
Ray Traced Stochastic Depth Map for Ambient Occlusion

Felix Brüll René Kern Thorsten Grosch

TU Clausthal, Germany

(a) Volumetric AO (0.28ms)
[LS10]

(b) + Stochastic Depth (0.68ms)
[VSE21]

(c) + Ours (0.54ms) (d) Reference (1.20ms)
[BKG22]

Figure 1: Ambient occlusion with many occluders in a small tower scene with a spiral staircase (77K triangles). Our method is able to
represent ambient occlusion faithfully, even with multiple overlapping occluders. The performance improvements of our method become

more significant for larger scenes.

Abstract
Screen-space ambient occlusion is a popular technique for approximating global illumination in real-time rendering. However,
it suffers from artifacts due to the lack of information from the depth buffer. A stochastic depth map [VSE21] can be used to
retrieve most of the missing information, but it is not suitable for real-time rendering in large scenes. In this paper, we propose a
new stochastic depth map acquisition method powered by hardware ray tracing, which shows better performance characteristics
than the previous method. We present further improvements that increase the quality and performance of the stochastic depth
map generation. Furthermore, the results are almost indistinguishable from a ground truth solution with all depth samples.

CCS Concepts
• Computing methodologies → Ray tracing; Rasterization; Visibility;

1. Introduction

Ambient Occlusion (AO) approximates global illumination by
darkening corners and crevices of objects. For real-time applica-
tions, it is generally computed in screen-space, using the depth
buffer and the normal buffer. Unfortunately, the fidelity of AO is
compromised when relying solely on a single depth buffer, which
leads to perceptible artifacts such as incomplete shadowing and ha-
los around objects as shown in Fig. 1a. Additional depth values can
be retrieved through depth peeling [Eve01; MMNL16], k-buffers
[Sal13], ray tracing [BKG22], or Stochastic Depth maps (SD-
maps) [VSE21].

Ray tracing can also be used to compute ground-truth AO di-
rectly, but it requires a temporal denoiser to be usable in real-

time applications and thus tends to suffers from temporal disoc-
clusion artifacts [Mic19; Zhd21]. Another branch of research fo-
cuses on synthesizing AO from geometry buffers via neural net-
works, though these approaches cannot be executed in real-time
yet [NAM*17; ZXL*20; WZZ*23].

In this work we present an alternative approach to acquire a
stochastic depth map. In particular, we contribute:

Sec. 3 A novel SD-map acquisition via hardware ray tracing.
Sec. 3.1 An improved collection algorithm for better quality.
Sec. 3.2 Ray interval optimizations for performance & quality.
Sec. 3.3 A low resolution SD-map for better performance.
Sec. 3.4 A radius cutoff to reduce the number of required rays.
Sec. 3.5 A lazy guard band to mitigate screen-space artifacts.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

Eurographics Symposium on Rendering (2024)
E. Garces and E. Haines (Editors)

DOI: 10.2312/sr.20241160 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6353-127X
https://doi.org/10.2312/sr.20241160

2 of 10 F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion

Figure 2: Overview Depth map 4 layer SD-map

Figure 3: SVAO Pipeline: The depth map is used to render the first
AO pass, which also generates two masks: The AO-mask marks
partially occluded pixels with potential artifacts. The SD-mask pin-
points occluder pixels that require additional depth values. The
sparse SD-map is constructed for the pixels flagged by the SD-
mask. The second AO pass utilizes the SD-map to refine the AO
values (depicted in white). Values in purple remain unaltered from
the initial pass.

2. Previous Work

A first algorithm to compute AO for static scenes was proposed by
Zhukov et al. [ZIK98]. Attempts for dynamic scenes were made
[Bun05; KL05], and in the end, screen-space AO became the state
of the art for real-time AO [Mit07; SA07; BSD08; TP16; LS10;
JWPJ16; HSEE15].

SD-maps are multi-layered depth maps, where each layer con-
tains one random depth value for each pixel (see Fig. 2).

In the original paper, a full SD-map is created for each frame,
which can be unsuitable for real-time applications with bigger
scenes. However, not all depth values are required for AO and a
sparse SD-map can be sufficient.

A pipeline for the creation of a sparse SD-map was proposed in
Stenciled Volumetric AO (SVAO) [BKG22]. First, an initial AO
pass is executed with the regular depth buffer. The first pass also
marks areas, where the SD-map is required (SD-mask). Then, the
SD-map is created for the marked areas. Finally, the AO pass is
executed again, with additional information from the SD-map. This
procedure is visualized in Fig. 3.

The SVAO paper also proposes an alternative to the SD-map,
which is based on ray tracing. Here, the second AO pass traces the
missing depth values directly and the SD-mask is not required.

Listing 1: Ray-SD map any-hit shader.

1 void anyHit(inout RayPayload d, attribs) {
2 float rng = hash(attribs.barycentrics);//[0,1)
3 uint slot = d.count;
4 d.count += 1;
5 if (d.count > N)
6 slot = uint(rng * d.count);
7
8 if (slot < N)
9 if (RayTCurrent() < d.depths[slot])//z-cull

10 if (alphaTest(attribs))
11 d.depths[slot] = RayTCurrent();
12
13 if (d.count < MAX_COUNT)
14 IgnoreHit(); // continue traversal
15 }

3. Ray Traced Stochastic Depth Map

Previous work has shown significant performance improvements
for the SD-map when it is only created for a subset of pixels instead
of the whole screen [BKG22]. However, the traditional rasterizer
based SD-map needs to process all vertices in the view frustum
nevertheless. By utilizing hardware ray tracing we cull geometry
more efficiently, which results in a performance improvement for
sparse SD-maps in larger scenes.

For simplicity, we will omit some implementation de-
tails, but the full source code can be found on Github:
https://github.com/TU-Clausthal-Rendering/
Ray-Traced-Stochastic-Depth-Map.

3.1. Stochastic Collection

The original SD-map [VSE21] implementation uses the cover-
age mask from multisampling to discard and replace samples in a
stochastic manner. This approach is very fast, but it has some inher-
ent quality issues. For instance, there is a potential scenario where
the shader generates the same coverage mask for all depth samples,
in which case only the last depth sample will be stored.

For ray tracing we can solve this problem with reservoir sam-
pling [Vit85]. For every pixel, we trace a single view ray and handle
all depth values within the any-hit shader. Within the ray payload,
we maintain N depth values and a counter, which are required for
the reservoir sampling as shown in Listing 1. Reservoir sampling
will first fill the buffer with N distinct depth samples. Subsequently,
each additional sample replaces a payload sample with a probabil-
ity of N/count. Additionally, we introduce a MAX_COUNT vari-
able to mitigate potential performance degradation when the ray
traverses too much geometry. In our examples we use N = 4 and
MAX_COUNT= 8. We also use z-culling when overwriting exist-
ing depth samples, i.e. we prioritize smaller depth values. As a last
step we also need to perform alpha testing for certain geometry.

The 2D hash function for reservoir sampling was taken from
Wyman et al. [WM19]:

f rac(1.0e4∗ sin(17.0∗u+0.1∗v)∗ (0.1+abs(sin(13.0∗v+u))))

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/TU-Clausthal-Rendering/Ray-Traced-Stochastic-Depth-Map
https://github.com/TU-Clausthal-Rendering/Ray-Traced-Stochastic-Depth-Map

F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion 3 of 10

S0
^ S2

^Camera

Depth Buffer

SD-Sample

AO Area of Interest

AO-Sample
P0

P1
S0 S2

P2

SD0 SD2

Figure 4: Ray Interval Optimization: To calculate the AO value
at P0, our algorithm samples up to 8 different positions in a disc
around P0. The green hemisphere represents the area of interest for
our AO calculation. Here, the first sample position S0 reprojects to
P1 from the depth buffer, which is in front of our area of interest. All
relevant depth values for S0 are between Ŝ0 and S0. In this case we
require the depth value SD0. The same scenario applies to P2 and
S2. Thus, we need to trace a ray between Ŝ0 and S2 to obtain the
relevant depth values (SD0 and SD2) for our SD-map.

Figure 5: Jittered sample positions for a 4x4 pixel grid.

3.2. Ray Interval Optimization

Another advantage of the ray tracing pipeline is the ability to cull
geometry with ray intervals on a per-pixel basis. This is especially
useful for our AO computations, since we are only interested in
depth values within a limited range. The concept is illustrated and
explained in Fig. 4.

To realize this optimization, we keep track of the rayMin and
rayMax values with two additional textures. Initially, the rayMin
and rayMax textures are filled with FLOAT_MAX and 0 respec-
tively. In the first AO pass, we update the rayMin and rayMax
values via atomicMin and atomicMax instructions when required.
Atomic operations are necessary because two different pixels can
update the same ray values as shown in Fig. 4. In the second AO
pass, we then use the rayMin and rayMax values as our TMin and
TMax values for the ray.

Note, that atomic operations are generally not supported for
floating-point values on GPUs. We circumvent this issue by reinter-
preting the floating-point values as integer values. This is possible
because the order of positive floating-point values is the same as
the order of their bitwise integer representation, which is required
for the min and max operations.

3.3. Low Resolution Stochastic Depth Map

The SD-map can be created at a lower resolution than the depth
buffer, which will result in a significant performance improvement.
However, operating at a lower resolution will increase aliasing near
edges. Fortunately, this is limited to the small subset of samples
that are refined during the second AO pass. To mitigate aliasing ar-
tifacts, we leverage the sample positions depicted in Fig. 5 for each
4x4 pixel grid, as opposed to sampling the pixel centers. The sam-
ple positions were generated from a 2D Sobol sequence [Sob67],
which has the advantageous property that the associated 16x16 grid
aligns with latin hypercube sampling. It is crucial to note that the
use of per-pixel jitter is exclusive to the ray tracing pipeline and is
not compatible with the rasterizer.

3.4. Radius Cutoff

The predominant artifacts in AO, halos around objects, are partic-
ularly noticeable for objects in proximity to the camera. The ex-
tent of a potential screen-space halo is proportional to the distance
between the camera and the object of interest. To enhance the effi-
ciency of creating our SD-map without compromising the AO qual-
ity, we limit the SD-map to pixels that are more likely to generate
larger halos.

To seamlessly blend the SD-enhanced AO with the non-
enhanced AO, we opt for a per-sample decision rather than a per-
pixel decision: Each pixel assesses, for each of its 8 AO sam-
ples, whether the screen-space distance in pixels is below a thresh-
old t. For example, consider pixel P0 in Fig. 4, which calculates
the screen-space distance between P0 and sample S0 to determine
whether a query for sample S0 should be included in the SD-map
(In this example, the screen space distance between P0 and S0 is
one pixel). If the screen-space distance is less than t, the respective
sample is only evaluated in the first AO pass, and excluded from
the SD-map. We use t = 6 pixels in our examples, as this did not
produce visible halos on our 100 DPI monitor.

3.5. Stochastic Depth Guard Band

Screen-space AO frequently encounters flickering artifacts near the
screen borders if the required depth values lie outside the screen.
To address this problem, it is common practice to employ a guard
band that enlarges the screen by a few pixels. By default, our ap-
proach incorporates a 64-pixel guard band, which adequately re-
solves the issue in most scenarios. Nevertheless, this guard band
size may prove inadequate for objects close to the screen border that
demand a larger screen-space radius than 64 pixels. This situation
arises occasionally in our method because we utilize a world-space
radius for AO calculations, leading to larger screen-space radii for
objects in proximity.

An improvised approach involves capping the screen space ra-
dius at 64 pixels by reducing the world-space radius whenever it
surpasses this threshold. This adjustment results in the AO shad-
ows becoming smaller as the camera approaches an object. Thus,
we do not recommend it.

Our empirical analysis revealed that constraining the AO radius
to 512 screen space pixels does not lead to noticeable shrinkage of

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 10 F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion

the shadows. As a result, setting the AO radius limit to 512 pixels
and using a 512-pixel guard band effectively eliminates artifacts
near the screen edges. However, this approach considerably decel-
erates the generation of the primary depth buffer.

Therefore, we suggest a different approach: We propose expand-
ing the SD-map by 512 pixels in each direction. With this approach,
ray tracing will be used to obtain depth values from beyond the
screen borders only if necessary. It is important to note that, in the
case of the 1/4 resolution SD-map, this expansion requires just 128
pixels in each direction.

4. Results

In this section, we present the results of our ray traced SD-map
(Ray-SD). We will compare our results with the raster-based SD-
map (Raster-SVAO) and against the ray traced SVAO (Ray-
SVAO) from the SVAO paper [BKG22]. Note that the Ray-SVAO
traces up to 8 rays per pixel and produces accurate AO results that
serve as the ground truth reference for our method. All algorithms
are implemented in the FALCOR framework [KCK*22] and exe-
cuted on an NVIDIA RTX 2080 Ti. We recorded all images at a
resolution of 1920x1080 with a default 64 pixel guard band to mit-
igate AO artifacts at the screen borders (2048x1208).

For our performance analysis, we assume that ray tracing is al-
ready integrated at some point in the pipeline, such as for shadows
or reflections. Consequently, we presume that the ray tracing accel-
eration structure is readily available and pre-built. This assumption
includes the necessity for potential per-frame updates that involve
rebuilding the acceleration structure. We focus on the additional
overhead introduced by our AO method, without accounting for
the initial setup of the ray tracing infrastructure.

For better contrast we doubled the AO exponent for all images
in the results section. The video in the supplementary material use
the original exponent, since artifacts are more noticeable in motion.
Additionally, the video use Falcor’s built-in temporal anti-aliasing.

The rendering times include the full SVAO pipeline (two AO
passes and SD-map creation). These times do not include the
GBuffer or the final bilateral filter which blurs the AO (~0.2ms).

We will start with a quality and performance analysis of our pro-
posed optimizations from Sec. 3.1 - Sec. 3.5 and conclude with an
overall comparison of the following scenes:

• Bistro [Lum17] (2.8M triangles): A medium-sized scene with a
lot of small detailed geometry.

• Emerald Square [NB17] (10M triangles): A large scene with
a lot of alpha tested foliage, which is notoriously expensive to
render with the previous SVAO implementation.

• Sun Temple [Gam17] (600K triangles): A smaller scene with a
lot of large occluders.

4.1. Stochastic Collection and Ray Interval Optimization

Fig. 6 shows a comparison of the coverage mask based collection
from the rasterizer (Fig. 6a) and our reservoir sampling based col-
lection in the ray tracer (Fig. 6c). It is already apparent that the cov-
erage mask collection misses more depth values than our collection

(a) Raster-SVAO (0.78 ms) (b) Raster-SVAO+Interval (0.78)

(c) Ray-SD (0.35 ms) (d) Ray-SD+Interval (0.21 ms)
Figure 6: AO with trashcans in the Emerald Square

Table 1: Performance breakdown of our 1/4 resolution SD-map for
the Emerald Square at 0 and 11 seconds (Fig. 15). The timings in
milliseconds were recorded without and with our interval optimiza-
tion (+Int).

Emerald 0s Emerald 11s
+Int +Int

Clear SD-Mask/MinMax 0 0.01 0 0.02
AO1: read depth & calc 0.23 0.25
AO1: SD-Mask/MinMax 0.01 0.03 0.01 0.06
1/4 SD-map (ray traced) 0.66 0.25 0.62 0.3
AO2: read depth & calc 0.09 0.13
AO2: read SD-map 0.03 0.05
Total: 1.02 0.64 1.06 0.81

algorithm. Introducing our ray interval optimization in Fig. 6b and
Fig. 6d improves the quality of both maps, but only the ray tracer
gains a performance improvement. The quality improvements stem
from the fact, that the back side from the trashcans will be excluded
from the sample collection. Thus, more relevant samples from the
background wall will be collected, a similar scenario as in Fig. 1.
The performance improvement is due to the fact that the ray tracer
can terminate early when all intersections in the given interval were
handled. The rasterizer always needs to process all fragments in the
pixel shader, this includes the trashcan geometry and hidden geom-
etry behind the wall.

A thorough performance analysis of our interval optimization is
shown in Tab. 1. The table reveals that our interval optimizations
incur some initial penalties for clearing and writing to the rayMin
and rayMax textures. Nonetheless, the performance improvements
in the SD-map pass justify the additional cost.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion 5 of 10

(a) Full res.
1.06 ms

(b) 1/2 res.
0.71 ms

(c) 1/4 res.
0.61 ms

(d) no SD-map
0.24 ms

Figure 7: Different resolutions of our SD-map. Top: AO, Middle:
colorized, Bottom: AO difference to full res.

(a) No Jitter (b) Jitter
Figure 8: Two consecutive frames of a camera path through a tun-
nel near the Bistro. The 1/4 resolution SD-map suffers from flicker-
ing without per-pixel jitter (left). Using the jittered sample positions
(right) mitigates the artifacts. Refer to the supplemental material
for the video.

4.2. Low Resolution Stochastic Depth Map

Fig. 7 shows a comparison of our SD-map in full resolution
(2048x1208), half resolution (1024x604) and quarter resolution
(512x302). Based on the provided difference images, we can see
that there are some minor differences in the lower resolution maps,
but they are not noticeable in the final AO image.

Without our per-pixel jitter from Fig. 5, the quarter resolution
SD-map suffers from flickering artifacts near edges as indicated by
the red arrows in Fig. 8a. Fortunately, our jittered sample positions
mostly mitigate the artifacts as shown in Fig. 8b.

We also tried resolutions below 1/4, but we advise against their
usage for two key reasons. First, the performance gains are negli-
gible, as the cost of writing to the ray interval textures increases in
tandem with the decrease in ray tracing time. This is because more
atomic operations overlap at lower resolutions. Secondly, aliasing
artifacts become more problematic.

(a) Reference
4.71 ms

(b) N = 8
0.77 ms
MSE 0.0019

(c) N = 4
0.71 ms
MSE 0.0048

(d) N = 2
0.69 ms
MSE 0.011

(e) VAO
0.22 ms
MSE 0.04

Figure 9: Different values of N with MAX_COUNT= 8. Top: AO,
Middle: colorized, Bottom: AO difference to reference.

(a) Reference
4.71 ms

(b) M = 16
0.77 ms
MSE 0.0031

(c) M = 8
0.71 ms
MSE 0.0048

(d) M = 4
0.66 ms
MSE 0.0089

(e) VAO
0.22 ms
MSE 0.04

Figure 10: Different values of M=MAX_COUNT with N = 4. Top:
AO, Middle: colorized, Bottom: AO difference to reference.

Fig. 9 and Fig. 10 show our 1/4 resolution SD-map with differ-
ent values for N and MAX_COUNT. Overall, we found that N = 4
and MAX_COUNT= 8 provide a good balance between quality
and performance. The figures show an example with a depth com-
plexity that occasionally exceeds MAX_COUNT= 16. Even in this
difficult scenario, the quality of the AO is acceptable but slightly
brighter overall.

4.3. Radius Cutoff

An example of our radius cutoff is shown in Fig. 11b. For the close-
up view, the same amount of rays are required with and without
the cutoff to prevent halos. However, for the long shot, the cutoff
is able to reduce the number of required SD-map fetches without
introducing major artifacts.

An overview of the full long shot is shown in Fig. 12. The cutoff
is able to reduce the total number of rays, and it also shortens the
ray interval lengths.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6 of 10 F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion

SD
-m

ap
 re

ad
s p

er
 P

ix
el

8-

0-

Close-up:
Long shot:

L
on

g
Sh

ot
C

lo
se

-u
p

L
on

g
Sh

ot
C

lo
se

-u
p

(a) 1/4 SD-map
0.82 ms
1.03 ms

(b) + cutoff
0.81 ms
0.69 ms

(c) no SD-map
0.24 ms
0.24 ms

Figure 11: Close-up view and long shot of a spotlight. The 1/4
res. SD-map (a) is able to prevent halos. The radius cutoff (b)
enhances performance without introducing noticeable halos. The
variant without the SD-map (c) exhibits significant halo artifacts in
the close-up view. The heatmap shows the number of samples per
pixel, which are refined in the second AO pass (and will read data
from the SD-map).

SD-map ray length0 32

(a) Colored Overview

(b) 1/4 res. SD-map (1.03 ms) (c) + cutoff (0.69 ms)
Figure 12: The full long shot of Fig. 11 is shown in (a). The ray
interval lengths for the SD-map are visualized in (b) and (c).

Overall, the cutoff is able to increase the performance without
introducing noticeable artifacts. The performance increase depends
on the camera position. In our example, the close-up view has al-
most identical performance with and without the cutoff. However,
in the long shot the cutoff saves around 30% of the rendering time.

This is a favorable behavior, since ray tracing times usually increase
when a larger portion of the scene is in the view frustum, but our
cutoff will reduce the number of rays in such a scenario.

4.4. Stochastic Depth Guard Band

Fig. 13 shows an example where our guard band expansion is re-
quired. The SD-mask in Fig. 13c shows the usual SD-mask in the
center and the new additional samples on the border. The SD guard
band removes all flickering artifacts near the screen borders.

Fig. 14 shows the performance breakdown of our SD guard band
along the camera path in the Bistro. A naive 512 pixel default
guard band significantly increases the rendering time of the depth
buffer, which increases the overall rendering time noticeably. Our
SD guard band on the 1/4 resolution SD-map only causes a slight
increase in the overall rendering time (depth buffer + AO render-
ing). The SD guard band only increases the rendering time of the
AO algorithm, but it has no impact on the rendering time of the
depth buffer. Our remaining test scenes showed a similar behavior.

It should be mentioned that the SD guard band is only required
when the renderer uses an unusually large AO radius. This is only
the case in our Tower scene. In all other scenes, the default 64 pixel
guard band is generally sufficient.

4.5. Overall Performance

For the overall comparison we recorded the rendering times along
the default camera path of the Bistro, Emerald Square and Sun
Temple. We used the radius cutoff for all techniques and also added
the interval optimization for the rasterized SD-map to improve the
quality. The results are shown in Fig. 15 and the full videos are
available on our Github project page.

In general, we can see that our 1/4 resolution Ray-SD is able
to outperform all other techniques. Furthermore, the previous Ray-
SVAO displays the most variance in its rendering times, since it
traces between 0 and 8 rays per pixel. Our Ray-SD on the other
hand will trace at most one ray per pixel, or 1 ray per 16 pixels
for the 1/4 resolution SD-map. We can also see that the ray based
SD-map tends to outperform the raster based SD-map for the larger
scenes (Bistro and Emerald Square), but the raster based SD-map
gets faster for the smaller scenes (Sun Temple). This can be ex-
plained by the fact, that the time complexity for tracing a ray is
logarithmic in the number of primitives, while the rasterizer has a
linear time complexity.

In the following we will discuss the artifacts that can be seen
on the camera paths for our 1/4 resolution Ray-SD and explain the
performance drops.

Bistro: There are some flickering artifacts that can be seen on the
bakery near the 8s mark. This is not caused by our low-resolution
SD-map per se, since the same artifacts can be seen in the Ray-
SVAO path. The artifacts are caused by the thin and detailed geom-
etry of the bakery, which is hard to handle for AO techniques with
a small number of samples. Other than this, our Ray-SD shows sig-
nificant improvements over the single depth buffer AO. All tech-
niques have a performance drop at the 84s mark, which is due to
the high number of alpha tested foliage in the shot.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion 7 of 10

(a) Camera 1 (b) Camera 2 (c) SD-mask with SD guard band
Figure 13: AO in the Tower with a 64 pixel guard band and without our SD guard band expansion. The red arrows indicate the areas where
AO is flickering during slight camera motion from (a) to (b). The SD-mask shows the areas where our extended SD guard band would request
additional depth values in the outer border.

Figure 14: Performance breakdown of our SD guard band along
the camera path in the Bistro. All times include the rendering of
the primary depth buffer plus the time of our AO calculation. The
first variant only uses the 64 pixel default guard band and will suf-
fer from artifacts near the border. The second variant uses our SD
guard band expansion and is able to completely remove those arti-
facts. The third variant uses a 512 pixel default guard band instead.

Emerald Square: There are no noticeable artifacts in the col-
ored output. However, when inspecting the grayscale AO one can
see some very small halo-like artifacts on the foliage, but they
are hardly noticeable. The most notable performance drop at 11s
is caused by the large number of alpha tested foliage in the shot.
Fig. 16 illustrates the samples that are stored in the SD-map for the
11s mark.

The other performance drop at 41s mostly affects the rasterizer:
For the ray based methods, the trees in the background are culled
by the ray interval optimization, but the rasterizer processes those
fragments nevertheless.

Sun Temple: Some minor flickering artifacts can be seen at a
pillar near the 37s mark. This time, the artifacts are caused by the
lower resolution SD-map, but they are hard to notice.

Overall we could not find striking differences between our Ray-
SD and the (reference) Ray-SVAO, when comparing them side by
side. However, some pixel differences are indeed visible when flip-
ping between the Ray-SVAO and Ray-SD images, but they are gen-
erally very minor. One area where differences are more noticeable

is on dense foliage. In these areas the Ray-SD results are generally
marginally brighter, due to some missing depth values. Neverthe-
less, the 1/4 resolution Ray-SD is still able to prevent perceivable
halos in these areas.

5. Conclusion

We presented a novel algorithm for the creation of a stochastic
depth map via hardware ray tracing. We introduced a better stochas-
tic collection algorithm and a ray interval optimization to improve
the quality of the resulting depth samples. Furthermore, we showed
that a low resolution SD-map can be used to improve the perfor-
mance without major artifacts. We presented a radius cutoff to re-
duce the number of required rays for the SD-map which can im-
prove the performance without a noticeable loss in quality. Finally,
we introduced a method that handles out-of-screen depth values
more efficiently than a conventional guard band. This is achieved
by augmenting our 1/4 resolution SD-map with a guard band that
is evaluated only on demand.

Our algorithm is able to outperform the previous methods for
large scenes and appears to remain relatively stable in terms of per-
formance. We believe that our algorithm can already be used in
production to improve the quality of AO in real-time applications.

Most of our optimizations can also be applied to the raster based
SD-map, which mainly improves its quality. The lower resolution
versions of the SD-map are also compatible with the rasterizer, but
the per-pixel jitter is not, which results in stronger aliasing. Fur-
thermore, the rasterizer does not always benefit as much from the
lower resolution as the ray tracer, since the rasterizer still needs to
process all vertices in the vertex shader.

6. Future Work

Some aliasing issues are caused by the 4x4 rotated sampling pat-
tern of the underlying VAO algorithm [BKG22]. This can be very
noticeable in some camera motion paths, but it is a very common
artifact that is also present in the Unreal Engine and other screen
space AO techniques.

The remaining aliasing issues of the low resolution SD-map
could be addressed with an adaptive resolution.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8 of 10 F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion

8s 84s

(a) Bistro

11s 41s

(b) Emerald Square

11s 46s

(c) Sun Temple
Figure 15: Rendering times of our Ray-SD with full and 1/4 resolution SD-map vs the previous SVAO techniques. The graphs plot the
rendering time in ms on the y-axis and the scene time of the camera path on the x-axis. The images on top were recorded with our 1/4 Ray-SD
and are without noticeable artifacts.

(a) Coverage Mask [VSE21]
+ SD-mask [BKG22]

(b) (Our) Reservoir Sampling
+ (Our) Ray Interval Optimization

Figure 16: Overview of samples in the SD-map for the 11s camera
path in Emerald Square. Our improved SD-map stores fewer, but
more relevant, samples. The samples are colored based on their
slot in the SD-map. The self-occlusion of the grass accounts for a
significant portion of the samples.

The radius cutoff could also be extended to depend on other fac-
tors such as the diffuse color of the object, since darker objects
are less likely to produce visible halos. The overall type of object
might also be a factor, since halos are often more difficult to notice
on dense foliage.

The performance of our SD guard band could be further im-
proved by choosing an even lower resolution for the area outside
the screen.

AO shadows can still disappear if the camera’s view direction is
parallel to the occluder (see [BKG22] Fig. 14). This issue is chal-
lenging to address because it requires a ray to track whether it is
inside an object, which only works if the scene is completely wa-
tertight. Furthermore, this limitation would prevent us from using
our interval optimization.

We also tested our algorithm with Horizon Based Ambient Oc-
clusion (HBAO) [BSD08] and found it to be compatible with our
Ray-SD map (see Appendix). However, a specialized implementa-
tion for HBAO and other AO algorithms would be of interest.

Supplementary Material

The source code, an executable demo and additional
videos can be found on our Github project page:
https://github.com/TU-Clausthal-Rendering/
Ray-Traced-Stochastic-Depth-Map.

Acknowledgements

This work was partially supported by the German Research Foun-
dation (DFG) grant GR 3833/4-1, Project Nr. 524961573.

References
[BJ13] BAVOIL, LOUIS and JANSEN, JON. “Particle Shadows & Cache-

Efficient Post-Processing”. Proceedings of the Game Developers Con-
ference (GDC). Session on Advanced Visual Effects with DirectX 11.
NVIDIA. 2013. URL: https://developer.nvidia.com/gdc-
2013 10.

[BKG22] BRÜLL, FELIX, KERN, RENÉ, and GROSCH, THORSTEN.
“Stenciled Volumetric Ambient Occlusion”. Eurographics Symposium
on Rendering. Ed. by GHOSH, ABHIJEET and WEI, LI-YI. The Euro-
graphics Association, 2022. DOI: 10.2312/sr.20221153 1, 2, 4, 7,
8.

[BSD08] BAVOIL, LOUIS, SAINZ, MIGUEL, and DIMITROV, ROUSLAN.
“Image-space horizon-based ambient occlusion”. ShaderX7 Advanced
Rendering Techniques. July 2008. DOI: 10 . 1145 / 1401032 .
1401061 2, 8.

[Bun05] BUNNELL, MICHAEL. “Dynamic Ambient Occlusion and Indi-
rect Lighting”. GPU Gems 2. Ed. by PHARR, MATT. Addison-Wesley,
2005, 223–233. URL: https : / / developer . nvidia . com /
gpugems/gpugems2/part-ii-shading-lighting-and-
shadows/chapter- 14- dynamic- ambient- occlusion-
and 2.

[Eve01] EVERITT, CASS W. “Interactive Order-Independent Trans-
parency”. 2001. URL: https://api.semanticscholar.org/
CorpusID:5813703 1.

[Gam17] GAMES, EPIC. Unreal Engine Sun Temple, Open Research Con-
tent Archive (ORCA). Oct. 2017. URL: https : / / developer .
nvidia.com/ue4-sun-temple 4.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/TU-Clausthal-Rendering/Ray-Traced-Stochastic-Depth-Map
https://github.com/TU-Clausthal-Rendering/Ray-Traced-Stochastic-Depth-Map
https://developer.nvidia.com/gdc-2013
https://developer.nvidia.com/gdc-2013
https://doi.org/10.2312/sr.20221153
https://doi.org/10.1145/1401032.1401061
https://doi.org/10.1145/1401032.1401061
https://developer.nvidia.com/gpugems/gpugems2/part-ii-shading-lighting-and-shadows/chapter-14-dynamic-ambient-occlusion-and
https://developer.nvidia.com/gpugems/gpugems2/part-ii-shading-lighting-and-shadows/chapter-14-dynamic-ambient-occlusion-and
https://developer.nvidia.com/gpugems/gpugems2/part-ii-shading-lighting-and-shadows/chapter-14-dynamic-ambient-occlusion-and
https://developer.nvidia.com/gpugems/gpugems2/part-ii-shading-lighting-and-shadows/chapter-14-dynamic-ambient-occlusion-and
https://api.semanticscholar.org/CorpusID:5813703
https://api.semanticscholar.org/CorpusID:5813703
https://developer.nvidia.com/ue4-sun-temple
https://developer.nvidia.com/ue4-sun-temple

F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion 9 of 10

[HSEE15] HENDRICKX, QUINTJIN, SCANDOLO, LEONARDO, EISE-
MANN, MARTIN, and EISEMANN, ELMAR. “Adaptively Layered Statis-
tical Volumetric Obscurance”. HPG ’15. Los Angeles, California: As-
sociation for Computing Machinery, 2015, 77–84. DOI: 10 . 1145 /
2790060.2790070 2.

[JWPJ16] JIMENEZ, JORGE, WU, XIAN-CHUN, PESCE, ANGELO, and
JARABO, ADRIAN. “Practical Real-Time Strategies for Accurate Indi-
rect Occlusion”. SIGGRAPH 2016 Courses: Physically Based Shading
in Theory and Practice. 2016. URL: https://www.activision.
com/cdn/research/Practical_Real_Time_Strategies_
for_Accurate_Indirect_Occlusion_NEW%20VERSION_
COLOR.pdf 2.

[KCK*22] KALLWEIT, SIMON, CLARBERG, PETRIK, KOLB, CRAIG,
et al. The Falcor Rendering Framework. https : / / github .
com/NVIDIAGameWorks/Falcor. Aug. 2022. URL: https://
github.com/NVIDIAGameWorks/Falcor 4.

[KL05] KONTKANEN, JANNE and LAINE, SAMULI. “Ambient Occlusion
Fields”. I3D ’05. Washington, District of Columbia: Association for
Computing Machinery, 2005, 41–48. DOI: 10 . 1145 / 1053427 .
1053434 2.

[LS10] LOOS, BRADFORD JAMES and SLOAN, PETER-PIKE. “Volumetric
Obscurance”. I3D ’10. Washington, D.C.: Association for Computing
Machinery, 2010, 151–156. DOI: 10.1145/1730804.1730829 1,
2, 10.

[Lum17] LUMBERYARD, AMAZON. Amazon Lumberyard Bistro, Open
Research Content Archive (ORCA). July 2017. URL: http : / /
developer . nvidia . com / orca / amazon - lumberyard -
bistro 4.

[Mic19] MICROSOFT. Raytracing Real-Time Denoised Ambi-
ent Occlusion. https : / / github . com / microsoft /
DirectX - Graphics - Samples / tree / master /
Samples / Desktop / D3D12Raytracing / src /
D3D12RaytracingRealTimeDenoisedAmbientOcclusion.
2019 1.

[Mit07] MITTRING, MARTIN. “Finding next gen: CryEngine 2.” SIG-
GRAPH Courses. Ed. by MCMAINS, SARA and SLOAN, PETER-PIKE.
ACM, 2007, 97–121. URL: http : / / dblp . uni - trier .
de/db/conf/siggraph/siggraph2007courses.html#
Mittring07 2.

[MMNL16] MARA, MICHAEL, MCGUIRE, MORGAN,
NOWROUZEZAHRAI, DEREK, and LUEBKE, DAVID. “Deep G-
Buffers for Stable Global Illumination Approximation”. HPG ’16. June
2016, 11. URL: https://casual-effects.com/research/
Mara2016DeepGBuffer/index.html 1.

[NAM*17] NALBACH, OLIVER, ARABADZHIYSKA, ELENA, MEHTA,
DUSHYANT, et al. “Deep Shading: Convolutional Neural Networks for
Screen Space Shading”. Computer Graphics Forum (2017). ISSN: 1467-
8659. DOI: 10.1111/cgf.13225 1.

[NB17] NICHOLAS HULL, KATE ANDERSON and BENTY, NIR. NVIDIA
Emerald Square, Open Research Content Archive (ORCA). July 2017.
URL: http : / /developer . nvidia . com / orca /nvidia -
emerald-square 4.

[SA07] SHANMUGAM, PERUMAAL and ARIKAN, OKAN. “Hardware Ac-
celerated Ambient Occlusion Techniques on GPUs”. I3D ’07. Seattle,
Washington: Association for Computing Machinery, 2007, 73–80. DOI:
10.1145/1230100.1230113 2.

[Sal13] SALVI, MARCO. “Pixel synchronization: solving old graphics
problems with new data structures”. Advances in Real-time Rendering
(2013). URL: https://advances.realtimerendering.com/
s2013/2013-07-23-SIGGRAPH-PixelSync.pdf 1.

[Sob67] SOBOL’, I.M. “On the distribution of points in a cube and the
approximate evaluation of integrals”. USSR Computational Mathematics
and Mathematical Physics 7.4 (1967), 86–112. ISSN: 0041-5553. DOI:
https://doi.org/10.1016/0041-5553(67)90144-9 3.

[TP16] TATARINOV, ANDREI and PANTELEEV, ALEXEY. “Advanced
Ambient Occlusion Methods for Modern Games”. Game Developer
Conference. https://developer.download.nvidia.com/
gameworks/events/GDC2016/atatarinov_alpanteleev_
advanced_ao.pdf Accessed: 2024-04-03. 2016 2, 10.

[Vit85] VITTER, JEFFREY S. “Random Sampling with a Reservoir”. ACM
Trans. Math. Softw. 11.1 (Mar. 1985), 37–57. DOI: 10.1145/3147.
3165 2.

[VSE21] VERMEER, JOP, SCANDOLO, LEONARDO, and EISEMANN, EL-
MAR. “Stochastic-Depth Ambient Occlusion”. I3D ’21 4.1 (Apr. 2021).
DOI: 10.1145/3451268 1, 2, 8.

[WM19] WYMAN, CHRIS and MCGUIRE, MORGAN. “Improved Alpha
Testing Using Hashed Sampling”. IEEE Transactions on Visualization
and Computer Graphics 25.2 (2019), 1309–1320. DOI: 10 . 1109 /
TVCG.2017.2739149 2.

[WZZ*23] WANG, JIAYI, ZHOU, FAN, ZHOU, XIANG, et al. “AO-Net:
Efficient Neural Network for Ambient Occlusion”. Graphics Interface
2023. 2023. URL: https://openreview.net/forum?id=b-
3cQ_h4kqz 1.

[Zhd21] ZHDAN, DMITRY. “ReBLUR: A Hierarchical Recurrent De-
noiser”. Ray Tracing Gems II: Next Generation Real-Time Rendering
with DXR, Vulkan, and OptiX. Ed. by MARRS, ADAM, SHIRLEY, PE-
TER, and WALD, INGO. Berkeley, CA: Apress, 2021, 823–844. DOI:
10.1007/978-1-4842-7185-8_49 1.

[ZIK98] ZHUKOV, SERGEY, IONES, ANDREI, and KRONIN, GRIGORIJ.
“An Ambient Light Illumination Model.” Rendering Techniques. Ed. by
DRETTAKIS, GEORGE and MAX, NELSON L. Eurographics. Springer,
1998, 45–56. URL: http://dblp.uni-trier.de/db/conf/
rt/rt1998.html#ZhukovIK98 2.

[ZXL*20] ZHANG, DONGJIU, XIAN, CHUHUA, LUO, GUOLIANG, et al.
“DeepAO: Efficient Screen Space Ambient Occlusion Generation via
Deep Network”. IEEE Access 8 (2020), 64434–64441. DOI: 10.1109/
ACCESS.2020.2984771 1.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/2790060.2790070
https://doi.org/10.1145/2790060.2790070
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/1053427.1053434
https://doi.org/10.1145/1053427.1053434
https://doi.org/10.1145/1730804.1730829
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
http://dblp.uni-trier.de/db/conf/siggraph/siggraph2007courses.html#Mittring07
http://dblp.uni-trier.de/db/conf/siggraph/siggraph2007courses.html#Mittring07
http://dblp.uni-trier.de/db/conf/siggraph/siggraph2007courses.html#Mittring07
https://casual-effects.com/research/Mara2016DeepGBuffer/index.html
https://casual-effects.com/research/Mara2016DeepGBuffer/index.html
https://doi.org/10.1111/cgf.13225
http://developer.nvidia.com/orca/nvidia-emerald-square
http://developer.nvidia.com/orca/nvidia-emerald-square
https://doi.org/10.1145/1230100.1230113
https://advances.realtimerendering.com/s2013/2013-07-23-SIGGRAPH-PixelSync.pdf
https://advances.realtimerendering.com/s2013/2013-07-23-SIGGRAPH-PixelSync.pdf
https://doi.org/https://doi.org/10.1016/0041-5553(67)90144-9
https://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3451268
https://doi.org/10.1109/TVCG.2017.2739149
https://doi.org/10.1109/TVCG.2017.2739149
https://openreview.net/forum?id=b-3cQ_h4kqz
https://openreview.net/forum?id=b-3cQ_h4kqz
https://doi.org/10.1007/978-1-4842-7185-8_49
http://dblp.uni-trier.de/db/conf/rt/rt1998.html#ZhukovIK98
http://dblp.uni-trier.de/db/conf/rt/rt1998.html#ZhukovIK98
https://doi.org/10.1109/ACCESS.2020.2984771
https://doi.org/10.1109/ACCESS.2020.2984771

10 of 10 F. Brüll & R. Kern & T.Grosch / Ray Traced Stochastic Depth Map for Ambient Occlusion

(a) VAO 8SPP + 1/4 Ray-SD
(0.54ms)

(b) HBAO 8SPP (0.28ms) (c) HBAO 8SPP + 1/4
Ray-SD (0.63ms)

(d) HBAO 16SPP + 1/4
Ray-SD (0.98ms)

(e) Reference 16SPP
(1.74ms)

Figure 17: AO comparison with VAO, HBAO and our Ray-SD map. The first three images use 8 AO samples per pixel, while the last two use
16 AO samples per pixel. The reference traces all missing depth values (Similar to Ray-SVAO). Notice the increased banding artifacts on the
staircase in (b) and (c). Using 16 SPP reduces the banding artifacts, but also increases the rendering time significantly.

7. Appendix

7.1. Other AO Kernels

We implemented the SD-map using VAO [LS10] as the AO kernel.
However, other AO kernels can be utilized with minor adjustments.

As a proof of concept, we replaced the VAO kernel with the
HBAO+ kernel [TP16] and adjusted the sample distribution accord-
ingly. For reference, a single AO sample ai in HBAO+ is calculated
as follows:

ai = max
(

0, N · V (Si)
|V (Si)| −0.1

)
max

(
0, 1− |V (Si)|2

r2

)
(1)

where N is the normal vector at the shading point, V is the vector
from the shading point to the sample point Si, and r is the radius
of the sampling hemisphere. Previously, we used r = 0.2 for VAO,
but we set r = 0.3 for HBAO+ to achieve a similar appearance.

First, we examined the HBAO+ kernel with 8 samples per pixel
(SPP) and compared it to our implementation with VAO. Switch-
ing the AO kernel to HBAO+ did not change the runtime behav-
ior significantly. Overall, the rendering times were not significantly
slower than before, being up to 20% slower depending on the scene.
Results with 8 SPP are shown in Fig. 17c and Fig. 18.

We noticed increased banding artifacts with the 8 SPP version
in the Tower scene, so we tested a 16 SPP version as well (see
Fig. 17d). This version does not exhibit significant banding issues,
but it took more than 50% longer to render. Surprisingly, the time
to ray trace the SD-map was almost the same in both versions.

We concluded that the increased rendering time is due to an
increased number of texture fetches (and cache misses), a well-
known problem for unoptimized HBAO implementations. This
problem can be mitigated by utilizing interleaved rendering [BJ13],
which we leave for future work.

Generally, all AO kernels that work with a single depth buffer
can be used with our Ray-SD map. For the ray interval optimiza-
tion, the AO kernel must be limited to a specified area. It appears
that the 1/4 resolution Ray-SD map can keep the overall ray tracing
times minimal due to its low resolution, even if the AO kernel it-
self requests slightly more SD samples, which was the case for the
HBAO+ kernel.

(a) HBAO 8SPP (0.21ms) (b) + 1/4 Ray-SD (0.43ms)

(c) HBAO 8SPP (0.27ms) (d) + 1/4 Ray-SD (0.55ms)

(e) HBAO 8SPP (0.25ms) (f) + 1/4 Ray-SD (0.46ms)
Figure 18: More examples of HBAO with and without our Ray-SD
map (left vs right). From top to bottom: Bistro, Emerald Square and
Sun Temple.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

