on the accuracy of the fitting have been con-
sidered, i.e., the Mean Squared Error (MSE), the Mean Ab-
solute Error (MAE), the Variance of the Error (VE) and the
Number of points with a Large Error (NLE). The second idea
consists in analyzing the curvature of the fitted surface in-
stead, since large curvature values or variations should cor-
respond to edges or jumps in the depth values. The consid-
ered metrics are the Variance of the MaX Curvature abso-
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lute value (VMXC), the Variance of the MEan Curvature
(VMEC), the Variance of the Gaussian Curvature (VGC),
the Mean of the MaX Curvature absolute value (MMXC)
and the Number of points with a Large Curvature (NLC).

4.1. Mean Squared Error (MSE)

This metric is the Mean Squared Error (MSE) between the
depth samples in segment Pi and the points obtained by sam-
pling the NURBS approximation Si at the locations corre-
sponding to the points in Pi, i.e,:

vMSE
i =

∑Pj∈Pi

(
Pj−Sj

)2

|Pi|
(7)

where Sj is the value of the NURBS approximation Si at the
location corresponding to Pj. Eq. 7 measures the accuracy
of the surface fitting and the resulting value will be denoted
with vMSE

i . If this metric is selected the idea is that prop-
erly segmented regions should have a low MSE since they
contain a single surface that can be accurately fitted, while
segments containing multiple surfaces at different depths can
not be accurately fitted and can lead to higher MSE values.
An example of this can be seen in Figure 2. For this reason
the accuracy of the fitting before and after the split of a seg-
ment Pi into two parts Pi0 and Pi1 is compared and if the ratio
is below a threshold T the segmentation is accepted, i.e.:

vMSE
i0 |Pi0|+ vMSE

i1 |Pi1|
vMSE

i |Pi|
< T (8)

where the weights are the cardinalities of the two sets. In
our results we have tested for T three different values, 0.8,
0.9 and 1. Notice that with the latter the segmentation is ac-
cepted if there is any improvement in the accuracy, indepen-
dently on how large the improvement is.

4.2. Mean Absolute Error (MAE)

This metric is the Mean Absolute Error (MAE) between the
depth samples in segment Pi and the points obtained by sam-
pling the NURBS approximation Si at the locations corre-
sponding to the points in Pi. It works exactly as the MSE,
except for the fact that the absolute values are used instead
of the squared values, i.e,:

vMAE
i =

∑Pj∈Pi
|Pj−Sj|
|Pi|

(9)

Notice that MSE tends to give more importance to large er-
rors due to the square operation, while this metric gives a
more uniform weight to the fitting errors. The criterion to
evaluate the segmentation works in the same way of the MSE
one, i.e.,:

vMAE
i0 |Pi0|+ vMAE

i1 |Pi1|
vMAE

i |Pi|
< T (10)

the threshold T has been set to 0.8 , 0.9 and 1 as in the pre-
vious case.

4.3. Variance of the Error (VE)

This metric measures the Variance of the Error (VE) between
the depth samples in segment Pi and the points obtained by
sampling the NURBS approximation Si at the locations cor-
responding to the points in Pi, i.e.:

vV E
i =

∑Pj∈Pi

(
|Pj−Sj|− vMAE

i

)2

|Pi|
(11)

This metric instead of considering the absolute error value
considers its deviation from the mean, accounting for the
idea that the presence of discontinuities should produce large
errors in some restricted areas in contrast with large areas
with small errors. The criterion is the ratio between the vari-
ances before and after the split as for the other metrics:

vV E
i0 |Pi0|+ vV E

i1 |Pi1|
vV E

i |Pi|
< T (12)

where T is as above.

4.4. Number of points with a Large Error (NLE)

Following the same rationale, i.e., the presence of some lo-
calized regions with large fitting errors, it is possible to mea-
sure the number of points with an associate absolute error
greater than a threshold Tl . The idea behind this metric is
that the samples corresponding to an edge or close to the
jumps between two objects in the same segment should have
an error larger than the threshold, while the others should
have an associated error below the threshold. A drawback
of this metric is that there is an additional threshold and its
setting is quite critical to obtain optimal results. The value
of Tl depends on the amount of noise on the depth camera
data, for the results we set it to 0.1. After a proper splitting
of a segment the sum of the number of samples with a large
error on the two parts vNLE

i0 + vNLE
i1 must be smaller than the

number of points with a large error on the original segment
vNLE

i , i.e.:

vNLE
i0 + vNLE

i1
vNLE

i
< T (13)

where T is as above.

4.5. Variance of the MaX Curvature absolute value
(VMXC)

For this metric, we consider the two principal curvatures κ1
and κ2 of the NURBS approximating surface at the loca-
tions corresponding to the points in Pi. They are well defined
since our fitted surfaces are bivariate cubic splines with sin-
gle knots, thus C2 everywhere. We expect that for segments
containing multiple objects, the fitted surface would show
high oscillations caused by the depth jumps. Therefore, we
take the maximum of the absolute values of the principal
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curvatures, κ
max = max(|κ1|, |κ2|), and we consider as error

metric its variance over the points of the segment Pi, i.e.,

vV MXC
i =

∑Pj∈Pi

(
κ

max
j − vMMXC

i

)2

|Pi|
(14)

where

vMMXC
i =

∑Pj∈Pi
κ

max
j

|Pi|
(15)

is the mean of κ
max over Pi (notice that we denote by κ

max
j

the value of κ
max for the NURBS approximation Si at the lo-

cation corresponding to Pj). The criterion to accept the seg-
mentation of Pi into segments Pi0 and Pi1 is then

vV MXC
i0 |Pi0|+ vV MXC

i1 |Pi1|
vV MXC

i |Pi|
< T (16)

where T is as above.

4.6. Variance of the MEan Curvature (VMEC)

Similarly as above, we consider as error metric the variance
vV MEC

i of the mean curvature, H = 1
2 (κ1 +κ2). That is, con-

sidering vMMEC
i =

∑Pj∈Pi
Hj

|Pi| which is the mean of H over Pi,
it is

vV MEC
i =

∑Pj∈Pi

(
Hj− vMMEC

i

)2

|Pi|
(17)

where Hj is the value of H for the NURBS approximation
Si at the location corresponding to Pj. This is a variation of
metric VMXC, based on the idea that the maximum curva-
ture absolute value could be very high because of just one
of the two principal curvatures, while considering the mean
curvature could be more adequate for some shapes. More-
over, by taking the absolute values it is possible that infor-
mation about large variations between positive and negative
curvature values gets lost, while it is taken into account if
the mean curvature is used instead. The criterion for the seg-
mentation is then

vV MEC
i0 |Pi0|+ vV MEC

i1 |Pi1|
vV MEC

i |Pi|
< T (18)

where T is as above.

4.7. Variance of the Gaussian Curvature (VGC)

We obtain another variation of metric VMXC by considering
the variance of the Gaussian curvature, K = κ1κ2. That is,
the metric is

vV GC
i =

∑Pj∈Pi

(
Kj− vMGC

i

)2

|Pi|
(19)

where vMGC
i =

∑Pj∈Pi
Kj

|Pi| is the mean of K over Pi (and Kj is
the value of K for the NURBS approximation Si at the loca-
tion corresponding to Pj). Notice that the previous consider-
ations about using the mean curvature instead of the maxi-
mum curvature absolute value hold for the Gaussian curva-
ture too. The corresponding criterion for the segmentation
is

vV GC
i0 |Pi0|+ vV GC

i1 |Pi1|
vV GC

i |Pi|
< T (20)

where T is as above.

4.8. Mean of the MaX Curvature absolute value
(MMXC)

In addition to the curvature variance as an indicator of sur-
face oscillations, we consider large values of the curvatures
themselves as an index of poor segmentation, since they are
expected to correspond to sharp edges, or gaps between sep-
arate objects. Following this rationale, we consider vMMXC

i
defined in Eq. 15, i.e., the mean of κ

max maximum of the
absolute values of the principal curvatures over the points in
Pi, as a further error metric. The corresponding criterion for
the segmentation is

vMMXC
i0 |Pi0|+ vMMXC

i1 |Pi1|
vMMXC

i |Pi|
< T (21)

where T is as above.

4.9. Number of points with a Large Curvature (NLC)

To investigate the presence of local regions with large curva-
ture values, we also take into account the number of points
for which the maximum of the absolute values of the prin-
cipal curvatures κ

max is greater than a threshold Tc. This is
roughly equivalent to counting the points that correspond to
edges or gaps between the objects. Clearly it is not straight-
forward how to set the threshold Tc, since an optimal value
would depend both on the noise in the data and on the shape
of the objects. For our results we set it to 10, corresponding
to a radius of curvature of 0.1. Then, the criterion we obtain
for the segmentation is

vNLC
i0 + vNLC

i1

vNLC
i

< T (22)

where vNLC
i is the number of points in the segment Pi for

which κ
max is greater than Tc, and T is as for the previous

metrics.

5. Experimental results

In order to evaluate the performances of the pro-
posed approach and the impact of the different sur-
face estimation metrics on the segmentation algorithm
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Color
Image

Depth
Map

Ground
Truth

Proposed
Method
(NLE-1)

Proposed
Method
(MSE-1)

Proposed
Method
(Best)

Dal Mutto
et Al

[DMZC12]

Pagnutti
et Al

[PZ14]

Figure 4: Segmentation of some sample scenes. For each scene the color image, depth map and ground truth segmentation are
shown. Then 3 different results for the proposed approach are presented, corresponding to VE (with T = 0,9), to NLE (with
T = 1) and to the choice of the best measure for each scene. The last two rows show the results of two competing approaches
( [DMZC12] and [PZ14]).
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we used the dataset associated to [PZ14] and avail-
able at the address http://lttm.dei.unipd.it/
downloads/segmentation/. This dataset contains 6
different scenes acquired with either the Kinect or the Asus
Xtion consumer depth cameras. The dataset contains the
color views, the depth data and the calibration information
(color and depth data are shown in the first two columns of
Figure 4). Calibration data allow to align the color and depth
data and to build the representation of subsection 3.1 that is
used as input for the proposed algorithm. In order to perform
an accurate evaluation of the segmentation a manually seg-
mented ground truth has been added to the dataset for the
purposes of this work. Ground truth data has been compared
with the segmentation results (the ground truth is shown in
the third row of Figure 4) in order to obtain the numerical re-
sults. Notice that the points without a valid depth value (i.e.,
the ones that the depth camera has not been able to acquire)
have been set as invalid points also in the ground truth in
order to avoid considering them in the comparisons of the
segmentations.

The proposed method has been applied to the scenes in
the dataset using the various metrics and criteria presented
in Section 4 in order to decide which segments need to
be split. The results have been evaluated by comparing the
ground truth with the obtained segmentations using 3 differ-
ent error metrics, i.e., Rand Index (RI), Ground Truth Re-
gion Covering (GTRC) and Variation of Information (VoI).
For the detailed description of these error metrics please re-
fer to [AMFM11], however notice as an higher value corre-
spond to better results for the first two metrics, while lower
values are better in the last one.

Table 1 shows the accuracy of the obtained segmenta-
tions according to the RI metric. A first basic result is that
on average error-based metrics produce better results than
curvature-based approaches. However this is not true for all
the metrics and all the scenes. Also notice how no single
metric is better on all the considered scenes, on different
scenes different approaches can lead to better results. How-
ever, according to this metric, the number of points with a
large error (NLE) metric on average seems to be the best er-
ror metric. It is the best one only on scene 6 but it has been
able to provide good results on all the considered scenes.
Also the MSE and MAE metrics have provided good re-
sults, as expected they behave similarly and have good but
not exceptional performances on all the considered scenes.
Another good metric is the Error Variance (VE), this metric
has a more erratic behavior, being the best one on 2 scenes,
but leading to not completely satisfactory results in others.
Curvature-based metrics on average have slightly lower per-
formances, among them the best one is the NLC (number
of points with a large curvature) metric, that is the best on
scene 4 and has average performances similar to the MSE
and MAE. The other curvature metrics have lower scores
according to this metric, but not too far from the error-based
ones. Finally notice that according to the RI measure setting

Metric T Scene Mean
1 2 3 4 5 6

1 0.70 0.90 0.89 0.84 0.87 0.91 0.85
MSE 0.9 0.67 0.90 0.60 0.78 0.83 0.90 0.78

0.8 0.67 0.84 0.60 0.75 0.84 0.86 0.76
1 0.67 0.90 0.89 0.84 0.88 0.92 0.85

MAE 0.9 0.67 0.84 0.60 0.77 0.82 0.85 0.76
0.8 0.67 0.79 0.60 0.77 0.82 0.81 0.75
1 0.90 0.91 0.60 0.84 0.89 0.85 0.83

VE 0.9 0.70 0.91 0.60 0.75 0.83 0.90 0.78
0.8 0.67 0.90 0.60 0.75 0.84 0.86 0.77
1 0.87 0.90 0.82 0.78 0.87 0.92 0.86

NLE 0.9 0.67 0.89 0.60 0.78 0.84 0.91 0.78
0.8 0.67 0.89 0.60 0.78 0.84 0.81 0.77
1 0.79 0.79 0.86 0.86 0.72 0.86 0.81

VMXC 0.9 0.79 0.79 0.87 0.86 0.70 0.86 0.81
0.8 0.79 0.79 0.84 0.86 0.70 0.85 0.81
1 0.79 0.79 0.89 0.87 0.72 0.87 0.82

VMEC 0.9 0.79 0.79 0.88 0.86 0.74 0.87 0.82
0.8 0.63 0.79 0.88 0.86 0.74 0.87 0.79
1 0.79 0.85 0.85 0.87 0.70 0.85 0.82

VGC 0.9 0.79 0.85 0.85 0.87 0.70 0.85 0.82
0.8 0.79 0.85 0.85 0.86 0.70 0.85 0.82
1 0.79 0.79 0.89 0.87 0.72 0.81 0.81

MMXC 0.9 0.63 0.79 0.60 0.78 0.73 0.82 0.72
0.8 0.63 0.79 0.60 0.78 0.70 0.81 0.72
1 0.86 0.79 0.87 0.87 0.88 0.81 0.85

NLC 0.9 0.70 0.79 0.86 0.87 0.75 0.82 0.80
0.8 0.70 0.79 0.60 0.78 0.70 0.70 0.71

[DMZC12] 0.87 0.86 0.74 0.81 0.86 0.88 0.84
[PZ14] 0.91 0.83 0.86 0.63 0.86 0.90 0.83

Table 1: Segmentation evaluation according to the RI met-
ric (higher is better). The table shows the segmentation per-
formances for the various measures considering 3 different
threshold parameter setting for each measure. The best set-
ting for the threshold in each measure and the best results
on each scene and on average are underlined in bold.

T = 1, i.e., simply ensuring that the metric values improve
even by a very small amount, is the best option for all metrics
(except VMEC).

The results according to the GTRC metric (Table 2) are
similar, even if there are some small differences. Also in
this case error-based metrics provide better results and the
performance gap between the two families of approaches is
even larger according to this metric. According to GTRC
the best error measure is the Mean Squared Error (MSE),
in particular with the threshold parameter set to T = 1. The
other error-based metrics (MSE, MAE and NLE) have all
good performances, in particular NLE. Also according to
this metric the best curvature-based option is NLC, while
the other curvature-based approaches have lower results. For
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Metric T Scene Mean
1 2 3 4 5 6

1 0.42 0.62 0.51 0.53 0.55 0.61 0.54
MSE 0.9 00.29 0.67 0.35 0.53 0.48 0.60 0.49

0.8 0.29 0.62 0.35 0.49 0.52 0.54 0.47
1 0.29 0.63 0.53 0.53 0.45 0.61 0.51

MAE 0.9 0.29 0.62 0.34 0.53 0.47 0.54 0.47
0.8 0.29 0.48 0.35 0.53 0.49 0.48 0.44
1 0.49 0.62 0.35 0.53 0.60 0.41 0.50

VE 0.9 0.42 0.68 0.35 0.49 0.48 0.60 0.50
0.8 0.29 0.67 0.35 0.49 0.52 0.54 0.48
1 0.36 0.62 0.46 0.53 0.60 0.62 0.53

NLE 0.9 0.29 0.62 0.35 0.53 0.52 0.61 0.49
0.8 0.29 0.62 0.35 0.53 0.52 0.48 0.46
1 0.34 0.48 0.41 0.58 0.32 0.45 0.43

VMXC 0.9 0.34 0.48 0.39 0.58 0.39 0.45 0.44
0.8 0.34 0.48 0.39 0.58 0.39 0.53 0.45
1 0.34 0.48 0.52 0.54 0.33 0.45 0.44

VMEC 0.9 0.34 0.48 0.50 0.54 0.41 0.45 0.45
0.8 0.26 0.48 0.50 0.58 0.41 0.51 0.46
1 0.34 0.52 0.42 0.55 0.39 0.44 0.44

VGC 0.9 0.34 0.52 0.42 0.55 0.39 0.44 0.44
0.8 0.34 0.52 0.42 0.54 0.39 0.46 0.45
1 0.34 0.48 0.54 0.55 0.33 0.36 0.43

MMXC 0.9 0.26 0.48 0.34 0.53 0.36 0.41 0.40
0.8 0.26 0.48 0.34 0.53 0.39 0.49 0.41
1 0.47 0.49 0.48 0.56 0.49 0.37 0.48

NLC 0.9 0.39 0.49 0.51 0.55 0.44 0.41 0.47
0.8 0.39 0.49 0.34 0.53 0.39 0.40 0.43

[DMZC12] 0.34 0.52 0.28 0.46 0.35 0.48 0.40
[PZ14] 0.36 0.42 0.32 0.34 0.36 0.54 0.39

Table 2: Segmentation evaluation according to the GTRC
metric (higher is better). The table shows the segmentation
performances for the various measures considering 3 differ-
ent threshold parameter setting for each measure. The best
setting for the threshold in each measure and the best results
on each scene and on average are underlined in bold.

error-based approaches T = 1 still seems a very good option
(except for VE), while for some curvature-based measures
the best results correspond to T = 0.8 (VMEC, VMXC and
VGC).

Finally Table 3 shows the results according to the VoI met-
ric. Results are very similar to GTRC: MSE with T = 1 is the
best option, even if NLE gets very close to the MSE score.
MAE and VE also achieve good results. Again curvature-
based approaches have low performances, with the excep-
tion of NLC, that is the only curvature based approach able
to get results close to the ones of error based approaches.
Probably the biggest difference in the results of this metric
is the impact of the threshold parameters, according to this

Metric T Scene Mean
1 2 3 4 5 6

1 2.42 1.79 1.99 1.73 1.68 1.77 1.90
MSE 0.9 2.79 1.39 2.58 1.60 1.67 1.79 1.97

0.8 2.79 1.33 2.58 1.80 1.53 1.98 2.00
1 2.79 1.66 1.88 1.72 2.69 1.68 2.07

MAE 0.9 2.79 1.30 2.68 1.61 1.76 1.82 1.99
0.8 2.79 1.72 2.58 1.61 1.58 2.02 2.05
1 2.39 1.79 2.58 1.73 1.61 2.64 2.12

VE 0.9 2.42 1.40 2.58 1.80 1.65 1.78 1.94
0.8 2.79 1.39 2.58 1.80 1.53 1.98 2.01
1 2.84 1.55 2.23 1.60 1.54 1.67 1.91

NLE 0.9 2.79 1.51 2.58 1.60 1.53 1.75 1.96
0.8 2.79 1.51 2.58 1.60 1.53 2.02 2.00
1 2.73 1.72 2.60 1.59 2.49 2.49 2.27

VMXC 0.9 2.73 1.72 2.52 1.59 1.91 2.46 2.16
0.8 2.73 1.72 2.58 1.59 1.91 2.03 2.09
1 2.73 1.72 2.13 1.78 2.38 2.43 2.19

VMEC 0.9 2.73 1.72 2.18 1.71 2.12 2.43 2.15
0.8 3.03 1.72 2.10 1.59 2.12 2.14 2.12
1 2.73 1.85 2.53 1.79 1.92 2.56 2.23

VGC 0.9 2.73 1.85 2.53 1.79 1.92 2.57 2.23
0.8 2.73 1.85 2.53 1.71 1.92 2.37 2.19
1 2.73 1.72 2.06 1.78 2.38 2.26 2.15

MMXC 0.9 3.03 1.72 2.68 1.63 2.29 2.20 2.26
0.8 3.03 1.72 2.68 1.63 1.92 1.98 2.16
1 2.19 1.67 2.20 1.75 2.04 2.35 2.03

NLC 0.9 2.49 1.67 2.19 1.78 2.04 2.20 2.06
0.8 2.49 1.67 2.68 1.63 1.91 2.37 2.13

[DMZC12] 3.06 2.02 3.08 2.67 2.43 2.11 2.56
[PZ14] 3.03 2.40 3.06 2.73 2.77 2.14 2.69

Table 3: Segmentation evaluation according to the VoI met-
ric (lower is better). The table shows the segmentation per-
formances for the various measures considering 3 different
threshold parameter setting for each measure. The best set-
ting for the threshold in each measure and the best results
on each scene and on average are underlined in bold.

metric different values of the parameter are optimal for dif-
ferent measures.

The results have also been compared with the ones
of two recent competing approaches, i.e., the methods of
[DMZC12] and [PZ14]. The proposed approach outperforms
both compared approaches in almost all situations and the
average errors are better according to all the considered met-
rics. Only in Scene 1 according to RI, [PZ14] is able to out-
perform the proposed method.

Some visual results are shown in Figure 4. The figure
shows the results for the NLE measure with T = 1 (that
is the best option according to RI) and for the MSE met-
ric with T = 1 (the best solution according to the other
two metrics). Both options provide very good results on the
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considered scenes since the different objects get almost al-
ways recognized. At the same time the scenes are not over-
segmented and the objects and background are not split in
several pieces. By comparing the obtained results with the
ones of [DMZC12] and [PZ14], shown in the last two rows,
it is clear how the proposed approach is able to obtain better
results and avoids the over-segmentation issues of the two
competing approaches. The comparison of the MSE metric
results with [PZ14], that exploits this measure, allows also
to notice the improvement due to the adaptive surface fitting
scheme.

6. Conclusions

In this paper a segmentation scheme jointly exploiting color
and depth information has been presented and evaluated. The
proposed approach is based on a recursive tree-structured re-
gion splitting method that exploits a surface fitting scheme to
determine if the segmentation has correctly divided the 3D
surfaces present in each segment. Different measures based
on the fitting error and on the curvature of the fitted surfaces
have been considered in order to evaluate if a segment needs
to be further split and their impact on the final results has
been evaluated. Experimental results demonstrate that error
based metrics, in particular the mean squared error and the
number of samples with a large error, have on average better
performances. The results also confirm the effectiveness of
the proposed approach. It has been able to properly divide
the main objects in the scene and at the same time to avoid
over-segmentation issues thus outperforming the compared
methods. Further research will be devoted to the exploitation
of surface orientation information and to the inclusion of re-
gion merging approaches into the considered framework.
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