
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2017)
P. Sander and M. Zwicker (Editors)

Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection
Layers

Arend Buchacher1,2 and Marius Erdt2

1University of Koblenz-Landau, Germany
2Fraunhofer IDM@NTU, Visual and Medical Computing, Singapore

(a) Left View and Re-projection Texture Array (b) Image-based Compositing (c) Composed Right View

Figure 1: Principle of the single-pass stereoscopic GPU ray casting method. The left view is rendered via ray casting. (a) Vertical scan-lines
of rays re-project ray segments to specific layers of a texture array. (b) Subsequently, the layers are blended in an image-based compositing
pass. (c) This results in the right view.

Abstract
Stereoscopic rendering of volume data for virtual reality applications is costly, as the computation complexity virtually doubles
compared to common monoscopic rendering. This paper presents a single-pass stereoscopic GPU volume ray casting technique
which significantly reduces the time needed to produce the second view. The approach builds upon previous work on ray segment
re-projection techniques for non-parallel software ray casting that is initially inapplicable to GPU ray casting. Following the
previous approach, ray casting is only executed for the left view. At the same time, ray segments are re-projected to layers of a
texture array which leverages the constraints of the previous approach. In a subsequent compositing pass the layers are blended
to produce the final image. Additionally, ways to determine an appropriate set of parameters are presented. Performance
experiments show significant time savings on producing the second view over the naive two-pass approach achieving well over
60% speed-up in a typical virtual reality setup. The trade-off is an overhead of memory consumption that is proportional to the
number of layers and image resolution and a marginal reduction in image quality. In qualitative experiments, average DSSIM
values of less than 1% were recorded.

1. Introduction

In recent years, efficient stereoscopic rendering has been becoming
a field of interest again. Various new consumer products of head-
mounted displays (HMDs) for virtual reality (VR) applications are
driving this interest. In the medical field VR is regaining interest as
well where in many cases, volumetric medical data needs to be dis-
played [KJP∗15, AHKA12]. Volumes are commonly rendered di-
rectly using GPU accelerated image-based ray casting techniques
in which the volume is sampled along rays shot from the eye’s cen-

ter. Intuitively, to produce a stereo pair of images the volume is
rendered once from the left and once from the right eye, effectively
doubling the rendering time.

In software volume rendering where each pixel can be processed
in any desired order, projective properties between the two views
can be utilized. During the traversal of a ray for one view, each
shaded sample can be re-projected to the second view’s image.
The technique presented by Adelson and Hansen [AH94] requires
a strict vertical scan-line order of ray processing to ensure the sam-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/sre.20171190

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20171190


A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

ples are accumulated in the correct order in the second view, i.e.
front-to-back or back-to-front. The substantial increase in perfo-
mance when using GPU accelerated ray casting techniques as pre-
sented by Roettger et al. [RGW∗03] rises from the parallelization
of ray processing. Unfortunately, this is in conflict with the require-
ment stated above which renders the fast stereo technique inappli-
cable. The confinement of GPU programs to access and write to
multiple images and different image coordinates arbitrarily is an-
other problem that was long insuperable. For example, in OpenGL
this ability was added to the core profile only in 2011 through the
image load store extension.

The current state-of-the-art method to visualize volumetric data
in 3D at interactive frame rates is GPU ray casting [RGW∗03]. One
way to efficiently generate alterative views from existing data is
image-based rendering. A notable technique commonly used with
polygonal rendering are Layered Depth Images (LDI) that were
first introduced by Shade et al. [SGHS98]. For volume rendering, in
which continious transparency attenuation is a key factor to the per-
ceived image, layered surface representations are not as expedient.
An LDI adaptation for volumes are Explorable Volumetric Depth
Images presented by Frey et al. [FSE13]. The view is subdivided
into a sliced representation based on depth. Subsequent frames are
produced by rendering frusta that approximate the volume’s color
and opacity between slices. The frusta must be sorted before ren-
dering which poses the need to perform GPU-CPU synchroniza-
tion. The recent work by Lochmann et al. [LRBR16] yields a sim-
ilar approach in which the old view is encoded in a piece-wise an-
alytic representation of emission and absorption coefficients. Sub-
sequent frames are produced by sampling this representation along
the new rays. In principle, the above methods may be classified
as gathering approaches in which the resulting image is produced
by gathering colors from an intermediate representation of the first
view. In contrast, the fast stereo volume rendering technique may
be classified as a scattering approach in which the resulting image
is produced by scattering colors to the target image. Additionally,
stereo rendering poses just one of many use-cases for the above
methods. They address more generally the efficient generation of
frames from arbitrary views in a common single-view setup. The
work by Hübner and Pajarola [HP07] addresses the particular case
of multi-view rendering for auto-stereoscopic displays. They re-
frain from adopting the approach by He and Kaufman [HK96] as
significantly more and stronger artifacts would be expected for N
views. Also, the volume is rendered using a texture-based method
using viewport-aligned quadrilaterals.

The remainder of the paper is structured as follows. In Section 2
background and previous work is described, most notably the fast
stereo technique that poses the foundation to this paper. In Sec-
tion 3 the GPU accelerated approach is presented, describing in
detail the buffering architecture, array size reduction and optimal
parameter estimation. In Section 4 qualitative and quantitative ex-
perimental results using current generation hardware are presented
and discussed. Section 5 concludes the paper.

2. Background and Previous Work

The technique is based on the works of Adelson and Hansen
[AH94] and the extension by He and Kaufman [HK96]. Their work

describes how to efficiently produce stereoscopic views of a vol-
ume.

2.1. Fast Stereo Volume Rendering

Figure 2: Scan-line order re-projection of samples along rays
(based on figure from [AH94]). li: left view’s ray, colored circles:
sample colors, r j: right image’s pixel. The projective pixel bound-
aries are indicated by the light gray dashed lines.

In short, the work by Adelson and Hansen [AH94] proposes that
a stereo pair of images can be produced by rendering the left view
using conventional ray casting from the left eye’s center. At the
same time, the right view is produced by re-projecting each sam-
ple point along the left view’s rays to the right view’s image and
accumulating the color. The right image is thus produced in a frac-
tion of the time, since the computationally expensive sampling and
shading part is only performed once. In the paper by He and Kauf-
man [HK96] the algorithm is further enhanced by significantly re-
ducing the memory access operations to the right view’s image
pixels. By implementing interpolation steps the color-accuracy is
enhanced as well. Given that the angle between two correspond-
ing rays is generally small, multiple consecutive samples would be
re-projected to the same right view’s image pixel. The proposed
segment composition scheme first accumulates a segment of a left
view’s ray which corresponds to the range of one right view’s im-
age pixel, before re-projecting its color.

It should be noted that both papers discuss only the case of par-
allel projection. The geometric properties between the views are
simpler compared to perspective projection. However, the general
idea can be adapted to perspective projection as done in the work by
Wan et al. [WZKQ00]. Perspective projection is also more suitable
for current generation HMDs and VR applications. The key obser-
vation is illustrated by Figure 2. If rays are evaluated in the correct
order, the right view’s rays will accumulate the values in the same
order as well. If the left view’s rays are processed right to left and
each sampled front to back, then the right view rays will inherently
accumulate the values from front to back as well [AH94]. This ge-
ometric property is also true if perspective projection is used and
the image planes are chosen to be coplanar and parallel.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

12



A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

Figure 3: 3D diagram of the stereoscopic perspective projection
geometry. A ray is cast from the left eye through the image plane
into space at an angle. Dashed rectangle: projection plane, El:
left eye, Er right eye, h: focal length, e: eye distance, P,P′: sam-
ple points on left view’s ray, Pr,Pr

′: re-projected sample points, yr:
height of epipolar line, d: distance between re-projected points.

2.2. Stereoscopic Perspective Projection Geometry

Figure 3 illustrates the most relevant stereoscopic perspective pro-
jection geometry properties using the pinhole camera model. A seg-
ment between two points P(x,y,z) and P′(x′,y′,z′) with h ≤ z′ ≤ z
on a ray that is emitted from the left eye El is re-projected to a
segment of at most length d on the epipolar line. This length is
equivalent to the distance between the re-projected start and end
points Pr(xr,yr,h) and Pr

′(x′r,yr,h) with

d =
eh
z
− eh

z′
. (1)

Equation 1 is derived from the observation that for any point on
a left view’s ray, for its re-projected x-coordinate xr it yields

xr =
hx
z

(2)

=
h(z tanα− e)

z

= h tanα− eh
z

(3)

where α is defined by the horizontal angle of the ray to the z-axis.

The views are setup such that both images lie on the same pro-
jection plane and are only offset along the x-axis by eye distance e.
If the distance e between the two eyes is small enough, the images
can overlap. In any case, for every left view’s ray the correspond-
ing epipolar line runs parallel to the x-axis at height yr on the image
plane.

3. Proposed Method for GPU Ray Casting

The proposed method is split into two phases, as illustrated by Fig-
ure 1. First, the left view is rendered using regular ray casting dur-
ing which accumulated colors of ray segments are re-projected and
stored in layers of a texture array buffer. Second, the textures are

blended in the correct per-pixel order such that the right view is
composed.

3.1. Re-Projection Layers

As described in Section 2.1 the order of processing the left view’s
rays is crucial. To assure the segment colors are blended in a front-
to-back manner, it must be in vertical scan-lines from the right-
most pixels to the left. For software renderers the ray-by-ray or-
der can easily be enforced. In GPU accelerated volume ray casting
many rays are traversed in parallel [RGW∗03]. However, the order
is arbitrary and commonly the hardware rasterizer arranges blocks
of pixels to be processed in parallel. Additionally, multiple blocks
may be processed in parallel.

Attempting to control the order of fragment shader instances us-
ing the vertex shader or altering the shape of the blocks to resemble
scan-lines using a GPGPU ray caster is not universally applicable.
One such attempt is to reduce the rasterizer’s influence on the frag-
ment order by rendering a single vertex per pixel as a point. Vertices
are arranged in scan-line order in the vertex buffer. Another idea is
to use a GPGPU implementation of a ray caster and to invoke scan-
lines of pixels as local work groups. In both cases, some hardware
might in fact process the rays in scan-line order, whereas other pro-
cesses multiple scan-lines or multiple pixels in parallel. As a result
flickering artifacts occur, as the order of writes to the right image
pixels is arbitrary.

The solution presented in this paper lies within decoupling the
compositing from the acquisition of segment colors by introducting
a texture array buffer. Instead of reading, compositing and writing
the segment colors to the right image directly, each scan-line of
rays is assigned a layer of a texture array instead. Following the
ray casting phase, the layers are composited to obtain the final right
view’s image. Thus, a pixel’s final color is now independent of the
order in which horizontally adjacent rays are processed. Instead, it
depends on the order in which the layers are blended which is fixed.
The re-projection layers can be filled in parallel.

Figure 4: Re-projection of samples along rays to layers of a texture
array. layerk: texture array layer. The blend order is front-to-back.

The approach is illustrated by Figure 4. Based on the horizontal

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

13



A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

image coordinate, each ray is assigned a layer of the texture array.
The re-projection to right image coordinates is performed as be-
fore. The segment color is written to the corresponding position in
the layer texture. When all rays have been processed, the final im-
age is composited by blending the layers. Note that no additional
depth information is stored in the layers. The blend order results
from the mapping of the layers to the left view’s rays. Front-to-
back blending of the layers in a right-most to left-most ray order
thus mimics the front-to-back ray casting of the right view.

3.2. Re-Using Layers for Multiple Rays

The naive implementation would require as many textures as the
image is wide in pixels, i.e. rays. To reduce the number of layer
textures it’s possible to share them between multiple rays. The key
observation is that each ray has a start and end point and thus only
writes to a bounded horizontal segment of the texture. The space
outside of this segment could be used by another ray which writes
the corresponding image coordinates, but initially on a different
layer. In turn, this ray also only writes to a bounded segment of the
texture. Following this pattern, the same texture could be assigned
to vertical scan-lines of rays in equal regular steps. The required
step size can be estimated using the epipolar geometric properties
between the left and right view and the rays. The layers are overlap-
free if the step size is at least as big as the maximal re-projected
length of any ray.

When re-using layer textures for multiple rays the compositing
phase must be modified. Before, a layer’s index indicated its spa-
tial relationship to the other layers and thus the blend order. The
fully transparent areas in each texture simply corresponded with
the empty space that is not covered by the rays. Now, for each pixel
the index of the texture must be identified in which the color of
the outmost sample can be found. I.e. the layer that was assigned
to the right-most left view’s ray that re-projected a color to this
right view’s pixel position. Further details on the calculations can
be found in Section 3.3.

Figure 5: Re-projection of samples along rays to reduced number
of layers of a texture array. Per-pixel front-to-back blend order of
layers.

The described structure is illustrated by Figure 5. The segment

each ray traverses is indicated in orange. In this example each is ap-
proximately two pixels wide. The second index of each left view’s
ray li,k identifies the layer it writes to. The second index of each
right view’s pixel rj,k identifies the entry layer at which the front-
most color is to be found. From this layer, as many layers are
blended as the epipolar line segments are wide. A modulo opera-
tion using the number of layers is applied to the current index each
time it’s incremented.

Relevant properties that influence the pixel length dp of a epipo-
lar line segment are listed below.

1. Distance between cameras e, where an increase in distance in-
creases the pixel length.

2. Distances of start and end points of ray to camera, where an in-
crease of distance of the end point P and a decrement of distance
of the start point P′ increase the pixel length, respectively.

3. Angle of ray to camera view direction. For a fixed ray length, the
segment is maximal when the ray is parallel to the view direction.

4. Width resolution of images w, where an increase of resolution
increases the pixel length.

5. Focal length h, where a decrease of length increases the pixel
length. Commonly corresponds with the distance to the near
plane of the view frustum.

3.3. Estimating Texture Array Buffer Size

Depending on which parameters can be set to a constant, the suit-
able number of layers or rendering parameters may be calculated.
For example, using one of the current consumer VR headsets, such
as the HTC Vive, some of the properties can be fixed. It has a dis-
play resolution with a width of w = 1080 pixels per eye, a rec-
ommended field of view of 2α = 110 degrees and a default eye
distance of e = 0.065 meters.

It is possible to estimate the minimal number of textures that
still ensures that no two rays will interfere with each other. This
is achieved by estimating the maximal pixel range dp that any ray
could write to. For quick reference, the following equations will be
used in the subsequent descriptions. They comprise the pixel space
transformation (Eq. 4, 5), finding the maximal segment lengths for
infinite ray length (Eq. 6), for finite ray length (Eq. 7) and for
known bounding sphere radius (Eq. 8) and finding the minimal fo-
cal length given the other parameters (Eq. 9).

s =
w

2h tanα
(4)

dp = ds (5)

d∞ = e (6)

dz = e− eh
z

(7)

dr = e− eh
h+2r

(8)

h =−r+

√
r2 +

edw
2dp tanα

(9)

It is sufficient to first estimate the maximal epipolar line segment
length d. The subsequent transformation to pixel space is achieved

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

14



A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

by a scalation by s using the constants, following equations 4 and
5.

The optimal, i.e minimal, value of dp can be approximated
through different approaches. One approach is to assume that any
given ray ranges from the left camera’s near plane all the way to
infinity. Given that both view directions are parallel, any point at
the horizon is re-projected to the same position as in the left im-
age. A point on the near plane will be re-projected to a point which
lies one eye distance e away on the image plane. Thus, the segment
on the epipolar line from start to end will have length d∞ = e (cf.
Equation 6).

The distance to the far plane or outmost exit point of all rays can
also be taken into account. Equation 7 holds for a ray that begins at
the near plane at distance h and ends at distance z, resulting in the
estimate dz. This is suitable for the case in which a volume might
enclose the entire view frustum, for example a volumetric terrain.

Considering the case in which the inspected volume has a fixed
or maximal size, the range can be computed by finding the longest
possible ray that enters the volume at the image plane. Commonly,
volumes are represented by a bounding box, thus the longest dis-
tance between two points on the bounding box is defined by its
diagonal with length 2r. The end point of the longest possible ray
then lies at the distance z = h+2r, which corresponds to the ray that
is emitted through the center of the view. Thus, the estimate dr is
found following Equation 8. In this case the re-projected segment
on the epipolar line changes with the distance to the volume. Re-
fer to Figure 3, imagining the volume stretches between P′ and P.
As the entry and exit points move away from the near plane the re-
projected points P′r and Pr drift to the right while d becomes shorter.
As stated in Section 3.2 the entry layer to each right view’s pixel
needs to be identified to ensure the correct blend order. The corre-
sponding left view’s ray lies at an offset of eh

z′ −e to P′r. The index is
determined by calculating the corresponding left view’s image co-
ordinate. Furthermore, the compositing loop can be stopped after
fewer iterations as d is also shorter.

0.2 0.4 0.6 0.8 1
0

20

40

60

80

h [m]

d
[p

x]

2r=10cm

2r=50cm

2r=1m

2r=2m

2r=Inf

p

Figure 6: Pixel range dp plotted against focal length h for different
object sizes 2r (colored lines). dp calculated with e= 0.065m, 2α=
110◦, w = 768px.

Lastly, the minimal focal length h, given all the other parameters
including the maximal pixel distance dp can be found following
Equation 9. The plot in Figure 6 exemplifies how the focal length
maps to the number of layers at different object sizes. The upper
bound is given by an object infinite in size, which relates to the
case of a ray cast to infinity. For quick reference of practical focal
lengths, Figure 7 illustrates typical VR setup configurations. Setups
vary especially in distance and simulated size of the object. De-
ceeding a distance of 0.3m might be undesirable due to squinting.
In a room-scale VR application, a volume might be largely scaled
up to walk around it at a comfortable distance.

Figure 7: Diagram of VR setups illustrating distances of HMD to
object and object sizes.

4. Experiments

The performance experiments were conducted on a Windows 10
PC equipped with a Nvidia GTX 1080 graphics card, an Intel Core
i7-6700K CPU and 64 GB of RAM.

Volume Size Voxels
Solid Box 64×64×64 262,144
DTI 128×128×58 950,272
CT Head 256×256×113 7,405,568
Visibile Male 128×256×256 8,388,608
Engine 256×256×256 16,777,216
Sheep Heart 352×352×256 31,719,424
Piggy Bank 512×512×134 35,127,296
Bonsai 512×512×154 40,370,176

Table 1: Overview of volume data sets used for experiments.

A variety of CT, MRI, DTI and synthetic sample data sets of
varying resolutions and density properties were used for the exper-
iments. An overview is given in Table 1. A volume is loaded into a
single-component floating point 3D texture.

The ray caster is implemented as a fragment-shader. Each ray
samples the 3D texture at a step size of 1

2 v between the front and
back faces of the volume’s bounding box where v is defined as the
minimal voxel extent in texture space. The sample color is retrieved

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

15



A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

using a 1D transfer function texture lookup. Early ray termination
is implemented with an opacity-threshold of 0.99. The volume is
scaled such that r = 1 meter. The focal length h is calculated ac-
cording to Equation 9.

The structural dissimilarty measure (DSSIM) is used to assess
the image quality of the result image. It’s a measure derived from
the structural similarity measure (SSIM) first introduced by Wang
et al. [WBSS04]. Luminance, structure and contrast differences be-
tween the images influence its value. It ranges from 0 to 1 where a
value of 0 indicates equality. For the experiments, standard SSIM
stabilization parameters and a window size of 8×8 were used.

The definition for speed-up (time saving) is adopted from
[HK96]:

V = 1− Tl+r−Tl

Tr
. (10)

Here, Tl+r is the total time for rendering of a stereo pair in one
pass, Tl is the time for rendering the left image, and Tr is the time
for rendering the right image. Thus, the definition reflects that the
technique does not produce a speed-up for rendering the left image,
but only that time can be saved on generating the right image. The
stated values for DSSIM, Tl+r and V are the averages over a 50-step
360◦ rotation of the volume around the y-axis.

4.1. Qualitative Results

For a qualitative evaluation Figure 8 gives an overview of gener-
ated views of the sample volumes. For each ray sample a shadow-
ing effect is applied by accumulating the opacities of 24 samples in
direction of a parallel light source and multiplying the result with
the sample’s color. Additionally, an ambient occlusion effect is ap-
plied by averaging the opacitites of 14 samples on a sphere around
the sample and multiplying the result with the sample’s color.

DSSIM values are generally low, but not zero. Part of the error
is due the fact that distances between samples on the left rays are
slightly different from the right. Therefore the emission and absorp-
tion integral is slightly different as well. Similar to the approach
in [LRBR16] the error could potentially be reduced by encoding
emission-absorption-coefficients in each layer and calculating the
distance between layers during the compositing phase. Another ap-
proach would be adapting the linearly-interpolated re-projection
scheme proposed in [HK96]. Note that neither approach would be
able to achieve full equality.

Due to early-ray termination of left view’s rays, some informa-
tion might be missing near high opacity structures. For example,
missing samples become evident near the bonsai tree’s trunk in Fig-
ure 8g. However, more often not all rays that run across the same
image region are terminated early. Thus, the effect is not as dras-
tic as in common LDI rendering where hole-filling strategies such
as [SA12] become necessary.

Also note that in the experimental VR setup with a high field
of view the volumes generally did not cover the entire viewport,
arguably affecting the DSSIM values in a favorable way.

(a) Solid Box (b) DTI

(c) Engine (d) CT Head

(e) Visible Male (f) Sheep Heart

(g) Bonsai (h) Piggy Bank

Figure 8: Experimental results for different volumes. Detail views
from top to bottom (resp. left to right): Result, reference, per-
channel DSSIM image (on white background). Rendered at reso-
lution 7682, 32 layers, e = 0.065m, 2α = 110◦, h = 0.435m.

4.2. Quantitative Results

Figure 9 illustrates the arbitrary shading method used to
parametrize shading complexity on a continuum. The method is

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

16



A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

Figure 9: Shading method using random directional vectors as di-
rectional light sources. The (x,y,z) coordinates of a vector are used
as the (r,g,b) light intensities coming from that direction. Addi-
tional samples along a direction accumulate the occlusion towards
that light source. Left to right: 1 direction totaling 0 samples, 1
direction totaling 4 samples, 4 directions totaling 16 samples, 16
directions totaling 64 samples.

inspired by Monte Carlo Volume Rendering [CSK03] in that a sam-
ple’s color results from additional samples taken from random di-
rections around it. Each direction is traced for up to 4 steps to es-
timate the amount of light coming through from that direction. In-
creasing the amount of directions and number of additional samples
increases image quality and reduces noise. Thus, the number of ad-
ditional texture reads is used as an indicator for shading complexity
in general.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 8 16 24 32 40 48 56 64

V
 (

Sp
e

e
d

u
p

)

Shading Samples

CT Head Solid Box Engine Visible Male

Sheep Heart DTI Piggy Bank Bonsai

Figure 10: Recorded speed-up V plotted against shading complex-
ity, represented by number of additional samples required to shade
a ray sample.

Figure 10 depicts the measurements of the average speed-up
versus the number of additional shading samples. All experiments
were conducted at a resolution of 7682 pixels using 32 layers. Gen-
erally, the break-even point at which the overall cost of shading
outweighs the memory access overhead is reached at relatively low
shading complexities. For example, with only 4 shading samples,
a stereo image pair of the Visible Male volume is produced at
10.75 milliseconds, 10.2% speed-up. For experiments with lower
sampling densities for reasons such as regions of fully transparent
samples, lower volume resolution, frequent early ray termination,
positive speed-up is reached at slightly higher shading complexity.
In either case, positive speed-up is reached at real-time rendering
times of 10 to 20 milliseconds per stereo image pair. At high shad-
ing complexity, speed-up of well above 75% is achieved.

Size [px] 32 layers 64 layers 96 layers
5122 64 MB 128 MB 192 MB
7682 144 MB 288 MB 432 MB
10802 284.76 MB 569.53 MB 854.29 MB
15122 558.14 MB 1116.28 MB 1674.42 MB

Table 2: Memory consumption for different combinations of num-
ber of layers and image sizes. Each pixel holds four 16 bit floating
point components (RGBA).

The speed-up V depends on many factors. Most notably the sam-
pling and shading complexity and the relation between the compu-
tational overhead to the total render time. The time needed each
frame for clearance and compositing is nearly constant for a given
size and number of layers. Figure 11 depicts measured overhead
computation times. Note that while compositing is generally quick,
texture clearing is more prone to become a bottleneck at short ren-
dering times. For example, an average of 1.65 milliseconds of the
7.91 milliseconds recorded for the DTI data set (cf. Figure 8b) were
spent on texture clearing. Additionally, the arbitrary image write
performance is generally not as optimized as the fragment shader
output pipeline. In fact, for simple volume rendering using only a
transfer function look-up, but no additional shading samples, the
proposed method could generally not out-perform rendering the
two views seperately. The minimal focal length h dictates the near
plane distance used for rendering. Fortunately for VR applications,
current generation HMDs generally have a high field of view such
that h is relatively small even at high resolutions.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

16 24 32 40 48 56

C
le

ar
 T

im
e

 [
m

s]

Layers

512² 768² 1024²

(a) Texture Clearing

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

16 24 32 40 48 56

C
o

m
p

o
si

ti
n

g 
Ti

m
e

 [
m

s]

Layers

512² 768² 1024²

(b) Compositing

Figure 11: Plots of overhead computation times against number of
layers for different image resolutions. Texture clearing perfomed by
copying data from a pixel buffer object (PBO).

The texture array creates a memory overhead that is not insignif-
icant. Given an image size of w2, layer count l, bit depth b and
number of channels c the consumed memory M can simply be cal-
culated as M = w2lbc. Table 2 exemplifies the memory consump-
tion for different image sizes and number of layers. Using higher bit
depths and floating point formats reduces the effect of quantization
on the values produced by ray segments.

5. Conclusion

This paper presented a single-pass stereo rendering technique for
GPU ray casting. To this end, the ray casting fragment shader is
extended by a re-projection phase in which ray segment colors are

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

17



A. Buchacher & M. Erdt / Single-Pass Stereoscopic GPU Ray Casting Using Re-Projection Layers

written to layers of a texture array. The second view is efficiently
produced in a fast compositing pass in which the buffered colors
are accumulated. Multiple factors such as resolution, array size and
field of view constrain the applicable near plane distance. Speed-up
over rendering views seperately depends largely on the sampling
and shading complexity.

Acknowledgments

This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its International Research
Centres in Singapore Funding Initiative.

References

[AH94] ADELSON S. J., HANSEN C. D.: Fast stereoscopic images
with ray-traced volume rendering. In Proceedings of the 1994 Sym-
posium on Volume Visualization (New York, NY, USA, 1994), VVS
’94, ACM, pp. 3–9. URL: http://doi.acm.org/10.1145/
197938.197945, doi:10.1145/197938.197945. 1, 2

[AHKA12] ADESHINAA A., HASHIMB R., KHALIDC N., ABIDIND
S. Z.: Medical volume visualization: decades of review. Computer Sci-
ence 1 (2012), 152–157. 1

[CSK03] CSEBFALVI B., SZIRMAY-KALOS S.-K.: Monte carlo vol-
ume rendering. In Proceedings of the 14th IEEE Visualization 2003
(VIS’03) (Washington, DC, USA, 2003), VIS ’03, IEEE Computer Soci-
ety, pp. 59–. URL: http://dx.doi.org/10.1109/VIS.2003.
10000, doi:10.1109/VIS.2003.10000. 7

[FSE13] FREY S., SADLO F., ERTL T.: Explorable volumetric depth
images from raycasting. In Proceedings of the 2013 XXVI Conference
on Graphics, Patterns and Images (Washington, DC, USA, 2013), SIB-
GRAPI ’13, IEEE Computer Society, pp. 123–130. 2

[HK96] HE T., KAUFMAN A.: Fast stereo volume rendering. In Proceed-
ings of the 7th Conference on Visualization ’96 (Los Alamitos, CA, USA,
1996), VIS ’96, IEEE Computer Society Press, pp. 49–ff. URL: http:
//dl.acm.org/citation.cfm?id=244979.245000. 2, 6

[HP07] HÜBNER T., PAJAROLA R.: Single-pass multi-view volume ren-
dering. In Proceedings of IADIS Multi Conference on Computer Science
and Information Systems (2007), pp. 50–58. 2

[KJP∗15] KING F., JAYENDER J., PIEPER S., KAPUR T., LASSO A.,
FICHTINGER G.: An immersive virtual reality environment for diagnos-
tic imaging. 1

[LRBR16] LOCHMANN G., REINERT B., BUCHACHER A., RITSCHEL
T.: Real-time novel-view synthesis for volume rendering using a
piecewise-analytic representation. In Vision, Modelling & Visualization
(2016). 2, 6

[RGW∗03] ROETTGER S., GUTHE S., WEISKOPF D., ERTL T.,
STRASSER W.: Smart hardware-accelerated volume rendering. In Pro-
ceedings of the Symposium on Data Visualisation 2003 (Aire-la-Ville,
Switzerland, Switzerland, 2003), VISSYM ’03, Eurographics Associa-
tion, pp. 231–238. 2, 3

[SA12] SOLH M., ALREGIB G.: Hierarchical hole-filling for depth-
based view synthesis in ftv and 3d video. IEEE Journal of Selected Top-
ics in Signal Processing 6, 5 (Sept 2012), 495–504. doi:10.1109/
JSTSP.2012.2204723. 6

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Lay-
ered depth images. In Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques (New York, NY,
USA, 1998), SIGGRAPH ’98, ACM, pp. 231–242. URL: http:
//doi.acm.org/10.1145/280814.280882, doi:10.1145/
280814.280882. 2

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612.
doi:10.1109/TIP.2003.819861. 6

[WZKQ00] WAN M., ZHANG N., KAUFMAN A., QU H.: Interactive
stereoscopic rendering of voxel-based terrain. In Proceedings IEEE Vir-
tual Reality 2000 (Cat. No.00CB37048) (2000), pp. 197–206. doi:
10.1109/VR.2000.840499. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

18

http://doi.acm.org/10.1145/197938.197945
http://doi.acm.org/10.1145/197938.197945
http://dx.doi.org/10.1145/197938.197945
http://dx.doi.org/10.1109/VIS.2003.10000
http://dx.doi.org/10.1109/VIS.2003.10000
http://dx.doi.org/10.1109/VIS.2003.10000
http://dl.acm.org/citation.cfm?id=244979.245000
http://dl.acm.org/citation.cfm?id=244979.245000
http://dx.doi.org/10.1109/JSTSP.2012.2204723
http://dx.doi.org/10.1109/JSTSP.2012.2204723
http://doi.acm.org/10.1145/280814.280882
http://doi.acm.org/10.1145/280814.280882
http://dx.doi.org/10.1145/280814.280882
http://dx.doi.org/10.1145/280814.280882
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/VR.2000.840499
http://dx.doi.org/10.1109/VR.2000.840499

