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Abstract

Splat-based models are a good representation because of its absense of topology, making complex modeling op-
erations easier, but keeping the same approximation ratio from triangular meshes. However corners cannot be
properly represented by splats without clipping them. We present a new method for clipping splats in models with
sharp features. Each splat is an ellipse equipped with a few parameters that allow to define how the ellipse can
be clipped against a bidimensional rational Bézier curve and thus it can be used for all those surfaces that show
a large number of edge features and different sampling rate around them. The simple and uniform data used to
define the clipping curve makes easy the implementation in GPU. We designed and implemented an automatic
computation of the clipping curves and a pipeline for sampling a generic surface with splats and render it. In this
paper we show how this technique outperforms the previous clipping techniques in precision for objects such as
mechanical parts and CAD- like models keeping the rendering speed.

1. Introduction

In the last three decades, the consistent improvements in rep-
resentation, modeling, processing and rendering of point-
based models [LW85, GD98, PZvBG00, ABCO∗01, AD03,
FCOAS03, PKKG03, WTG04, AA06] led to increased in-
terest and use of those types of models in many applica-
tions, ranging from CAD-like models to deformable mod-
els and fluids. Clouds of points are an interesting alterna-
tive to mesh-based models in situations that require highly
complex polygonal meshes. Moreover, points are a natural
primitive in models generated with the use of 3D scanning
devices, which are becoming more and more popular re-
cently [KB04,GP07]. However, since the point is a primitive
without dimension, its representation is usually extended to
that of a splat, which includes orientation and a flat domain
around the point, in order to fill the gaps between the sam-
ples [ZPvBG01]. Each splat can be viewed as a small circle
or ellipse that locally approximates the surface.

In many applications, such as the models used in en-
gineering, the ability to render edges and corners is es-
sential. Also, sharp features often appear in models gener-
ated by Boolean operations (CSG) [AD03, PKKG03] and
in physical simulations of cracking and breaking of mate-
rials [PKA∗05]. Because of the circular or elliptical nature
of the splats, an infinite amount of them would be required
in order to represent edges perfectly, unlike triangle meshes,

Figure 1: The proposed method of clipping splats allows to
adapt them to curved edges regardless of the number of sam-
ples of the model and the distance from the viewer. The clip-
ping curve is sampled in pixel precision.

which can be aligned around the sharp feature line. How-
ever, if the locations of discontinuities are known, the splats
can be adapted either by changing the sampling rate, by re-
arranging the samples or by clipping.

Usually, when the number of splats increases, the sur-
face is represented more accurately. Thus, artifacts caused
by the crossing of splats in sharp edges can be minimized
through an increase of sampling rate. However, even if the
surface’s splats can be processed extremely fast by exploit-
ing the programmable features of current graphics hardware,
the processing time is proportional to the number of geomet-
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ric primitives. Besides, the quality of that kind of representa-
tion depends upon the distance from the viewer to the object.

Sharp features are usually interpreted as regions with infi-
nite curvature in a certain direction. For this reason, a finite
amount of samples is not enough to represent them properly.
Thus, sharp features have to be explicitly represented. The
most common way of doing that is to use one line to repre-
sent edges, and multiple lines to represent corners. However,
when the samples have different distributions and sizes, on
both sides, around a curved edge, to approximate that curve
by a line results in noticeable artifacts.

When a splat occupies a large area in screen space and is
crossed by a curved edge, it requires special treatment so that
its rendering does not result in artifacts. For those situations,
we devised a way of clipping a splat with respect to a lo-
cal curve. This is more precise and less costly than clipping
a splat by a set of straight lines. In our approach, we send
the minimum information possible to the GPU - in fact, the
amount of information sent to GPU is almost equal to that of
other techniques -, but we obtain a substantial improvement
in edge representation in splat-based models.

The contributions of this work can be listed as follows:

1. We present a novel way of clipping splats that occupy a
large area in image space and that are close to a sharp
feature. In those situations, a splat is clipped by a local
curve and the quality of the resulting model’s representa-
tion is independent of the viewer’s distance, guaranteeing
the same pixel precision.

2. We define a light clipping data structure, with fixed pa-
rameters, that is easy to implement on GPU.

3. To illustrate an application of the technique, we propose
a new way of converting a mesh-based model into a splat-
based model with fewer samples, but maintaining a good
representation of sharp features.

2. Related Work

Splatting-based techniques are the most common ap-
proaches for rendering point clouds because they offer
good balance between performance and quality [ZPvBG01,
BSK04, ZRB∗04, BHZK05]. During rendering, blending of
the overlapping regions of nearby splats usually produce the
visual impression of a smooth surface. In regions where the
curvature of the surface is high, blending of overlapping
splats produce some artifacts that can be mitigated by in-
creasing sampling density. However, in sharp features, even
when the geometry is very simple, such as the intersection
of two planes, that approach is not practical.

Boolean operations on point-sampled models usually gen-
erate sharp edges. In [AD03], all the splats that crossed
the intersection line between two objects are replaced with
smaller ones. Despite the reduction of artifacts, adding more
samples makes the rendering more expensive and does not

Figure 2: Problem in Zhang et al. approach [ZK07]. (a) To
implement the rendering in GPU, the authors use a triangle
fan between the splat’s center and the polyline vertices. (b)
This approach requires that the center of the splat is on the
same side of all segments, not supporting some simple cases
like this.

conceal the artifacts completely. In [PKKG03], the sharp
feature is resampled in such a way that, in each sampling
position along the ridge line, two new concentric disks are
placed so that their respective planes locally coincide with
the two faces on each side of the ridge. Then, those two
disks are clipped with respect to each other’s planes. That
type of resampling approximates the ridge line with a set of
straight line segments. Therefore, in regions where the ridge
curve has high curvature, a lot of samples have to be used to
approximate it well. Wicke et al. [WTG04] do not add new
splats to the model. Instead, during rasterization, for each
fragment of a splat that crosses a ridge line, their algorithm
finds the two closest splats on the other side of the ridge line,
the so-called clip partners, and use the CSG tree for an in-
side/outside classification in order to decide if the fragment
is removed or not. Their approach is view-dependent, needs
modeling information, and cannot be rendered on a GPU,
which makes the rendering of complex models very slow.

Zwicker et al. [ZRB∗04] present a hardware renderer that
can clip splats with one or more clipping planes without
modeling information. However, when more than two clip-
ping planes affect one splat, the results are ambiguous. The
technique shares the same problem with the technique pro-
posed in [PKKG03] because, the edge’s curve cannot be
properly adapted by a straight line.

Zhang et al. [ZK07] use a hybrid data structure: in ad-
dition to the splats, which they name surface points, a set
of polylines represent the model’s ridge lines, which can
be input either by the user or by an edge detection method
for point clouds or meshes [GWM01, KBSS01, PKG03,
DOHS08]. These polylines are usually more refined than the
cloud of splats. When a given splat intersects at most two of
a polyline’s segments, the clipping of the splat is performed
as in previous algorithms. However, when the splat intersects
more than two segments of a ridge line, the splat is rendered
using a triangle fan as shown in Figure 2a. This approach
allows splat rendering in GPU, even if the number of clip-
ping segments varies. However, the technique is restricted to
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cases in which the center of the splat lies on the same side
of every clipping segment. Therefore, it cannot handle cases
such as that depicted in Figure 2b. Moreover, to render these
splats, many points are sent to the GPU, making the render-
ing slower.

3. Clipping of Splats

One of the main problems faced by other techniques is us-
ing straight lines to approximate an edge locally. If the size
difference of the splats around the edge is big, the error in
approximating a curved edge by a straight line becomes too
large. Sending more complex structures, as polylines, can
slow down rendering, even with several restrictions on in-
put. Using a curve to clip a splat has some advantages over
previous approaches:

1. the approximation error of the model relative to the orig-
inal surface is lower;

2. the clipping is smooth regardless of the density of splats
on the other side of the ridge and the viewer distance from
the model;

3. the data structure for each sample is fixed, making it easy
to implement on GPU.

In Section 3.1, we describe how the clipping curve is rep-
resented and stored. In Section 3.2, we define the clipping
area and the method used for determining when a certain
point is located in this area.

3.1. Clipping Curve

In this work, we use a rational Bézier curve for clipping (see
Equation 1). Its is added adjustable weights for each con-
trol point allow for better approximations to arbitrary curves.
This curve is defined as:

B(t) = ∑
n
i=0 bi,n(t)wiPi

∑
n
i=0 bi,n(t)wi

(1)

where wi and bi,n(t) are, respectively, the weights and the
blending Bernstein polynomials associated with the control
points. The Bernstein polynomials are defined as

bi,n(t) =

(
n
i

)
ti(1− t)n−i. (2)

These curves can be used, among other purposes, to rep-
resent conic sections exactly, which is very useful in engi-
neering models. Since implementation on GPU does not al-
low different types of data to be rendered, we used only one
class of those curves, the rational Bézier curve with 3 con-
trol points, P1, P2 and P3. The weights for the endpoints are
fixed to 1.0 and the weight, w, for the middle control point is
variable. Figure 3 shows different rational Bézier curves for
different values of w. With this simplification, Equation 1
can be rewritten as:

B(t) = (1− t)2P1 +2t(1− t)wP2 + t2P3
(1− t)2 +2t(1− t)w+ t2 (3)

Figure 3: Different curves formed by the variation of the
weight applied to the middle control point. The wights asso-
ciated with the end points are set to 1.0.

Figure 4: Elements used to clip a splat. The clipping curve
is defined by three control points, where the endpoints are
fixed on the splat’s border and represented by its central an-
gles α1 and α3, respectively. The clipping area is bounded
by the splat’s arc starting in P1 and finishing in P3 in coun-
terclockwise and the rational Bézier curve.

A splat S can be defined by its center C and two orthog-
onal vectors u and v, the main axis of the ellipse. The unit
vectors un and vn have the same direction as the vectors u
and v, respectively. These two unit vectors form the local
basis of the splat. Each splat has its own clip curve, which
can be defined locally using this local coordinate system.
The curve’s endpoints are located on the splat border, so, the
points P1 and P3 can be represented by the angles α1 and
α3, respectively, where α1 is the central angle between the
vector u and the vector P1−C in counterclockwise and α3 is
defined in a similar way with respect to point P3 (Figure 4).
This representation is used to reduce the quantity of float-
ing point numbers sent to shaders. In the vertex shader, for
example, that representation is needed to compute the coor-
dinates of these points from the angles. The distance from
the center of the ellipse to a point on its border is computed
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as:

r(α) =
|u||v|√

(|v|cos(α))2 +(|u|sin(α))2
. (4)

Thus, a point on the splat’s border computed from its central
angle is given by:

Pi = (r(αi)cos(αi);r(αi)sin(αi)) (5)

in splat’s coordinate system.

Point P2 is represented by the coordinate pair (P2u ;P2v) in
the splat’s coordinate system.

3.2. Clipped Area

Analogous to what is proposed in [ZRB∗04], where the or-
der of the clipping segment’s vertices define the clipped area,
the order of the control points define the clipped area of the
curve on the splat. This clipped area is bounded by the ellip-
tical arc starting at P1 and finishing at P3 in counterclock-
wise sense and the curve.

In order to determine if a point will be clipped, it is nec-
essary to classify the point relative to the clipping curve de-
fined by Equation 3. Considering arbitrary values of the pa-
rameter t, that infinite plane curve divides its plane into two
semi-spaces: a convex semi-space, which we denote the in-
ternal region, and a concave semi-space, which we denote
the external region. Since the weight, w, will always be con-
sidered positive here, the clipping curve segment will always
be inside the triangle formed by its control points. Thus, the
midpoint, M, of the segment P1P3 is always in the internal
region.

Considering that we want to classify a point Pq on the
splat’s plane and that is represented in the splat’s local coor-
dinates, then, if the segment PqM intersects the curve, Pq is
in the external region, otherwise, it is in the internal region.
The parametric line that passes through points Pq and M is
defined as:

R(tl) = Pq + tl(M−Pq). (6)

By matching equations 3 and 6, we have a system of two
equations and two unknowns, the line and curve parameters,
tl and tb, respectively. The exact solution for tb at the inter-
section points given by:

tb =
a±
√

a2−bc
c

, (7)

where:

a = d2 · [P1−Pq +w(Pq−P2)]
b = d2 · (P1−Pq)
c = d2 · [P1 +P3 +2(wPq−Pq−wP2)]
d = M−Pq

d2 = (dy;−dx)

(8)

Thus, the points X1 = B(tb1) and X2 = B(tb2) are the in-
tersection points between the line and the curve. Using these

Figure 5: Clipped area definition. The clipped area is shown
in gray. (a) The clipped region is the external region because,
going from P1 to P3 through P2, one makes a left turn at
P2. For any point Pq in this region, X1 belongs to the line
segment PqM. (b) The clipped region is the internal region
because, going from P1 to P3 through P2, one makes a right
turn at P2. For any point Pq in this region, the line segment
PqM does not contain either X1 or X2.

point in Equation 6, we can compute the corresponding line
parameters, tl1 and tl2 , respectively. If one of these is between
0 and 1, the curve is crossed by the PqM which indicates that
Pq is in the external region (Figure 5a). Otherwise, point Pq
is located in the internal region (Figure 5b).

When traveling from P1 to P3 along the polyline P1 −
P2−P3 one makes a left turn at P2, the region to be clipped
is the external region (Figure 5a). If, on the other hand, one
makes a right turn at P2, the region to be clipped is the inter-
nal region (Figure 5b).

To reduce the number of operations in the shader, only
the points inside the triangle formed by the control polygon
are checked with respect to the curve. The remaining points
can be clipped using the oriented lines

−−→
P1P2 and

−−→
P2P3. If the

region to be clipped is the external region, a point is removed
if it is to the right of any of those lines (Figure 5a). However,
if the region to be clipped is the internal region, a point is
removed only if it is to the right of both lines (Figure 5b).
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3.3. Some implementation optimization

The GPU implementation is done in the vertex and frag-
ment shaders. All operations common to all fragments must
be computed in the vertex shader and sent to the fragment
shader, as is done, for example, in the conversion of central
angles to coordinate pairs for the curve’s endpoints, shown
in equations 4 and 5, because these are high cost operations.

All clipping operations are done in the fragment shader.
The proposed clipping technique needs the exact position of
a point on the splat for each pixel. Thus, the splat is raster-
ized using the method of ray casting [BHZK05]. After ray
casting, the 3D point is available, but all clipping informa-
tion and methods are in splat coordinates. This 3D point can
be converted to the splat’s local coordinate system as follow:

Pqx = (P−C) ·un,
Pqy = (P−C) ·vn,

(9)

where un and vn are unit vectors in the same direction as the
splat’s axes u and v.

Detecting if a point is in the internal or in the external
region of the clipping curve is a high cost operation and must
be avoided if possible. Some optimizations are:

• if the splat’s size in image space is too small, the clipping
can be done by a simple line connecting the endpoints.

• if the weight is equal or near to zero, the clipping can
be done by a simple line connecting the endpoints. If the
weight is too high, the curve is almost equal to the control
polygon, thus, the clipping is done using in a simpler way
using the control polygon;

• if the splat is too big in image space and/or the the con-
trol polygon points are almost collinear, a big number of
points can be discarded using only the control polygon.
Thus, the points outside the triangular control polygon can
be checked for clipping using only the control polygon.

The clipping operation by the control polygon is simpler
that performed by the curve. If the clipping region is con-
cave, the fragment is discarded if the point is on the right
side of

−−→
P1P2 or

−−→
P2P3. If the clipping region is convex, the

fragment is discarded if the point is on the right side of
−−→
P1P2

and
−−→
P2P3.

Usually, sending splats info to the GPU is a bottleneck
in rendering time. Performing the curve clipping adds five
floating point numbers to be sent to GPU: two angles repre-
senting the curve endpoints, two coordinates of the control
polygon’s midpoint and the curve’s weight. A possible opti-
mization is to detach the splats with clipping from the others.
Most of the splats are sent to shaders of regular splats and
only the splats with clipping info are sent to a shader that is
specialized in curve clipping.

Figure 6: Approximation of the clipping curve. (a) Initial
curve set as a symetrical parabola whose midpoint is the
intersection point with the ridge line. (b) The error function
is defined as the average distance between equally spaced
points over the clipping curve and the ridge line.

4. Clipping Curve’s Approximation

Equation 3 represents a family of curves that are specified by
three control points and a scalar parameter, w. When a splat
is intersected by a ridge line of the model, appropriate val-
ues for the three control points and for the parameter w have
to be defined in order to have the best approximation of the
ridge line inside that splat. To let the user specify those ap-
propriate values would be highly impracticable. Therefore,
in this section, we discuss how to determine the curve at-
tributes automatically. The ridge lines to be approximated
can be defined as polylines or NURBS, and can be either
computed using an edge detection algorithm or set explic-
itly by the user. The parameters of the rational Bézier curve
(Equation 3) that best fits the ridge line within a splat are de-
termined through an optimization procedure that starts from
an initial approximation (see Figure 3a and Section 4.1) and
minimizes an appropriate error function (see Section 4.2).

4.1. Initial Clipping Curve

The definition of the initial approximation curve for the op-
timization process starts with the computation of the inter-
section of the ridge line with the splat (points P1 and P3).
Those two points will remain fix throughout optimization.
The proposed initial curve is the parabola passing through
the endpoints P1 and P3 and through the intersection point
between the perpendicular bisector of line segment P1P3 and
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the ridge line L (Figure 6a). The definition of the initial val-
ues of P2 and w is simple by exploiting the following prop-
erties of a Bézier curve:

• When all the weights of a rational Bézier curve are equal,
the curve is equal to the classical Bézier curve;

• A classical Bézier curve with three control points forms a
parabola. If the control polygon forms an isosceles trian-
gle where whose base is the segment connecting the two
endpoints of the curve, the perpendicular bisector of the
base is also the axis of symmetry of the parabola;

• If the curve is symmetrical, then its midpoint belongs to
the perpendicular bisector of the base of the isosceles tri-
angle used as control polygon. That point is also the mid-
point of the height of the isosceles triangle.

Therefore, the weight and the central control point of the
cut curve are defined as:

wo = 1.0 ; P2o = 2I+M, (10)

where M is the midpoint of P1P3 and I is the intersection of
the bisector of P1P3 and the ridge line L.

4.2. Error function

Let L be a part of the ridge line that intersects the splat and
is bounded by the points P1 and P3. An error function is de-
fined in order to account for how close the clipping curve B
is to the ridge line L so that it can be used in the minimiza-
tion procedure. If it were possible to find a coordinate axis
so that both curves, L and B, could be converted to func-
tions l(x) and b(x), respectively, the error function would be
defined as:

e =
1

x2− x1

∫ x2

x1

|l(x)−b(x)|dx (11)

because it is the sum of the distances between each point on
function B and the corresponding point on line L. However,
it is not always possible to find that common coordinate sys-
tem, then a discrete approach is used. First, a set of n evenly
spaced sampling points is marked on both curves, L and B.
Next, the error function is defined as the arithmetic average
of the distances between corresponding points:

e =
1
n

n

∑
i=1
|Li−Bi| (12)

The points on the clipping curve B cannot be spaced using
the parameter of the curve, then an arc length parameteriza-
tion is computed. This curve has no inflection points, then a
simple numerical method table that relates parameter value
to arc legth can be used to find equally spaced points on B.
To uniformly sample the ridge line L depends on how the
line is represented.

5. Representing a surface with Clip Splats

The ridge lines needed for clipping the splats adjacent to
them can be created or detected in several ways. The splats

Figure 7: Splats computed using the approach of circle cen-
tered at centroid (in green) or the approach of circumscribed
circle (in red) have a lot of external area in relation to the
triangle entered when it is narrow. The blue ellipse is created
by the proposed approach.

can be generated by simple conversion of a point cloud or
by sampling a surface that is represented as: point clouds,
meshes, implicit surfaces, etc. That sampling can be adapted
according to the surface’s curvature and to the proximity
to the ridges. In this paper, the technique is demonstrated
through a conversion from triangular meshes to splats with
clipping curves. To a faithful adaptation of the clipping
curves to the sharp features, the initial model must be dense
to provide a good representation of the object. The following
overview describes the procedure:

1. The sharp features of the mesh are detected using a sim-
ple technique described in [KBSS01]. If the normal vec-
tor’s deviation between neighboring elements is too large,
then the edge between them belongs to a sharp feature,
which is represented by a set of polylines.

2. Each triangle of the mesh is replaced with an elliptical
splat described in Section 5.1.

3. A polyline formed by the segments present in a sharp
feature is assigned to each splat. The intersection of that
polyline with the splat is addapted by a smooth clipping
curve (see Section 4).

4. Section 4 describes the process of approximation of the
polyline by the curve defined in Section 3.1 and the error
between this curve and the polyline. If the error is lower
than a certain threshold, then the mesh is simplified lo-
cally returning to step 1. Otherwise the process stops and
the splat is created by adding the curve found as its curve
clipping.

5.1. Adjusting an elliptical splat to a triangle

The most common way of converting a triangle into a splat
is using its centroid and adjusting the radius of a circle to
fully cover the triangle. Another common way is to use
the circumscribed circle. However, those approaches do not
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work well for narrow triangles, which are very common near
edges and regions of high curvatures, building splats larger
than needed. Tha splat that replaces a triangle must cover all
triangle’s area, but with the minimun extra area as possible
to minimize the number of fragments to be rasterized and
to avoid possible artifacts. Figure 7 shows different ways of
fitting a triangle.

The circumscribed circle is the best approach when the
triangle is equilateral. The proposed approach is to find the
matrices needed to transform an equilateral triangle of side
length equal to one into the desired triangle and apply those
matrices to the circumscribed circle associated with the unit
side equilateral triangle, in order to obtain the desired best
fitting ellipse.

Let a triangle be formed by the points P1, P2 and P3. A
local coordinate system is defined by the vectors:

tx =
P2−P1
|P2−P1|

; ty = N× tx (13)

where N is the unit vector, normal to the triangle with origin
at point P1. Thus, the vertices of the triangle in local coordi-
nates are: P′1 = O located at the origin; P′2 = (x′2,0) located
on the x-axis and P′3 = (x′3,y

′
3), where y′3 is certainly posi-

tive.

Let ∆E1E2E3 be an equilateral triangle with side length
equal to 1, where E1 = O and E2 is on the x-axis. The cir-
cumscribed circle is defined by:

Ce = 1
3 (E1 +E2 +E3)

re =
√

3
3

ue = (re,0)
ve = (0,re)

(14)

where Ce is the circle’s center, re is its radius and ue and ve
are orthogonal axis of an ellipse that defined the same circle.

Two affine transformations are needed to transform
∆E1E2E3 in ∆P1′P2′P3′: a scale, S, and a shear Sh (Fig-
ure 8a). The scale matrix is equal to:

S =

[
sx 0
0 sy

]
; sx = x′2 ; sy =

y′3√
3/2

(15)

and the shear matrix is equal to:

Sh =

[
1 shx
0 1

]
; shx =

x′3−
x′2
2

y′3
. (16)

The combination of these matrices T = Sh · S is applied
in points of the circumscribed circle. This will result in an
ellipse passing through the three triangle vertices with the
same quality of approximation as the initial circle in rela-
tion to the equilateral triangle (Figure 8b). Let u′′ = T · ue
and v′′ = T · ve be the ellipse axis after the transformation.
When the triangle P1P2P3 is isosceles with base P1P2, the
shear value is zero, then those vectors are already orthogo-
nal and nothing is done. However, usually, u′′ and v′′ are not

Figure 8: Procedure of fitting a splat to a triangle. (a)
∆E1E2E3 is scaled to the triangle ∆OP′2P′′3 and then sheared
resulting in the desired triangle ∆P′1P′2P′3. (b) The initial axes
are transformed by the same matrix used to transform the
equilateral triangle. Usually, the axes are not orthogonal af-
ter the transformation, then PCA is used to compute orthog-
onal axes to the objective ellipse.

orthogonal. One way to find two orthogonal vectors that de-
fine the same ellipse is using Principle Component Analysis
(PCA) on the ellipse. The covariance matrix of the ellipse is
equal to:

Cov =

[
a b
b c

]
, where


a = s2

x + s2
ysh2

x
b = s2

yshx

c = s2
y

(17)

Let λ1 and λ2 be the eigenvalues of Cov and w1 and w2 be
the corresponding unit length eigenvectors. The eigenvectors
are necessarily orthogonal and the semi-axes of the splat are
equal to:

q1 = re
√

λ1w1 ; q2 = re
√

λ2w2 (18)

The first eigenvalue is always greater than the second and
the eigenvectors are always in the half-plane of positive val-
ues of x. The cross product q1×q2 the same direction as the
triangle’s normal. Thus, the new splat attributes are:

C′ = Sh ·S ·Ce
u′ = qi ; i ∈ {1,2} and yqi < 0
v′ = qi ; i ∈ {1,2} and yqi > 0

(19)

In the end, the center C′ and the vectors u′ and v′ are
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transformed from the triangle’s local coordinates system to
global coordinate system.

5.2. Sampling of splats by Edge-Collapse Mesh
Simpflification

In this section, we are converting a mesh-based model in a
splat-based model using clipping curves. Firstly, we find all
the edges of the mesh that will define the clipping curve.
Those are either the edges on the border of the mesh or
the edges for angle between the normal vectors of the two
adjacent faces is greater than a user-given threshold as in
[KBSS01].

An edge collapse consists of merging two vertices that are
connected by an edge of the mesh. This operation causes the
number of faces to decrease by the number of faces that are
adjacent to the collapsed edge (two if the edge is not on the
border, one if it is). The choices of which edge to collapse
determines the final quality of the simplified mesh. Tipically
one wants to preserve the topology of the mesh, so a feasi-
bility test is run on each candidate collapse to check whether
performing the collapse would change the topology of the
mesh, in which case the collapse is said to be unfeasible and
it is not performed. Among the feasible collapses, a prior-
ity is determined on the base of how well the edge collapse
would modify the appearance of the mesh. Although there
are many possible criteria (often combined) such as varia-
tion of the normal, variation of the volume, variation of the
quality of the triangles etc. a de facto dominating criterion
is the quadric error metric [GH97]. Edge collapse simplifi-
cation is adapted for producing a description by splats with
clipping curves in two simple steps.

Feasiblity

Not all the triangulations of a surface can be turned into a
splat-based representation with the clipping curve proposed
in Section 3.1, because the clipping curve may intersect the
splats in a way that cannot be approximated (for example
because the intersection consists of more disconnected com-
ponents). This tipically happens if the mesh is coarse, so that
big triangles (and hence big splats) intersect the clipping line
mutiple times. Therefore we always start from a dense mesh
such that all splats can be successfully created.

Then, we add to the feasibility test the check that the splats
associated with the new faces resulting from the collapse can
be created. Thus, we are sure that the simplification will al-
ways return a mesh that can be turned into a splat-based rep-
resentation.

Priority of collapses

We add to the approximation error associated with a col-
lapse the approximation error of the curve fitting explained
in Section 4.2, so that we can guarantee that no curve will be
approximated with an error greater than a user-given value
in the final model.

Figure 9: Results for Fandisk Model. Initially, the model has
54,193 elements and it is reduced to 2,500 elements, but the
quality of the rendering is kept. The images on the right show
highlights of curved edges and the treatment technique.

6. Results

The main goal of this work is to maintain good quality ren-
dering of models with edges and corners even in low sam-
pling models and regardless of the distance from the ob-
server to the model. That goal was demonstrated by carring
out the conversion of a polygonal mesh into a cloud of splats
(Section 5).

Figure 9 shows the results of rendering Fandisk model re-
duced from 54,192 samples to 2,500. Despite the black pix-
els that appear because of the incomplete attaching of the
clipping curves and the splats across the ridge, the approach
is more faithful to the model than if straight lines are used to
approximate the curved edges of the model.

Table 1 shows the rendering times for the same model,
but using different amounts of splats. All the rendering
tests used images with resolution of 800× 800 in which
the model occupies nearly 40% of the image. The tests
were made in a computer equipped with an Intel R©Core
2 Duo 2.88 GHz processor with a Graphics Processor
Nvidia R©GeForce310M. When the number of splats de-
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Number of splats Frames/sec Splats/sec
2,500 114.65 0.143M
5,000 97.82 0.489M

54,192 31.35 2.782M

Table 1: Rendering times of Fandisk model in different sam-
plings.

Figure 10: Results for Fandisk Model with 2500 splats and
in different zooms. (a) Model covering 3.1% of the image.
(b) Model covering 37.5% of the image. (c) Model covering
80.7% of the image.

creases, the splats of the model should be larger in order
to fill the empty spaces between the samples. Bigger splats
cause a greater number of pixels to be rasterized in fragment
shader and a better treatment in clipping splats near ridges.
However, because of the increased number of pixels sent to
the fragment shader the rate of rendered splats per second
becomes lower and lower. Nevertheless, it is noticed that the
number of samples of a model has as stronger influence on
the rate of frames per second. Therefore, our technique al-
lows a model with less number of splats to have a render-
ing quality as good as that obtained with techniques that re-
quire larger number of splats, and to present lower randering
times.

Occupancy Image (%) Frames/sec Splats/sec
3.1 298.75 0.746M

37.5 196.18 0.490M
80.7 115.57 0.288M

Table 2: Rendering times of Fandisk model in different
zooms.

Table 2 shows rendering times for the fandisk model with
2,500 samples in different zooms as shown in Figure 10. All
the rendering tests used images with resolution 800× 800.
The distance from the model to the viewer influences the
rendering time. This is because more fragments are raster-
ized and must be blended and clipped if needed. However,
the frame rate is still acceptable.

Figure 11: Curve clipping analysis. (a) Let the curved ridge
highlighted in red. (b) The curved clipping faithfully adapts
the splats to the curved ridge on the surface. (c) However, by
observing the two surfaces connected by the edge, artifacts
can be noticed due to overlapping splats on opposite sides
of the edge, because splats are planes representing a curved
surface, thus, linear approximations of the curved ridge.

7. Conclusion

Usually, modern graphics cards can render huge point cloud
models very fast. However, as with any other rendering
primitive, the processing costs are still proportional to the
number of primitives used to represent a given object. Thus,
complexity reduction for splat-sampled geometry is as im-
portant as it is for triangle meshes. For this reason, this work
aims at achieving high quality renderings of models with
sharp features, but with low density of samples.

In this paper, a proper way of clipping splats was pre-
sented and discussed. It was pointed out that, when the sam-
pling rate is low, the sizes of the splats should be large in
order to avoid the appearing of holes making artifacts more
visible. Our approach uses local rational Bézier curves to
clip splats near sharp features. The consistent data structure
of the curves allows an easy implementation in GPU, al-
lowing the rendering of splat-based models to be processed
within good frame rates.

Although our curved clipping technique is able to faith-
fully adapt the splats to the curved ridge on the surface, there
are still some improvements to be made. Splats across the
ridge line are still planes adapting a curved surface. Thus,
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this junction between a set of curves applied to the splats
on a surface with less curvature in one side of the ridge line
and a set of planes of splats on a surfaces with greater curva-
ture on the other side of the ridge line is not perfect, showing
some artifacts (Figure 11). Another problem is caused by the
local approximation of the ridge line as the clipping curve
of a splat. Thus, although the clipping curves of two adja-
cent splats with respect to the ridge line are similar, they are
not unique, because of numerical errors. Therefore, holes or
wrongly overlaps around the ridge line may appear.

As future works, we aim to use a sampling method over
the original surface, making the splat and curve fitting pro-
cedure independent of the input. Other possible improve-
ment can be using curved splats, instead of flat ones, with
some procedure in geometric shader. The local adaptation of
a curve for each splat can allow some artifacts by numeric
errors. An idea to solve that is to compute a general curve
for the model and use that curve to compute the local ones
without a numeric approximation.
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