
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2017)
P. Sander and M. Zwicker (Editors)

Gradient-Domain Vertex Connection and Merging
Weilun Sun1, Xin Sun2, Nathan A. Carr2, Derek Nowrouzezahrai3 and Ravi Ramamoorthi4

1University of California, Berkeley 2Adobe 3McGill 4University of California, San Diego

G-BDPT
Iters: 281

Time: 59.4899m
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Figure 1: Equal time (1 hr) comparison in the Car scene. Here, G-BDPT iterations correspond to samples per pixel. Our method significantly
reduces noise compared to VCM/UPS [GKDS12,HPJ12]. G-BDPT [MKA∗15] completely misses the SDS path contribution on the seats and
G-PM [HGNH17] struggles with the glossy window frame and wheel hub. Our method robustly captures all of these transport contributions.

Abstract
Recently, gradient-domain rendering techniques have shown great promise in reducing Monte Carlo noise and improving over-
all rendering efficiency. However, all existing gradient-domain methods are built exclusively on top of Monte Carlo integration
or density estimation. While these methods can be effective, combining Monte Carlo integration and density estimation has been
shown (in the primal domain) to more robustly handle a wider variety of light paths from arbitrarily complex scenes. We present
gradient-domain vertex connection and merging (G-VCM), a new gradient-domain technique motivated by primal domain VCM.
Our method enables robust gradient sampling in the presence of complex transport, such as specular-diffuse-specular paths,
while retaining the denoising power and fast convergence of gradient-domain bidirectional path tracing. We show that G-VCM
is able to handle a variety of scenes that exhibit slow convergence when rendered with previous gradient-domain methods.

1. Introduction

The core of light transport simulation methods is to numerically
solve the complex rendering equation [Kaj86]. Over the years, nu-
merous solutions have been proposed; yet capturing all paths of
light in both a fast and efficient manner remains challenging and il-
lusive. One popular class of techniques is based on directly estimat-
ing the pixel intensities by sampling potential light paths between
the camera and light sources. Bidirectional path tracing (BDPT)
[LW93, VG94] is one of the most general techniques along this
line of work. The power of BDPT comes from combining multiple
complementary sampling techniques through multiple importance
sampling [VG95]. Despite the success of BDPT in many scenarios,
specular-diffuse-specular (SDS) paths which contribute to impor-
tant visual effects are still problematic for the method. Another sep-
arate class of techniques is based on density estimation. The repre-
sentative work along this line is photon mapping (PM) [Jen96] and
its variants [HOJ08,HJ09,QSH∗15]. Complementary to BDPT, PM

based methods are very efficient in handling SDS paths, but have
difficulty sampling diffuse/glossy interactions. To take the best of
both classes, vertex connection and merging (VCM) [GKDS12] or
unified path sampling (UPS) [HPJ12] was proposed to unify them
in the same framework. The key to the unification is to treat PM as
a probabilistic connection based sampling technique which aligns
well with the BDPT formulation. Through the combination, VCM
is able to inherit both BDPT’s fast convergence in multiple dif-
fuse/glossy interactions and PM’s ability to handle SDS paths. It is
considered a leap forward towards robust light transport simulation.

Despite VCM’s robustness it still suffers from noise, like other
primal domain techniques. Recently, gradient-domain methods
have demonstrated an ability to generate smooth images by ex-
tending standard pixel estimators with correlated gradient samples.
Using a screened Poisson reconstruction of both the original pixel
values and gradients, the resulting rendered image is often much
smoother than those generated by primal domain counterparts.
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The concept of gradient-domain rendering was first proposed in
gradient-domain metropolis light transport [LKL∗13] as a Markov
chain Monte Carlo method. Later, gradient-domain path tracing
[KMA∗15] extended standard path tracing to the gradient do-
main through sampling correlated offset paths from the base paths.
Gradient-domain bidirectional path tracing (G-BDPT) [MKA∗15]
was then proposed to generate offset paths from base paths sampled
by BDPT in an efficient way, enabling robust gradient sampling
in scenes with highly occluded light sources. Temporal gradient-
domain path tracing [MKD∗16] further extended G-PT in anima-
tion rendering which is orthogonal to our discussions.

We present gradient-domain vertex connection and merging (G-
VCM), an extension of VCM to the gradient domain. Formulating
gradient-domain density estimation in the path integral formalism
is an open problem we address in order to combine G-BDPT and
density estimation based gradient estimates. To do so, we propose
a new gradient sampling strategy, gradient-domain vertex merg-
ing. Our new strategy inherits the path reuse power of density es-
timation to handle complex light transport, e.g. SDS paths, and is
easy to combine with other complementary gradient-domain strate-
gies. We use multiple importance sampling to combine G-BDPT
and gradient-domain vertex merging strategies across (potentially)
many vertices on sensor subpaths.

Our contributions include:

• a method to generate correlated samples and gradient estimates
using a vertex merging strategy that is compatible with the path
integral framework (Section 4),

• a robust gradient estimator using vertex connection and merging
combined with multiple importance sampling (Section 5), and

• a new rendering algorithm, G-VCM, able to robustly sample
light paths in both primal and gradient domains, greatly improv-
ing overall image quality in challenging scenes compared to pre-
vious methods (e.g., see Figures 1 and 15; Section 7).

In concurrent work, gradient-domain photon density estimation
(G-PM) [HGNH17] proposes gradient sampling in the density esti-
mation framework. G-PM is shown to outperform G-BDPT and its
primal domain counterpart, progressive photon mapping [HOJ08],
in scenes dominated by SDS paths. However, this formulation re-
lies (in a unidirectional sense) exclusively on density estimation.
Without multiple integration techniques, G-PM remains suscepti-
ble to robustness issues with low photon density, i.e., as light paths
that travel through multiple diffuse/glossy reflections (Figure 1).
We elaborate on the key differences between our gradient-domain
vertex merging strategy and G-PM in Section 7.2.

2. Background

We quickly provide a technical overview of background in both
primal- and gradient-domain path-space and density estimation.

2.1. Multiple Importance Sampling

Multiple importance sampling (MIS) [VG95] is a way to reliably
combine multiple Monte Carlo (MC) estimators of the same in-
tegral. Consider the integral I =

∫
Ω

f (x)dµ(x), where f is a real

Figure 2: Path space integral.

valued function and µ is a measure over the integration domain Ω.
An MC estimate of I using MIS is

Î =
n

∑
i=1

1
ni

ni

∑
j=1

ω(Xi, j) f (Xi, j)
/

pi(Xi, j), (1)

where n distributions p1, p2, ..., pn are sampled at points Xi, j (the
jth of the ni independent samples drawn from distribution pi), and
ω(Xi, j) is the weight of the individual estimators at Xi, j . The power
heuristic ω(Xi, j) = [ni pi(Xi, j)]

β
/

∑
n
k=1[nk pk(Xi, j)]

β is a provably
good strategy for the combination; using β = 1 corresponds to the
balance heuristic which has been shown to work well in practice.

2.2. Bidirectional Path Tracing

We follow Veach’s path space formulation [Vea98], where the goal
of light transport simulation is to estimate pixel integrals

I =
∫

Ω

f (x)dµ(x), (2)

where x is a path consisting of k+ 1 vertices x0...xk, µ is the area
product measure dµ(x) = dA(x0)...dA(xk), Ω is the set of all paths
contributing to the sensor location, and f is the path measurement
contribution function of the following form

f (x) = Le(x0)G(x0↔ x1)We(xk)
k−1

∏
i=1

ρ(xi−1,xi,xi+1)G(xi↔ xi+1),

(3)
where Le is the emitter radiance, G the geometry term, ρ the BRDF
and We the sensor importance (see the example in Figure 2).

As illustrated in Figure 3, bidirectional path tracing samples the
path integral by first generating an emitter subpath y = y0...ynL−1
and a sensor subpath z = z0...znE−1 for each pixel. Then, nL× nE
full paths can be constructed by connecting any pair of vertices, ys
and zt , chosen from y and z respectively. Let xs,t = y0...yszt ...z0 =
x0...xsxs+1...xk be the full path constructed by connecting ys and zt
and pi(xs,t) be the probability of sampling path xs,t by connecting
at xi and xi+1. Then, f (xs,t)

/
ps(xs,t) can be used as an estimator

of the partial path integral contributed by all paths of k vertices.
Finally, to obtain an unbiased estimator of the path integral over all

Figure 3: BDPT Paths.
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Figure 4: VCM paths.

paths, the estimators from all nL×nE full paths are combined as

Î = ∑
s≥0

∑
t≥0

ωs(xs,t) f (xs,t)
/

ps(xs,t), (4)

where ωs(xs,t) = ps(xs,t)
β
/

∑
k−1
i=0 [pi(xs,t)]

β is the multiple impor-
tance sampling weight to take all k− 1 connection strategies of
sampling path xs,t into account.

2.3. Vertex Connection and Merging

Suppose we generate N pairs of emitter and sensor subpaths. Often,
N is set to the number of pixels, to enable stratified sensor sampling.
We denote y(i) and z(i) as emitter and sensor subpaths generated for
pixel i. BDPT evaluates each pair separately through connections.
That is, for pixel i, BDPT makes connections only between y(i)

and z(i) to sample full paths. VCM extends BDPT by adding a ver-
tex merging strategy where all N emitter subpaths can potentially
be merged with the sensor subpath. Figure 4 shows an example of
such a path, y( j). Vertex merging happens when any of the ver-
tices of the emitter subpath falls within the merging kernel Kr of
a sensor subpath vertex. Kr is a 2D merging kernel with support
radius r centered at z(i)t . For simplicity, we assume Kr is the uni-
form disk kernel: Kr(z

(i)
t ,y( j)

s+1) = (πr2)−1 if ||z(i)t − y( j)
s+1||< r and

0 otherwise. Consider y( j) in Figure 4 as an example. Since y( j)
s+1

falls in the kernel of z(i), vertex merging happens and an extended
path x∗s,t = y( j)

0 ...y( j)
s y( j)

s+1z(i)t ...z(i)0 is generated. Note that y( j)
s+1 in-

troduces an extra integration dimension over the blurring kernel Kr.
For simplicity, we omit superscripts in the following discussions.
The vertex merging strategy approximates the path integral with
density estimation on all extended paths collected in the merging
kernel. The resulting vertex merging estimator is

IV M(x∗s,t) = Kr(zt ,ys+1)[
s

∏
n=0

αL(yn)]ρ(zt−1,zt ,ys)[
t−1

∏
n=0

αE(zn)]

(5)

αL(yn) =


Le(y0)G(y0↔y1)

p(y0)p(y1)
, for n = 0

ρ(yi−1,yi,yi+1)G(yi↔yi+1)
p(yi+1)

, for n > 0
(6)

αE(zn) =


We(z0)G(z0↔z1)

p(z0)p(z1)
, for n = 0

ρ(zi−1,zi,zi+1)G(zi↔zi+1)
p(zi+1)

, for n > 0
, (7)

where αL and αE are the Veach style weights [Vea98] for each ver-
tex in emitter and sensor subpath respectively. The core of VCM
is to combine the BDPT (vertex connection) estimator denoted as

IVC(xs,t) with the vertex merging estimator IV M(x∗s,t) using mul-
tiple importance sampling. To do this, we can think of the ex-
tended path x∗s,t as an approximation of the physically valid path
y0...yszt ...z0. The probability of sampling this path is

p(x∗s,t) = p(y0...yszt ...z0)pacc(x∗s,t), (8)

where p(y0...yszt ...z0) is the probability density of sampling all the
vertices of the physically valid path. pacc(x∗s,t) is the approximate
probability of the path being accepted. When ys is not a specular
interaction, pacc(x∗s,t) = p(ys→ ys+1)πr2 which approximates the
probability that ys+1 falls inside the merging kernel by assuming
that the probability distribution is uniform inside the kernel, other-
wise pacc(x∗s,t) = 1. The final VCM estimator is the combination of
the sum of the vertex connection and merging contribution:

IVCM =CVC +CV M (9)

CVC = ∑
s≥0

∑
t≥0

ωVC,s(xs,t) f (xs,t)
/

pVC,s(xs,t) (10)

CV M =
N

∑
j=1

∑
s≥1

∑
t≥1

ωV M,s(x
( j)
s,t )IV M(x( j)

s,t ). (11)

Here, the meaning of f (xs,t) and pVC,s(xs,t) are the same as those
in Equation 4 because the BDPT estimators are inherited. The sub-
script VC is used to stress that BDPT is called vertex connection
in VCM. ωVC,s(xs,t) is different because vertex merging can poten-
tially sample the same paths that vertex connection samples. ωVC,s
in Equation 10 and ωV M,s in Equation 11 can be derived by con-
sidering all potential strategies of sampling the same path. That is

ωVC,s(xs,t) =
[pVC,s(xs,t)]

β

∑
k−1
n=0 [pVC,n(xs,t)]β +[N pV M,n(xs,t)]β

(12)

ωV M,s(x
( j)
s,t ) =

[pV M,s(x
( j)
s,t )]

β

∑
k−1
n=0 [pVC,n(x

( j)
s,t )]

β +[N pV M,n(x
( j)
s,t )]

β

. (13)

In Equation 12, the meaning of the numerator and
∑

k−1
n=0 [pVC,n(xs,t)]

β in the denominator is identical to those in
the expression of ωs(xs,t) in Equation 4 which takes all connection
strategies into account. The extra [N pVC,n(x

( j)
s,t )]

β term in the
denominator is to consider all the merging strategies, where
pV M,n(xs,t) = pVC,n(xs,t)pacc,n(xs,t) is the probability density
of sampling xs,t through merging at xs+1 and pacc,n(xs,t) is the
acceptance probability. Note that pacc,0(xs,t) = pacc,k−1(xs,t) = 0
because we do not merge at the sensor or the light source. Factor
N takes into account the fact that we use this strategy for all N
emitter subpaths. Equation 13 can be interpreted in a similar way,
where the denominator is the powered sum of the probability of
all connection and merging strategies and the numerator is the
powered probability of the strategy being used.

2.4. Gradient-Domain Bidirectional Path Tracing

G-BDPT extends BDPT by generating correlated samples for
neighboring pixels using pairs of emitter y and sensor z subpaths
[MKA∗15]. These samples are used to obtain a correlated estima-
tor of the path integrals of the pixel’s neighbors, and to estimate
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gradients by finite differencing. To do so, a deterministic and re-
versible shift mapping Ti j, which we discuss in depth shortly, is
first applied to the sensor subpath z to obtain an offset sensor sub-
path zoff = Ti j(z) (Figure 5), where we assume i and j are indices
of neighboring pixels. For efficiency, G-BDPT classifies all ver-
tices as connectable or unconnectable, with a roughness thresh-
old; specifically, if a vertex’s material roughness is too large, it is
connectable, otherwise not. Unlike BDPT, G-BDPT only connects
vertex pairs if both of them are connectable. With this classifica-
tion, both the base and offset sensor subpaths are connected to the
emitter subpath y to construct full paths for both pixels. Given a
constructed base path xs,t and its corresponding offset path as xoff

s,t ,
pixel i’s path integral estimator is Ii = f (xs,t)

/
ps(xs,t) and pixel j’s

correlated path integral estimator is I j = f (xoff
s,t )
/

ps(xs,t)|T ′i j(xs,t)|,
where |T ′i j(xs,t)| =

∣∣∣∂zoff
0 ...∂zoff

t
/
(∂z0...∂zt)

∣∣∣ is the determinant of
the Jacobian of the shift mapping for the change of integration vari-
ables. I j− Ii can be used to estimate the gradient, however this esti-
mator can be biased since the mapping does not guarantee that pixel
j’s full integration domain is covered. To solve this, the correlated
estimator is combined with its neighbor’s base path estimator using
MIS. And so, the contribution to the full gradient estimator is

Ci j = ∑
s≥0

∑
t≥0

ωi j,s(xs,t)
f j(xoff

s,t )|T ′i j(xs,t)|− fi(xs,t)

ps(xs,t)
, (14)

where

ωi j,s(xs,t) =
ps(xs,t)

β

∑
s+t
k=0[pk(xs,t)]β +[pk(xoff

s,t )|T ′ji(xoff
s,t )|]β

(15)

is the MIS weight. The first term in the denominator considers all
connection strategies of the base path. The second term in the de-
nominator takes the reverse mapping into account. That is, the same
gradient can also be sampled through pixel j. If pixel j sampled xoff

s,t
for the base path, then the same gradient sample would be gener-
ated through inverse mapping Tji(xoff

s,t ). Note that the full gradient
estimator is from the contributions of 2 strategies Ci j and Cji. That
is gi j = I j− Ii =Ci j−Cji.

Shift Mapping Sensor Sub Path

As illustrated in Figure 5, assume the first and second connectable
vertices along the sensor subpath z are zb and zc respectively. The
offset path can be constructed as follows. First, a sensor ray from
the neighbor pixel with the same offset as that of the base pixel
is initiated. Then, we recursively trace this ray to find vertices
zoff

0 zoff
1 ...zoff

b that correspond to z0z1...zb. If the ray hits an uncon-
nectable vertex, we deterministically trace the recursive ray such
that the vertex shares the same half vector as its base vertex. Then,
we construct zoff

b ...zoff
c such that zoff

c = zc, which is done by either

Unconnectable
Connectable

Preserve Half VectorsManifold
Perturbation

Figure 5: G-BDPT paths.

Case (1)
Case (2)

Figure 6: Gradient-domain vertex merging cases.

a simple connection if zc is zb’s successor or a manifold perturba-
tion [JM12] preserving half vectors otherwise. Here, the half vector
of a vertex is the normalized average vector of the incoming and
outgoing ray direction vectors. The BRDF value of many specular
or glossy materials is only determined by the half vector. This way,
by preserving half vectors on unconnectable vertices, high correla-
tion between the offset and base paths can be obtained in G-BDPT.
Manifold perturbation is a method to construct a new path from a
given path such that the end vertex of the new path is at a target
location and all half vectors of its unconnectable predecessors are
preserved.

3. Overview

We present our method G-VCM in this section. Algorithm 1 out-
lines a single G-VCM iteration, where the pipeline is similar to that
of VCM, with additional gradient sampling and evaluation steps.

At each iteration, we first sample and store all emitter subpaths
and build a kd-tree for their connectable vertices to perform fast
queries (lines 1-8). For each pixel, we sample and shift map a sen-
sor subpath to generate four offset sensor subpaths for its neighbors
(lines 10-15). We evaluate primal and gradient contributions with
connection strategies using the base sensor subpath, its four offset
paths and emitter subpaths that correspond to the pixel, similarly to
G-BDPT (see Section 2.4; lines 16-18). The only difference here is
that, to combine with our new vertex merging strategies, we need
to modify the MIS weights previously used for G-BDPT. We intro-
duce these modifications in Section 5.

Next, we perform vertex merging by looking up emitter ver-
tices inside the merging kernel of each connectable vertex along
the sensor subpath (lines 19-24). We obtain the primal contribution
of vertex merging with standard VCM (see Section 2.3). A major
challenge here is how to generalize the original vertex merging to
gradient sampling and how to combine it with vertex connection
strategies. We introduce our gradient-domain vertex merging strat-
egy in Section 4 and show how to compute MIS weights for vertex
merging to combine with vertex connection in Section 5.

4. Gradient Domain Vertex Merging

We will generalize the vertex merging strategy in VCM to gradient
sampling. We use the same threshold as described in Section 2.4
to decide whether a vertex is connectable and only perform vertex
merging at connectable vertices. In this way, two scenarios arise,
depending on where merging happens as illustrated in Figure 6:
either occurs at or after zc (case 1), or at zb (case 2).

Recall that zb and zc are the first and second connectable vertices
along the sensor subpath as in Section 2.4. In both cases, we use
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the same vertex merging estimator IV M in Equation 5 for the base
path. Note that we only illustrate an example emitter subpath for
case (1) in Figure 6 and case (2) is discussed in separate figures.

Next, we describe how to generate the correlated estimator for
the offset path in each case. Case (1) is simpler than case (2) be-
cause the base and offset sensor subpaths share the same emitter
subpath and merging kernel. So let’s deal with case (1) first. As-
sume merging happens at sensor subpath vertex zt(t ≥ c). We con-
sider how Equation 5 should change to obtain the correlated es-
timator from the offset path. All αL should stay the same since
all emitter vertices are sampled in the same way. The BRDF term
ρ(zt−1,zt ,ys) should be ρ(zoff

t−1,zt ,ys). Note that zoff
t−1 and zt−1 are

the same vertex when t > c. For αE , the measurement values should
be from the corresponding offset vertices instead and the probabil-
ity should stay the same. To account for the change of variables in
the shift mapping, we also need to multiply the determinant of the
Jacobian. Putting them together, we have

Ioff
V M(x∗s,t) =U(x∗s,t)ρ(z

off
t−1,zt ,ys)[

t−1

∏
n=0

α
off
E (zn)]|T ′i j(z)|, (16)

where U(x∗s,t) = Kr(zt ,ys+1)[∏
s
n=0 αL(yn)] is common for base and

offset sensor subpaths, |T ′i j(z)| is the determinant of the Jacobian of

Algorithm 1 G-VCM Iteration

1: Initialize empty vertex array Y
. For collecting connectable vertices.

2: for pixel i in all pixels do
3: Sample and cache emitter subpath yi
4: for connectable vertex y in yi do
5: Append y to P
6: end for
7: end for
8: Build kd-tree index for Y
9: for pixel i in all pixels do

10: y← yi . Retrieve yi
11: Sample sensor subpath z
12: Initialize empty offset sensor subpaths zoff = {zoff

1 , ...,zoff
4 }

13: for pixel j in pixel i’s neighbors do
14: zoff

j ← Ti j(z) . Sensor subpath shift mapping
15: end for
16: for strategy (s, t) in all connection strategies do
17: EvaluateConnection(y,z,zoff,s, t)

. G-BDPT contribution

. with modified MIS weights in Section 5.
18: end for
19: for connectable vertex zt in z do
20: for emitter vertex y ∈ Y in zt ’s merging kernel do
21: y,s← GetPathAndPredecessorIndex(y)
22: EvaluateMerging(y,z,zoff,s, t)

. Gradient-domain vertex merging in Section 4

. with MIS weights in Section 5.
23: end for
24: end for
25: end for

Figure 7: The case where ys is connectable.

shift mapping and

α
off
E (zn) =


We(zoff

0 )G(zoff
0 ↔zoff

1 )
p(z0)p(z1)

, for n = 0

ρ(zoff
i−1,z

off
i ,zoff

i+1)G(zoff
i ↔zoff

i+1)

p(zi+1)
, for n > 0

(17)

are the weights for offset sensor subpaths. Note that for t ≥ c, zt
and zoff

t are the same vertex.

In case (2), the major problem is that, since zb and zoff
b do not

share the same merging kernel, it is unclear how we can generate
the correlated estimator under the density estimation formulation
in Equation 5. To solve this problem, we propose to construct a
physically valid full path as the offset path and treat the sampling
process as a probabilistic connection. Assume the base emitter path
and sensor path are y and z respectively and the offset sensor sub-
path is zoff. Depending on the material property of ys, our gradient
sampling method is split into the two cases as follows.

Scenario: ys is connectable

In this case, we simply connect ys and zoff
b to form the offset path

xoff = y0...yszoff
b ...zoff

0 as in Figure 7. The measurement contribution
f (xoff) can then be evaluated for the offset path. Assume that the
extended base path is x∗ = y0...ysys+1zb...z0. Then the probability
density of sampling this path is

poff(x∗) = p(y0...yszb...z0)p(ys+1)πr2Jz, (18)

which is the probability of sampling and accepting the base path,
multiplied by the shift mapping’s determinant of the Jacobian from
z0 to zb, Jz =

∣∣∣∂z0...∂zb
/
(∂zoff

0 ...∂zoff
b )
∣∣∣. This way, the offset estima-

tor is simply Ioff
V M = f (xoff)

/
poff(x∗).

Scenario: ys is unconnectable

In this case, we can still use simple connection to obtain consistent
estimators. However, since ys is specular or highly glossy, the con-
nected offset path is likely to have zero contribution, making the
gradient estimator noisy. To solve this, as illustrated in Figure 8,
we utilize manifold perturbation [JM12] to obtain the offset path in
this case. Assume that the closest connectable predecessor of ys is

Figure 8: The case where ys is unconnectable.
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Connectable
Glossy
Specular

Share Half Vectors

Fixed
Fixed

Figure 9: An example of a specular/glossy chain.

yd . We perturb ys+1 to yoff
s+1 = zoff

b such that half vectors of vertices
in between yd and ys+1 are preserved. For the mapping to be re-
versible, we also check if yoff

s+1 can be perturbed back to ys+1. Note
that this reversibility is biased, but converges consistently as the
merging kernel r→ 0 progressively. If the reversibility test fails,
we set the offset path’s contribution to 0, otherwise, a full offset
path xoff = y0...ydyoff

d+1...y
off
s zoff

b ...zoff
0 can be constructed and its

measurement value can be evaluated as f (xoff). Next, we derive
poff(x∗), the probability of the offset path being sampled. To do
this, we observe that any base chain yd ...ys+1 with the same half
vectors for all unconnectable vertices will be perturbed to the same
offset path as illustrated in Figure 9. Let’s denote the half vector
offset space of the base and the offset chain as follows:

{yd+1...ys} ≡ {od+1...os}

{yoff
d+1...y

off
s } ≡ {ooff

d+1...o
off
s },

where od+1...os correspond to the half vectors of yd+1...ys and
ooff

d+1...o
off
s correspond to the half vectors of yoff

d+1...y
off
s . Then, we

arive at the following equation for poff:

poff(x∗) = p(zb...z0)Jz p(y0...ys+1)Jyπr2, (19)

where Jz is the same determinant in Equation 18 that accounts for
the change of variables in the sensor subpath, πr2 normalizes the
merging kernel Kr at zb and Jy =

∣∣∣∂yd+1...∂ys
/
(∂yoff

d+1...∂yoff
s )
∣∣∣ ac-

counts for the change of variables from yd+1...ys to yoff
d+1...y

off
s .

To derive Jy we use the half vector offset space as an intermediate
representation, similarly to G-MLT [LKL∗13]. That is

Jy =

∣∣∣∣ ∂yd+1...∂ys

∂od+1...∂os

∣∣∣∣
∣∣∣∣∣ ∂od+1...∂os

∂ooff
d+1...∂ooff

s

∣∣∣∣∣
∣∣∣∣∣ ∂yoff

d+1...∂yoff
s

∂ooff
d+1...∂ooff

s

∣∣∣∣∣
−1

, (20)

where the middle term evaluates to 1 because the Jacobian
∂od+1...∂os

/
(∂ooff

d+1...∂ooff
s ) is an identity matrix by nature of the

manifold perturbation. The left and right terms can be obtained
from the derivative matrices of the half vector manifold exploration
constraint functions [JM12]. We reuse the open source Mitsuba im-
plementation of this component [Jak10], which takes into account
the case where the chain comprises glossy and specular vertices (by
omitting certain rows and columns in the matrices).

Given poff(x∗), the offset pixel’s path integral is Ioff
V M =

f (xoff)
poff(x∗)

.

5. MIS for G-VCM

In Section 4, we derived how to estimate a neighboring pixel’s in-
tegral using vertex merging. To robustly sample gradients, we need

to combine all estimators from vertex connection and vertex merg-
ing using MIS. Assume a pair of gradient base path x = x0...xn and
its offset xoff = xoff

0 ...xoff
n is generated using strategy VC or V M. Its

corresponding gradient estimator is gVC/V M = IVC/V M − Ioff
VC/V M .

To obtain MIS weight for this estimator, we consider all potential
strategies to sample the same path pair. Depending on which pixel
initiates the paths, there are 2 basic categories. One possibility is
that pixel i sampled x and then suggested xoff for pixel j. In this
case, path x can be sampled by connecting or merging between ev-
ery 2 consecutive vertices. We call this category active strategies.
The powered sum of all active strategies’ pdf is

pact(x) =
n−1

∑
i=0

[pV M,i(x)]β +[N pVC,i(x)]
β. (21)

The other possibility is that pixel j sampled xoff and suggested x
for pixel i. In this case, path xoff can also be sampled by connect-
ing or merging between every 2 consecutive vertices. We call this
category passive strategies. For passive strategies to compare with
active strategies, we need to multiply each of passive strategies’
pdf with their corresponding reverse mapping Jacobian to convert
them to base path’s area probability density. The powered sum of
all passive strategies’ converted pdf is

ppas(xoff) =
n−1

∑
i=0

([pV M,i(xoff)]β +[N pVC,i(x
off)]β)|T ′ji(xoff)|β.

(22)
In summary, the MIS weight is the powered proportion of the strat-
egy being used to all potential active and passive strategies:

ωVC/V M,s(x,x
off) =

[pVC/V M,s(x)]
β

pact(x)+ ppas(xoff)
. (23)

6. Implementation Details

We implemented our method on top of the publicly available G-
BDPT implementation in the Mitsuba renderer [Jak10] and fol-
lowed the pipeline in Algorithm 1.

For each sensor subpath, we decide the merging kernel radius of
the first connectable vertex using ray differentials such that the size
of the merging kernel projected onto the sensor is about the same as
the pixel filter size. We use this kernel size to prevent the smooth-
ing effects of the merging kernel and gradient reconstruction from
conflicting with each other.

Adaptive Merging Kernel We find that using the same kernel
size along a sensor subpath is detrimental to both VCM and G-
VCM since, unlike connection estimators, merging estimators are
highly correlated (especially at “deeper” vertices along the sensor
subpath). This correlation corrupts the MIS weights, which assume
independent estimators. Given this, we shrink the initial merging
radius based on vertex material roughness along the sensor sub-
path: for sensor subpath vertex zt (on z), we use a kernel radius
of rt = 0.510τ(zt−1)rt−1, where τ(zt−1) is the material roughness at
vertex zt−1. Note that we estimate an initial merging radius r1 using
ray differentials. Figure 10 shows the impact of adapting the kernel
merging radius in VCM: bright speckles on the wall are caused by
merges that occur after the first connectable vertex of the sensor
subpath. We smooth these speckles out using an adaptive kernel.
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Reconstruction As with previous work, any reconstruction tech-
nique can be used to combine primal and gradient estimation ob-
tained from our method. We tested L1 and L2 reconstructions, and
the recent control variate-based reconstruction technique [RJN16]
can also be used given additional variance statistics.

7. Results and Discussions

We compare our method to VCM, G-BDPT and the concurrent
work G-PM, all implemented in the Mitsuba renderer [Jak10].
Since the code for G-PM was not readily available at the time, we
implemented G-PM ourselves. For our G-PM implementation, we
only use vertex merging at the first connectable sensor subpath ver-
tex and completely take out connection strategies in G-VCM. To
obtain consistent convergence, the MIS weights introduced in Sec-
tion 5 should be modified such that the pdf of all strategies not
being used is set to 0. Our G-PM implementation is not identical
to the original G-PM, but we show strong similarities between the
two in Section 7.2. The subtle difference should not change the ef-
fectiveness of the algorithm.

All of our experiments are done on a desktop with 12-core Intel
i7-5930K 3.5GHz processor and 20GB memory. Our VCM imple-
mentation takes about twice as much time per iteration compared
to the original BDPT implementation due to the photon gathering
overhead. For the same reason, our method has about 60% over-
head per iteration compared to G-BDPT. We only show L1 recon-
struction for comparison in this section and pick the reconstruction
parameter α = 0.3 for all gradient-domain methods. We use a more
conservative α than used in previous works because our scenes in-
volve many glossy objects. We set the BRDF roughness thresh-
old to 0.01 and merging kernel radius reduction ratio to 0.9 for all
methods. Full resolution images of all methods using both L1 and
L2 reconstruction are provided in our supplemental materials.

We use five test scenes: Glasses, Lamp, Bottle, and Bookshelf
(Figure 15) and Car (Figure 1). In Bottle and Lamp, we modi-
fied the original scene to include SDS paths and glossy reflections.
As with previous gradient-domain methods, we use relMSE =
average[(X − R)2/(R2 + 0.001)], where R is the reference pixel
color and X is the estimated image color. We discard the 50 pix-
els with highest error due to the corruption from strong light paths
that reach the sensor through specular-only interactions.

Figure 11 shows the relative mean squared error (relMSE) con-
vergence curve for all scenes. We can see that our method has lower
relMSE than VCM in all test scenes. In Glasses and Bottle, G-
BDPT has almost flat convergence due to SDS paths that it fails

Same Kernel Size Adaptive Kernel Size

Figure 10: Comparison between with and without adaptive kernel
in VCM with 16 iterations.

to efficiently capture. In Car, Bookshelf and Lamp where the con-
tribution of SDS paths is relatively small, G-BDPT has less error
than our method initially due to its smaller overhead, but it slows
down significantly and gets surpassed by our method after a few
minutes when SDS paths become its bottleneck. On the other hand,
although G-PM is very good at handling SDS paths, the overall im-
age quality is hardly competitive due to the large contribution from
multiple diffuse/glossy interactions in our test scenes. In compar-
ison, our method has robust convergence and outperforms VCM,
G-BDPT and G-PM in the long run.

In Figure 1 and Figure 15, we show equal time comparison of our
test scenes. Thanks to the denoising power of gradients, our method
achieves significant noise reduction compared to VCM. Compared
with gradient-domain methods, our method robustly captures all
potential light paths across every scene. G-BDPT has difficulty in
sampling SDS paths, such as the interior of the Car and the caus-
tics from the bottle (seen through the goblet) in Bottle. Here, our
method is able to sample these paths well using vertex merging
strategies. Although G-PM is also able to capture SDS paths, it
generally fails on glossy surfaces (as its primal domain counter-
part). Examples of this case include the glossy reflection of the
lamp in Bookshelf and of the table in Glasses. Here, our method is
able to rely more on the more efficient vertex connection strategy.
Overall, our method demonstrates all-round performance improve-
ments by leveraging the best of both vertex connection and merging
schemes, where techniques that rely exclusively on connection or
merging can have difficulty sampling certain transport paths.

7.1. Limitations

Although our method is generally more robust than G-PM and G-
BDPT, there are still certain types of light paths that are hard to
capture even with G-VCM. For example, in the first row of insets
for Lamp, the yellowish glossy caustics near the bottom of the glass
egg are poorly captured by all methods. This is because neither ver-
tex connection nor vertex merging is efficient at handling specular-
glossy interactions. In addition, our method inherits the low fre-
quency image assumption as with all current gradient-domain ren-
dering techniques. Therefore, G-VCM may perform worse than
VCM in scenes with very rich high frequency details.

7.2. Comparison with G-PM

In this section, we illustrate the similarities and differences between
case (2) of the vertex merging part of our method introduced in
Section 4 and the concurrent work G-PM [HGNH17]. In general,
G-PM shift maps the base photon from the base sensor vertex’s ker-
nel to the offset sensor vertex’s kernel, while our method directly
shift maps the base photon to the offset sensor vertex. Both meth-
ods apply different shift mapping depending on the connectability
of a photon’s predecessor.

In the connectable predecessor case as shown in Figure 12, G-
PM first decides the offset photon’s position y∗s+1 within the offset
sensor vertex zoff

b ’s kernel such that the base and offset photon po-
sitions in the local frames of their kernels are preserved. Then, a
ray from ys to y∗s+1 is fired to find the physical intersection point
yoff

s+1 in the scene, which is then used as the offset photon for the
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Figure 11: Error (relMSE) plots of all 5 test scenes, comparing G-BDPT, G-PM, G-VCM using L1 reconstruction and VCM.

G-VCMG-PM

Preserve Kernel Positions

Figure 12: G-PM and vertex merging of G-VCM in connectable
predecessor case.

offset kernel’s density estimation. In this case, our method directly
connects ys and zoff

b and computes the offset path’s contribution as
introduced in Section 4.

In the unconnectable predecessor case as shown in Figure 13,
G-PM first finds the intersection point yoff

s+1 in the scene following
the same procedure as in the connectable predecessor case. Then, a
manifold perturbation is performed to move the base photon vertex
ys+1 to the offset photon vertex yoff

s+1, preserving half vectors of
preceding unconnectable vertices. This way, an offset emitter sub-
path can be constructed and used in density estimation. Finally, to
check reversibility, G-PM tests the visibility between zb and yoff

s .
If the visibility test fails, it suggests that the shift mapping is not
reversible and the offset path’s contribution is set to zero. In our
case, we directly apply a manifold perturbation to move the photon
vertex ys+1 to the offset sensor vertex zoff

b and estimate the offset
path’s contribution as introduced in Section 4.

The behaviors of these two methods become increasingly similar
as the merging kernel size progressively shrinks to 0. As mentioned
in Section 6, we use ray differentials to initialize the merging kernel
radius of the first connectable vertex. The same strategy is also used
in G-PM. This suggests that the initial merging radius is very small
so that the behaviors of both methods in this case are very similar
from the beginning.

Despite similar asymptotic behavior, the power of G-VCM
comes from our probabilistic connection formulation, which allows
us to easily combine gradient-domain vertex merging with other
complementary strategies (as in Algorithm 1). This combination is
the key to the increased robustness of our algorithm compared to
previous work. In contrast, G-PM only performs density estimation
once at the first connectable vertex, resulting in robustness issues
in many scenarios (see Section 7).

In figure 14, we show a full image comparison between G-PM
and G-VCM in the Bottle scene. The scene settings and run time
are the same as in figure 15. Here, we use L2 reconstruction in both

G-PM G-VCM

Figure 13: G-PM and vertex merging of G-VCM in unconnectable
predecessor case.

methods in order to highlight the quality in gradient estimation.
As can be seen from the images, G-PM struggles to obtain high
quality gradients on specular surfaces due to low photon density. In
comparison, our method achieves much better gradient estimation
overall by leaning more on vertex connection and alternative vertex
merging strategies when necessary.

8. Conclusions and Future Work

We propose G-VCM, a new method to utilize the advantages of
VCM in the gradient domain context. Our method is able to ro-
bustly sample gradients in scenes with both multiple diffuse/glossy
interactions and specular-diffuse-specular paths, which are chal-
lenging for both G-BDPT and the concurrent work G-PM. Through
this robust gradient sampling unification, we are also able to
achieve significant noise reduction and lower RMSE error com-
pared to VCM, its primal domain counterpart. As we have demon-
strated in Section 7, our method achieves robust convergence in
scenes with multiple difficult light path types, where both G-PM
and G-BDPT have slow convergence.

For future work, we believe that an asymptotic error analysis of
the progressive kernel shrinkage strategy for G-VCM will provide
some useful insights. Another promising avenue is to add Markov
chain Monte Carlo strategies to VCM in the gradient domain con-
text following the primal domain work [vOHK16].
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Figure 15: Equal time comparison between our method, G-BDPT, G-PM and VCM with L1 reconstruction for all gradient domain methods.
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