
Real-Time Pixel-Perfect Hard Shadows with
Leak Tracing

René Kern Felix Brüll Thorsten Grosch

TU Clausthal, Germany

0.61ms (1.86ms) 0.65ms (2.64ms) 1.33ms 0.84ms (0.89ms)

0.49ms (2.91ms) 0.50ms (3.36 ms) 2.28ms 1.14ms (1.16ms)

VSM MSM Ray Traced Shadows LtVSM(Ours)

Figure 1: Filterable shadow maps, such as VSM [DL06] and MSM [PK15], provide a fast approximation of shadows but often produce
visible errors, namely light leaking. Ray tracing can calculate pixel-perfect shadows but is slower, especially for alpha-tested shadows. Our
leak tracing algorithm traces rays in problematic areas to achieve pixel-perfect shadows similar to ray tracing but in a fraction of the time.
While cascaded shadow maps require re-generation every frame, Leak Tracing can reuse shadow maps even with camera movement. Time
format: Shadow evaluation time (+ shadow map generation). Scenes: Bistro [Lum17] (Top), Emerald Square [NHB17] (Bottom).

Abstract
Accurate shadows greatly enhance the realism of a rendered image. Shadow mapping is the preferred solution for shadows in
real-time applications. However, shadow maps suffer from discretization errors and self-shadowing artifacts, that need custom
parameter tuning per scene. Filterable shadow maps such as variance or moment shadow maps solve both issues but introduce
light leaking. With the advent of hardware ray tracing, it becomes more realistic to use shadow rays instead of a shadow map.
However, distributing a shadow ray is often more expensive than evaluating a shadow map, especially if the ray hits alpha-
tested geometry. We introduce leak tracing, where we use filterable shadow maps techniques on top of default shadow maps and
eliminate the light leaks and aliased shadow edges with selective ray tracing. Our algorithm does not need any scene-dependent
parameters. We achieve an average speedup ranging from 1.19 to 1.79, with a top speedup of 4.17, depending on the scene and
eliminate major performance drops caused by alpha-tested geometry during ray tracing. Our solution is temporally stable and
reaches similar quality as pure ray tracing.

CCS Concepts
• Computing methodologies → Ray tracing; Rasterization; Visibility;

1. Introduction

Shadow Mapping [Wil78] is a popular method to render the shadow
that a light source casts onto the scene by utilizing a depth map
(shadow map) from the view of the light source. However, shadow

mapping is plagued by aliasing artifacts or self-shadowing (shadow
acne). Since its introduction, other works improved the issues of
shadow maps by filtering [RSC87], modifying the perspective and
relative resolution [SD02, WSP04, MT04, Eng06, OSK∗14], or us-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

Eurographics Symposium on Rendering (2024)
E. Garces and E. Haines (Editors)

DOI: 10.2312/sr.20241158 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/sr.20241158


2 of 10 R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing

ing the shadow map as a filterable function [DL06, AMB∗07,
AMS∗08, PK15].

With the advent of hardware ray tracing, ray traced shadows are
a new option. They allow for unbiased shadows by tracing a ray to
the light source. However, while offering a better quality, tracing a
ray is still more expensive than the texture lookup used for shadow
mapping.

We introduce leak tracing, a combination of filterable shadow
maps and ray tracing, that is able to produce ray tracing quality
shadows in a fraction of the time. For that, we only distribute rays
on the error-prone areas (light leaks, shadow edge) of the filterable
shadow maps. Our main contributions are:

• Our novel Leak tracing algorithm that combines filterable
shadow maps with ray tracing. It resolves light leaking and dis-
cretization errors of filterable shadow maps by selectively tracing
shadow rays on error-prone areas. The algorithm works on top of
default shadow maps and is free of scene-dependent parameters.

• A 3-bit per light temporal mask that reduces the remaining er-
rors of the leak tracing test by forcing rays to neighboring pixels
on areas where the leak tracing test fails, while removing rays
from unproblematic areas.

2. Related Work

Rendering shadows in real-time is a longstanding problem. For ras-
terization, Shadow Mapping [Wil78] and Shadow Volumes [Cro77]
are two popular methods to determine shadows. Over the years,
shadow mapping has turned out to be the more popular technique.

To use shadow mapping, first a depth texture from the view of
the light source needs to be rendered. This depth texture, called
’shadow map’, can then be used to determine if any point p of the
scene is shadowed. This is done by transforming p to the perspec-
tive of the light source and comparing the depth values. However,
due to the discretization, shadow maps are prone to aliasing and
self-shadowing (shadow acne).

Undersampling is one of the main reasons for the aliasing ar-
tifacts. A better placement of the shadow maps can reduce that
problem. Adapting the shadow map to the camera frustum [SD02,
WSP04, MT04] or using ’virtual’ shadow maps with adaptive res-
olution [OSK∗14] can reduce the undersampling problem. For di-
rectional lights cascaded shadow maps [Eng06] are a popular so-
lution, where multiple shadow maps are used for different parts of
the camera’s view frustum.

Another approach to reduce aliasing is filtering the shadow. Per-
centage closer filtering (PCF) [RSC87] can reduce the aliasing ar-
tifacts by repeating the shadow test and filtering its results with a
filter kernel. However, PCF is expensive, as it requires multiple tex-
ture fetches.

With filterable shadow maps, the shadow maps can be pre-
filtered and sampled with hardware filtering, needing only one
texture operation per pixel for an antialiased shadow. Variance
shadow maps [DL06] (VSM) store z2 in addition to z to ap-
proximate the shadow with Chebyshev’s inequality. Convolution
shadow maps [AMB∗07] (CSM) approximate the shadow test
by using a Fourier series expansion. Exponential shadow maps

[AMS∗08, Sal08] (ESM) approximate the shadow test with an
exponential function. Exponential variance shadow maps [LM08]
(EVSM) combine VSM and ESM by storing the first two mo-
ments of a positive and negative exponential function and evaluat-
ing Chebyshev’s inequality for both. Moment shadow maps [PK15]
(MSM) store the first four moments for the shadow map and
solve the corresponding four-moment problem to approximate the
shadow.

While all the mentioned filterable shadow map techniques im-
prove aliasing and self-shadowing, they are susceptible to light
leaking, cracks of light inside the shadow (Figure 1 and 2).
There are some solutions to reduce the light leaking by e.g. us-
ing summed-area tables [Lau07] or layered shadow maps [LM08].
However, they do not remove all light leaks.

Pixel-perfect shadows are another area of research, aiming to
produce alias-free hard shadows similar to those generated by
ray tracing. Adaptive Shadow Maps [FFBG01] iteratively refine
the shadow map resolution at visually important regions (such as
shadow edges) by estimating the footprint of a shadow map texel
with mipmapping from the camera view, requiring a CPU read-
back of the camera view buffer. Lefohn et al. [LSK∗05] demon-
strated a full GPU implementation using a quadtree. Resolution
Matched Shadow Maps [LSO07] improve on Adaptive Shadow
Maps by directly approximating the required shadow map reso-
lution for each node without iterative refinement. Shadow Silhou-
ette maps [SCH03] use an additional silhouette texture from the
light view to reconstruct the shadow silhouette using neighbor-
ing silhouette texels. Noticable artifacts can appear if two silhou-
ette shadows project close to each other. Scherzer et al. [SJW07]
use jittered shadow maps with temporal accumulation to produce
pixel-perfect shadows after multiple frames. To converge to a pixel-
perfect shadow, a confidence function is used, that weights samples
in the shadow map texel center higher. However, temporally repro-
jected shadows struggle with moving objects and light animations.

Shadow alias artifacts result from a mismatch between the cam-
era and shadow view query locations. Alia and Laine [AL04]
and Johnson et al. [JLBM05] independently proposed similar so-
lutions to this problem. First, a camera pass is executed to ob-
tain the desired shadow map sample locations, which are then
used in a shadow map generation pass. However, these sample lo-
cations lie on an irregular grid, making rasterization impossible.
Arvo [Arv07], Sintorn et al. [SEA08] and Wyman et al. [WHL15]
demonstrated graphics hardware implementations of an irregular
z-buffer. All of these implementations require conservative raster-
ization, and the shadow pass needs to be evaluated every frame.
Sintorn et al. [SKOA14] use per-triangle shadow volumes [SOA11]
with a view based hierarchical clustering method to produce pixel-
perfect shadows.

Advancements in hardware ray tracing allows for ray traced
shadows as an artifact-free real-time alternative to shadow maps.
However, ray traced shadows are still more expensive than a lookup
in the shadow map. An approach that was developed before hard-
ware ray tracing uses conservative rasterization to detect the ar-
eas where a ray is needed [Sto15]. AMD implemented a hybrid
shadow map system in their FidelityFX framework [AMD21]. The
hybrid shadow test is performed by repeating the shadow test mul-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing 3 of 10

tiple times, akin to PCF, and distributing a ray if the shadow test
result differs for one or more samples. Choi [Cho21] presented a
hybrid soft shadow algorithm, where ray tracing is used for opaque
shadows and percentage closer soft shadows [Fer05] is used for
alpha-tested geometry. The results require a denoiser.

2.1. Filterable Shadow Maps

Our leak tracing algorithm is built on top of filterable shadow maps
that use an upper bound approximation to produce pixel-perfect
hard shadows akin to ray traced shadows. In the following, we look
at the properties and errors of the filterable shadow maps, which
are used to selectively trace a shadow ray on the shadow edge and
problematic areas.

The depth information from the view of the light is stored in
a shadow map z̄(t) with the texture coordinate t ∈ R2. The depth
z ∈ [0,1] is stored as a vector b(z) ∈Rn with n number of channels.
A shadow test s(z̄(t),d) is performed with the depth vector from
the shadow map z̄(t) := b and the light space depth of the current
position d.

The simplest case is shadow mapping [Wil78], where the depth
vector b(z) := z is compared to d. The shadow test s(z̄(t),d) is a
binary function which is 0 (shadowed) if z < d and 1 (lit) other-
wise. Filtering over the shadow map depth z does not make much
sense, as only the depths would be averaged while the shadow test
is still binary. However, filtering multiple shadow test results with
PCF [RSC87] is possible. For that, a filter kernel K with the filter
weights k(t) is needed and the shadow function is defined as:

fPCF (t,d) = ∑
ti∈K

k(ti − t) s(z̄(ti),d) (1)

which can also be modeled as a probability distribution function
P(z ≥ d) ∈ [0,1], that expresses how many neighboring shadow
map samples z are not occluded at d, essentially modeling the visi-
bility of the light. However, this comes with a performance penalty
because the shadow test, which samples the shadow map, needs to
be repeated multiple times.

Filterable shadow maps aim to approximate the probability dis-
tribution P(z ≥ d) while allowing pre-filtering the shadow map by
using different depth vector definitions and shadow tests. After cre-
ating a filterable shadow map, the values can be pre-filtered with:

ẑ(t) = ∑
ti∈K

k(ti − t)z̄(ti) (2)

where ẑ(t) is the prefiltered shadow map. The different filter-
able shadow maps use different depth vectors. VSM [DL06]
uses b(z) := {z,z2}, ESM [AMS∗08, Sal08] uses b(z) :=
ec·z, where c is a constant. EVSM [LM08] uses b(z) :=
{ec·z,e2c·z,−e−(c·z),e−(2c·z)} and MSM [PK15] uses b(z) :=
{z,z2,z3,z4}.

All of these pre-filtered shadow maps approximate the probabil-
ity of the shadow by computing the upper bounds to P(z ≥ d) with
the shadow test ŝ(ẑ(t),d)≤ P(z ≥ d). Using the upper bounds will
result in a shadow that is never too dark. VSM uses Chebychev’s
inequality. For EVSM, Chebychev’s inequality is evaluated for the
first and last two elements of the depth vector separately and the

VSM Ray Traced Shadows Shadow throwing 

Objects

0.50 ms 0.89 ms

Figure 2: Filterable shadow maps such as VSM produce light leaks
on areas with increased variance, which usually happens if one
occluder is in front of another.

VSM with LTT Shadow Rays

0.55 ms

Figure 3: VSM with LTT (Equation 3) at the same camera angle
as Figure 2. The right image shows the regions where LTT is true
since ŝ is between ϵ and (1− ϵ) and a shadow ray is distributed.
Note that all light leaks and discretization errors from Figure 2 are
fixed while being 61% faster than pure ray tracing.

minimum between both is used as the approximated shadow prob-
ability. ESM uses ŝ(ẑ(t),d) :=max(e−cd ẑ(t),1) as the shadow test.
For MSM the Hamburger problem with four moments is solved (see
MSM paper [PK15], Algorithm 2).

Additionally, filterable shadow maps have the advantage over de-
fault shadow maps, in that no scene-dependent bias needs to be
set by hand, as they are free from self-shadowing due to the upper
bound approximation.

2.2. Light Leaks

While filterable shadow maps are efficient, they suffer from light
bleeding/leaks. That is the case because all approximate the shadow
probability by calculating the upper bound to P(z ≥ d), which po-
tentially results in a shadow that is too "bright". Light leaking in
particular happens if the variance in the filter region is high, which
usually happens if one occluder is in front of another occluder, as
seen in the example in Figure 2. There, the silhouette from the wire
leaks through the shadow of the street lamp.

3. Leak Tracing Shadow Test

As filterable shadow maps approximate the shadow probability dis-
tribution P(z ≥ d), the shadow test returns values in the range of
0 ≤ ŝ(ẑ(t),d) ≤ 1. Fortunately, the distribution on fully shadowed
(0) and fully lit (1) regions is reliable, so that only regions near the
shadow edge or inside light leaks return values between 0 and 1.
This property can be exploited, as we now know where the edges
and problematic areas of the shadows are.

Therefore, we want to distribute a ray, whenever the filterable
shadow map test results in a value between 0 and 1, which corre-
sponds to the boolean test: 0 < ŝ(ẑ(t),d)< 1. However, in practice
the filterable shadow tests are numerically unstable, thus a small

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 10 R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing

MSM MSM with LTT Ray Traced Shadow

Figure 4: Failure cases for our leak tracing shadow test caused
by the discretization of the shadow map. Visible errors appear on
objects where the geometry is nearly parallel to the light direction
(top) and on shadow edges that are near gaps (bottom). The arti-
facts can be fully removed using our temporal mask (Section 3.1).

bias should be applied to this test (e.g. ϵ = 0.01). With this, we
define the leak tracing shadow test (LTT) as:

LT T := ϵ< ŝ(ẑ(t),d)< (1− ϵ) (3)

where a ray should be distributed whenever LTT evaluates true.
With this simple test, the light leaks and most discretization errors
on the shadow edge can be eliminated as seen in Figure 3.

However, while LTT works well for most cases, it has some fail-
ure cases caused by the discretization of the shadow map, which is
shown in Figure 4. We opted to resolve these issues using temporal
information, described in the next section.

3.1. Temporal Leak Tracing Mask

To resolve the errors shown in Figure 4 with temporal information,
we first need to classify the possible outcomes of LTT and then
identify the problematic cases. In addition to the LTT result, we
need information about the shadow test result (ST) and the shadow
ray result (RS). ST and RS are booleans and are defined as follows:

ST := shadow test value < 0.5 (shadow)

RS := ray hits any geometry (shadow)
(4)

All possible combinations are shown in Table 1, with a visual rep-
resentation shown in Figure 5a. In the following, we will reference
the corresponding color when discussing a specific case.

First, the remaining discretization error of LTT are eliminated
by expanding shadow rays to regions that are error-prone (red ar-
rows/box in Figure 5a) in Section 3.1.1. Then runtime is improved
in Section 3.1.2 by removing rays on regions where the shadow ray
is identical to the shadow map result (blue arrow in Figure 5a). A
complete overview of the leak tracing algorithm is then shown in
Section 3.1.3.

In the following, we assume that the light is mostly static, where
only small light movements are allowed. Camera movement and
dynamic geometry are fully supported by the temporal mask using
re-projection with motion vectors. If re-projection fails, we force a
shadow ray.

Mask for MSM with LTT 

(a)

Expand Rays

(b)

Expand and Remove Rays

(c)

LtMSM

(d)

Figure 5: The roller and ashtray from Figure 4 with the different
stages of the temporal LTT used on MSM. Combining LTT with the
temporal tests forms our leak tracing (Lt) algorithm, which pro-
duces shadows similar to ray tracing (d).

Color LTT ST RS Effect
Black 0 0 - Conf. lit or backfacing light
Green 0 1 - Confidently shadowed
White 1 1 1 Shadowed ST; Ray shadowed
Purple 1 0 1 Lit ST; Ray shadowed

Red 1 0 0 Lit ST; Ray lit
Yellow 1 1 0 Shadowed ST; Ray lit

Table 1: Boolean classifications for a pixel in the temporal leak
tracing mask.

3.1.1. Ray Expansion

As the filterable shadow maps approximate the upper bound of the
shadow, the only theoretical remaining discretization errors are in
regions where the shadow test wrongfully evaluated lit and the LTT
test evaluated false (black case). However, while all failure cases
are in the black case, not all pixels in the black case are failure
cases. When analyzing the neighboring pixels of a failure case (red
arrow/box in Figure 5a), it shows that a failure case is always ad-
jacent to the purple case, where LTT corrected a lit shadow test.
Ideally, we would want to completely ray trace along the silhouette
of the shadow. This means for our LTT, that a correction of a lit
shadow test (purple) should always be adjacent to a confirmation
of a lit shadow test (red). Therefore, we want to set the current LTT
result to true which forces a shadow ray if this property was not
fulfilled in the last frame. To be fully consistent we also need to
handle the same case for wrongly shadowed regions (yellow), even
though it is theoretically impossible due to the upper-bound ap-
proximation, it can exist in practice. Therefore, a corrected shadow
result (yellow) should always be adjacent to a shadow confirmation
(white).

To summarize, when LTT evaluates false for the current pixel,
we check if the purple or yellow case is present in any of the adja-
cent neighboring pixels. If that is the case, the property is not ful-
filled and we need to expand the ray and set the current LTT result
to true. The expand rays check (ER) that is checked for each adja-
cent neighboring pixel in the temporal mask M, can be expressed

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing 5 of 10

as the following:

ERpurple := MLT T ∧ (MRS ∧¬ST )

ERyellow := MLT T ∧ (¬MRS ∧ST )
(5)

with ST being the current shadow test result, MLT T and MRS be-
ing the LTT and RS results from last frame. Both boolean expres-
sions can also be combined into a singular expression. Additionally,
we also want to distribute a ray if the shadow map result changes
compared to the last frame, to cover slight light movements and
disocclusion. Combining this with both equations from Equation 5
results in the boolean expression:

ERLT T := (MLT T ∧ (MRS ⊕ST ))∨ (MST ⊕ST ) (6)

that is tested for all adjacent neighboring mask pixels and the LTT
result is set to true if Equation 6 is true for any neighboring pixel.
As temporal information is used to fix the remaining errors of LTT,
a couple of frames are needed to completely fix the failure cases.
However, as the failure cases often occupy a small area, 4 − 8
frames are usually enough to fully fix those errors, resulting in a
mask that can be seen in Figure 5b, which from this point on is
fully temporally stable.

Checking all adjacent neighbors requires a 3× 3 kernel. After
experimenting with multiple sample patterns, a 2× 2 gather with
a subpixel jitter, so that a 3× 3 region is covered over 4 frames,
was the most performant option while delivering indistinguishable
results from a full 3×3 filter kernel.

Expanding the rays fixes the remaining discretization errors in
LTT. However, the mask decreases performance slightly as it in-
cludes read and write operations for the mask. To compensate for
this, we also want to use the temporal mask to remove rays that are
identical to the shadow map result, which is either caused by poor
shadow map approximation or light leaks.

3.1.2. Ray Removal

In order to improve performance, we want to avoid distributing rays
in regions where the shadow ray only confirms the shadow map
result (ST == MRS). Additionally, we want to verify that we are
still in the same shadow case as in the last frame (ST == MST ).
Looking at our classification (Table 1), this corresponds to the white
case for shadows and the red case for lit regions. Therefore, we
can assume that a ray is not needed if all adjacent neighbors only
contain confirmations (white, red) or are already confident in the
result (black, green). With this, we define the following remove ray
(RR) expressions:

RRwhite,red := MLT T ∧ (ST == MST )∧ (ST == MRS)

RRblack,green := ¬MLT T ∧ (ST == MST )
(7)

We can remove a ray if either RRblack,green or RRwhite,red evaluates
true for all adjacent neighboring pixels in the mask M. To not over-
write the ER expressions, we only use RR if the original LTT test
evaluated true. Equation 7 can be combined and simplified to:

RRLT T := (ST == MST )∧ (¬MLT T ∨ (ST == MRS)) (8)

which is the (optional) remove ray test for LTT. Additionally, when
a ray is removed, the shadow value from the shadow test needs to be
set to either 0 or 1 to stay consistent with the ray tracer. The result

 
Always remove rays

Disable RR for dynamic

(a)

LtESM LtMSM LtVSM LtEVSM

LtESM + Depth Test LtMSM + Depth Test

(b)

Figure 6: (a) Discretization error that happens when remove ray
is used with dynamic geometry, as the ray traced shadow edge is
reduced. The screenshot was captured in motion (wire moves from
right to left) with LtEVSM (b) A house wall of the Emerald Square
scene with a right-to-left camera motion. Visible disocclusion can
occur in ESM and MSM when remove rays is used, as the shadow
values from the shadow map are near to 1. Using an additional
temporal depth test can fix this problem.

after a couple of frames of using ER and then RR can be seen in
Figure 5c.

However, removing rays is potentially dangerous in two cases.
One is dynamic geometry, where movements can cause visible dis-
cretization errors (Figure 6a). To avoid these errors, we disable
RRLT T for dynamic shadows. Section 3.4 goes into more detail on
how we handle dynamic geometry. The second case happens due
to dissocclusion artifacts. When the whole shadow is only covered
by the purple case and a confidently lit object (black case) occludes
it, most of the shadow will be removed, as the LTT result is over-
written before a shadow ray is distributed (see Figure 6b). Our ex-
periments show that this only happens with LtEVM and LtMSM,
as LtVSM and LtEVSM approximate the inner part of the shadow
more confidently. For LtEVM and LtMSM the error can be resolved
using an additional temporal depth test, by only removing the ray if
the camera depth from the last frame is similar to the current depth.

3.1.3. Combined Algorithm

Combining LTT with the temporal mask test forms our leak tracing
(Lt) algorithm. An overview of the algorithm looks as follows:

1. Evaluate the filterable shadow map (ŝ(ẑ(t),d)).
2. Use LTT (Equation 3) to initially check if a ray is needed.
3. If temporal re-projection fails, force a shadow ray.
4. Expand Rays: If LTT evaluates false, check Equation 6 on all

adjacent neighbors and set the LTT result to true if any neighbor
evaluated true.

5. Remove Rays (optional): If LTT evaluates true in step 2, check
Equation 8 on all adjacent neighbors and set the LTT result to
false if all neighbors evaluated true. Note the special cases men-
tioned in Section 3.1.2 where RR should not be used.

Following these steps, our leak tracing algorithm gets rid of the

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 10 R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing

artifacts of filterable shadow maps and recreates a shadow simi-
lar to ray tracing, as seen in Figure 5d. Step 5 is optional and not
necessary for artifact-free shadows, as it is only a performance op-
timization.

3.2. Memory Optimizations

Our experiments show that a shadow map filter kernel of the size
2×2 is sufficient to identify where a ray is needed. Therefore, a de-
fault shadow map with linear depth(b(z) := z) can be used to repli-
cate a filterable shadow map. When evaluating the shadow map, a
gather texture operation (i.e. 2×2 filter kernel) can be used to fetch
the depths. These depths are converted to the filterable shadow map
format (e.g. z → {z,z2} for VSM) and then interpolated bilinearly.
This decreases the memory bandwidth and increases performance
for texture fetches (see Figure 8a), without visual differences to the
pre-filtered counterpart.

3.3. Cascaded Shadow Mapping

Rendering the depth map multiple times per frame can be expen-
sive. With rasterization, reusing the shadow map for slight move-
ments can lead to noticeable jumps at the shadow edge. However,
as our leak tracing calculates the correct edge, reusing the (static)
cascaded shadow map is possible without any noticeable changes
on the shadow edge.

When creating a shadow map for a cascaded level, we increase
the cascaded frustum by a percentage (e.g. 15%), which allows
reusing the shadow map on slight movements. For every frame,
we check for each level if all edges for the cascaded frustum from
the current frame are within the (increased) cascaded frustum from
the last frame. If it is outside the bounds we increase the bounds
of the current cascaded frustum by the percentage and render the
cascaded shadow map level. If it is inside, we can reuse the shadow
map from the last frame cascaded level.

This drastically reduces the performance impact cascaded
shadow maps would have on our leak tracing algorithm, as the
shadow map can be reused most of the time and only needs to be
re-rendered on strong movements. Possible jumps in the shadow,
when the cascaded shadow map level is replaced, are compensated
by the second part of our expand ray expression (Equation 6).

For optimal performance, the light direction or position should
only be updated sparingly to reuse the cascaded level as much as
possible. Additionally, stronger changes in light position or direc-
tion are currently not supported, as the temporal mask only com-
pensates camera and geometry movements.

3.4. Dynamic Geometry

Reusing a shadow map is only possible for static geometry. There-
fore, we use a separate shadow map for static and dynamic ge-
ometry. The static shadow map is reused if possible and the dy-
namic shadow map is rendered for every frame. For the filterable
shadow test, both shadow maps are sampled. However, because the
dynamic geometry is rendered on top of an empty shadow map,
pre-filtering is not possible, as it would blend the dynamic shadow

edges with the clear value. To still get the filter effect, we sam-
ple the static and dynamic shadow map using a gather operation.
We take the minimum of both the static and dynamic shadow maps
and manually interpolate the values. Bigger kernels would also be
possible, using the same principle. Additionally, we store if a static
gather sample was replaced by a dynamic one to disable the remove
ray expression in this case.

4. Results

We implemented our leak tracing algorithm in the Falcor frame-
work [KCK∗22]. The tests were performed on an NVIDIA RTX
2080 SUPER with a screen resolution of 1920x1080 on a range of
different scenes. The used scenes are:

• Bistro [Lum17]: The Amazon Lumberyard Bistro with 2.8m tris.
Objects with foliage are present all over the scene and it has a
handful of animated wires with light bulbs.

• EmeraldSquare [NHB17]: A small city scene with a park that
has many trees with alpha-tested leaves. The scene has 10m tris.

• MedievalCity: A low poly medieval city with around 1.2k ob-
jects, of which 208 are low poly trees with a total of 723k tris.

• Forest: A small forest path with a high poly animated bike (1.9m
tris) and an animated character walking through the forest. It
contains many instanced low poly trees and grasses by Nicholas-
3D [ND23]. The scene has a total of 4m tris.

The settings used for each test scene are the same, except for
the cascaded split range, which is adjusted for each scene. We al-
ways used 4 cascaded levels, where the shadow of levels 0 to 2 is
determined using our hybrid algorithm with a 20482 shadow map
while the last level is fully ray traced. The shadow map format is
always 32-bit float per channel. We use a fixed min variance of
1e−10 for VSM and EVSM and a moment bias of 3e−6 for MSM,
which worked well for all tested scenes. We use c = 80 for ESM
and cpos = 20 and cneg = 5 for EVSM. Additionally, we used an
8-sample camera jitter (DirectX standard pattern) and DLSS 3.1
for antialiasing. The BRDF is also evaluated in the same pass as
the shadow. We added the abbreviation Lt before the shadow map
technique to signal that our algorithm is used.

To test if our parameters are independent of the scene extent, we
additionally tested other scenes with very different scales. Further-
more, we scaled all our test scenes by 10−3 and 103. Our algorithm
performed well and always reproduced the ray traced shadow, re-
gardless of the scale, as long as the cascaded level splits were rea-
sonably chosen.

First, we compare how well the different types of filterable
shadow maps work with our leak trace algorithm in Section 4.1.
Then we test against full ray traced shadows in Section 4.2 and
show the limitations of our technique in Section 4.3.

4.1. Filterable Shadow Map types

We examined our algorithm with the upper-bound filterable shadow
maps introduced in Section 2.1. Quality-wise, ESM and MSM of-
ten result in a poor approximation on steep shadow edges with a
shadow value near 1. Therefore, ESM and MSM need an additional
temporal depth test to compensate for this error.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing 7 of 10

R
en

de
r 

T
im

e 
in

 m
s

Scene Time in s

35s 60s 4s 32s 42s 65s CameraLeft CameraRightBistro EmeraldSquare Low Poly MedievalCity Forest

Figure 7: Performance comparison between ray traced shadows and our LtEVSM. The times on the y-axis respond to the scene time for the
camera paths. The corresponding videos are provided in the Supplemental Materials.

Scene Time in s

R
en

de
r 

T
im

e 
in

 m
s

(a) (b)

Emerald Square Bistro

Figure 8: (a) Performance comparison of the different filterable
shadow map versions of the camera path in the Emerald Square
scene. The filterable shadow maps without channels use the mem-
ory optimizations (Section 3.2). (b) Comparison of LtEVSM and
ray shadows with different screen resolutions in the Bistro scene.
After each method, we added the screen pixel height with a 16 : 9
screen pixel ratio.

Figure 8a shows a performance comparison of our algorithm
with the different upper-bound filterable shadow maps. The mem-
ory optimization from Section 3.2 increases the performance by a
constant factor, as less memory bandwidth is used. The cost for the
4 channel shadow maps is reduced by around ∼ 0.1ms on aver-
age and around ∼ 0.05ms on average for LtVSM. Our algorithm
with VSM and EVSM has the best performance, with EVSM be-
ing slightly faster. Due to the more confident approximation of the
inner shadow part, fewer rays need to be distributed. LtESM often
needs rays when the shadow and the sender are close to each other,
resulting in many unnecessary rays that cannot be safely removed.
LtMSM has an unsure LTT test around smaller occluders (e.g. see
Figure 6b), resulting in a less confident approximation and more
rays as LtVSM or LtEVSM.

After evaluating the different filterable shadow maps, we came
to the conclusion that LtVSM and LtEVSM are the best filterable
shadow map candidates for our algorithms. LtESM is slower and
shows errors, which is why we would advise against using ESM
as the filterable shadow map for our algorithm. MSM is a possible
candidate, but the performance is worse than LtVSM and LtEVSM

Bistro EmSq MedCity Forest
Shading w/o w/o w/o w/o

Avg. 1.36 1.74 1.34 1.55 1.19 1.57 1.30 1.61
Min. 1.12 1.21 0.91 0.90 0.92 1.01 1.12 1.24
Max. 1.76 2.62 2.88 3.90 2.71 4.17 1.52 2.04

Table 2: Speedups for scenes from Figure 7. The average, minimum
and maximum with and without shading are shown.

due to the worse shadow approximation and the additional temporal
depth test (∼ 0.04ms) that is needed.

4.2. Performance

In Figure 7 we compare LtEVSM, our best-performing variant, to
ray traced shadows. The graphs show the render time for the shad-
ing of the scene with one directional light. We also included the ren-
der time without evaluating the BRDF. Additionally, the speedups
for each scene are shown in Table 2.

Overall, our algorithm has a 1.19 to 1.36 speedup on average
with shading and an average speedup from 1.55 to 1.74 without
evaluating the BRDF. This is probably due to the latency-hiding
capabilities of the GPU. While the ray is in flight, the GPU can
perform some independent calculations, which effectively hides the
cost of dispatching a ray to some degree. The graph also shows,
that our leak tracing is able to drastically reduce the peaks caused
by alpha-tested rays. This can lead to huge speedups in those areas
ranging from 1.76 to 4.17.

However, our algorithm can sometimes be slower than ray trac-
ing, which happens in the EmeraldSquare and MedievalCity scene,
where the lowest speedup was 0.9. Our algorithm can get slower
when the static shadow map needs to be constantly updated, due
to camera rotations, and the visible shadows are cast by simple ob-
jects. In these cases, the cost of updating the shadow maps out-
weighs the benefit gained from not tracing the shadow rays in the
core of the shadow. As this happens only on stronger camera rota-
tions, these cases are more the exception than the rule. Additionally,

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



8 of 10 R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing

SM VSM MSM Ray Lt Lt w/o Lt w/o LTT HySM
RR Reuse only [AMD21]

Avg. 2.54 2.79 3.39 1.67 1.31 1.38 2.85 1.03 1.31
Min. 1.29 1.57 2.18 0.56 0.58 0.59 1.34 0.49 0.58
Max. 3.58 3.81 4.40 3.33 2.41 2.60 4.52 1.91 2.39

Table 3: Render times in ms for the camera path in Emerald Square
with different shadow techniques and settings for our Leak Tracing.

we do not use simplified geometry for the latter cascaded levels in
our research prototype.

Our leak tracing can even perform well for scenes with an exten-
sive amount of dynamic triangles if there are enough alpha tests,
as in our Forest scene. A bike with 2 million triangles is moving
through the scene, drastically increasing the render time of the dy-
namic shadow map. This is also visible in the graph (Figure 7), as
the render time for our LtEVSM peaks when the bike needs to be
rasterized for all cascaded levels.

In Table 3, we compare the runtime of various shadow tech-
niques and leak tracing with some optimizations disabled. Default
shadow maps and filterable shadow maps have worse render times
than ray tracing if all cascaded levels are re-generated every frame.
The shadow evaluation time was around 0.5 ms for all three shadow
map techniques. Similarly, without our reuse optimization (Lt w/o
Reuse), our leak tracing is significantly slower than ray tracing.
With reuse optimization, the average shadow map generation time
is 0.01 ms, and without it, the time is 1.53 ms, demonstrating
the importance of reuse optimization. The ray removal optimiza-
tion provides a modest performance gain (avg. 1.05 speedup). Dis-
abling the temporal mask entirely (LTT only) results in an average
speedup of 1.27. This is mainly because LTT does not correctly
detect all shadows within trees, whereas the temporal mask forces
expensive alpha-rays in these regions. Lastly, we replaced the LTT
test with AMD’s FidelityFX hybrid shadows [AMD21] with 2x2
PCF while using our reuse optimization and temporal mask. The
render times are identical to leak tracing; however, a shadow bias
must be carefully set to avoid dispatching many unnecessary rays.
Without the temporal mask, the artifacts produced by hybrid shad-
ows are slightly worse than using LTT alone.

4.2.1. Performance for Different Resolutions

Figure 8b we compared the performance of our LtEVSM with ray
traced shadows with different screen resolutions. Both methods use
shading for this comparison. The graph shows, that with increas-
ing screen size, our algorithm scales better, as relatively fewer rays
need to be distributed. For a resolution of 1280x720, the average
speedup is 1.21, with a minimum speedup of 1.0. With a resolution
of 2560x1440, we reach an average speedup of 1.44 with a min of
1.13 and a max of 1.97. For the resolution 3840x2160 we achieve
an average speedup of 1.5, with a max of 2.06 and a min of 1.17.
Therefore, we can conclude that our algorithm scales better than
ray tracing shadows with increasing screen size.

We also experimented with varying shadow map resolutions. In
the Bistro scene, we achieved an average speedup of 1.39 with a
shadow map resolution of 5122, 1.37 with 10242 and 1.24 with

5122 20482 Ray

E
V

S
M

L
tE

V
S

M

Render Times:

EVSM 512:

EVSM 2048:

LtEVSM 512:

LtEVSM 2048:

Ray: 

0.31 ms

0.31 ms

1.09 ms

0.68 ms

1.96 ms 

Figure 9: A faraway tree that is lit by a directional light with a
grazing angle while the camera is moving. Even with poor shadow
map resolution, our leak tracing is able to approximate the ray
traced shadow. However, some details are lost due to the limited
resolution and the temporal depth test needs to be enabled to pre-
vent disocclusion artifacts.

40962. However, the performance difference between the different
shadow map resolutions is mostly because of shadow map render-
ing. In some scenes, lower resolutions can negatively impact per-
formance, as seen in Figure 9. Also, lower resolution shadow maps
can lead to some problems (see Section 4.3), which were present in
the Bistro scene with 5122 and 10242 shadow maps.

4.3. Limitations

Our leak tracing algorithm is able to remove all the artifacts from
filterable shadow maps. However, in some situations, it can fail to
correctly replicate the ray traced shadow.

It can happen that very small lit regions (∼1-2 pixel in screen
space) are either not found or closed by ray removal. This hap-
pens when the lit region does not appear in the shadow map due
to its resolution or when our temporal mask closes this lit pixel.
With insufficient shadow map resolution, these lit holes can pop
into existence when the cascaded shadow map level is refreshed.
An example would be the LtEVSM with a 5122 shadow map from
Figure 9. Similarly, very small shadow casters can be missed when
they are not rasterized in the shadow map. In this case, leak tracing
will propagate all shadow it recognizes, but can fail to replicate the
ray traced shadow if the shadow map information is missing and
there is no connected ray traced shadow pixel, as shown in Fig-
ure 10. However, as long as the shadow map resolution is sufficient
for the scene, these errors are not noticeable and can only be found
if directly comparing the ray shadow to our hybrid shadow.

The temporal mask in our leak tracing algorithm does not ac-
commodate moving light sources, as it only compensates for cam-
era and geometry movement using camera motion vectors. How-
ever, leak tracing still functions with small changes in the position
or direction of the light (e.g. sun), as the base approximation from
LTT is effective in most cases, and the temporal mask remains valid
for most pixels. Fast-moving lights that require per-frame shadow
map updates are likely to be slower than ray-traced shadows, except

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing 9 of 10

EVSM Frame 0 Frame 120 Frame 350 Ray

Figure 10: A worst-case scenario, where temporal maks conver-
gence is shown without any previous history. A fence in Emerald
Square with a 642 EVSM (left) is shown. While most of the fence
is slowly closed within 350 frames, a hole in the top remains that
could not be closed as the information in the shadow map is miss-
ing and the ray shadow pixels are too far apart.

for very alpha-heavy scenes. To reduce the frequency of shadow
map generation for slower-moving lights, our algorithm could be
combined with Parallax-Corrected Cached Shadow Maps [Tur19]
or other similar techniques that allow the reuse of shadow maps
with slightly different light directions.

5. Discussion

We presented a simple algorithm to generate pixel-perfect shad-
ows that closely resemble ray-traced shadows by distributing rays
in error-prone areas of filterable shadow maps. We achieved an
average speedup of 1.19 to 1.74 across various test scenes, with
speedups of up to 4.17 for alpha-tested shadows, where ray tracing
notoriously struggles.

The algorithm can be used on top of default shadow maps that
often are already used in games and does not need any scene de-
pendent parameters. The leak tracing shadow test (Equation 3) pro-
vides a good approximation of the shadow with minimal error cases
occurring with near-parallel incoming light. Our proposed tempo-
ral mask addresses the remaining issues, requiring only 3 bits per
light, making it very memory-efficient and allowing for support of
a larger number of lights. The static part of the shadow map can be
reused over multiple frames and only needs sparse updates, which
significantly reduces shadow map generation time. Leak tracing
works with dynamic geometry and slow light movements (e.g. sun).

Comparison to existing work: In addition to ray-traced
shadows, our work shares similarities with previous work on
pixel-perfect shadows. View-dependent shadow map techniques
such as Adaptive Shadow Maps [FFBG01, LSK∗05], Resolution
Matched Shadow Maps [LSO07], temporal reprojected shadow
maps [SJW07], methods based on the irregular z-buffer [AL04,
JLBM05, Arv07, SEA08, WHL15] and per-triangle shadow vol-
umes [SOA11, SKOA14] all require generating the shadow eval-
uation structure every frame, which can be expensive for scenes
with higher triangle counts, especially with more complex shadow
structures. As shown in Section 4.2 and Table 3, even default cas-
caded shadow maps are slower than ray tracing if the shadow map
needs to be generated every frame. Additionally, some techniques
rely on conservative rasterization, which scales very poorly with
larger scenes. Our Leak Tracing can reuse the shadow map over
multiple frames and uses a default shadow map as a shadow evalu-
ation structure.

Work based on shadow maps, such as Adaptive Shadow Maps,

Resolution Matched Shadow Maps, Shadow Silhouette Maps
[SCH03], temporal reprojected shadow maps and hybrid PCF
shadow maps [AMD21] all require setting a scene-dependent depth
bias to avoid self-shadowing. Since our Leak Tracing is based on
filterable shadow maps, we do not need to set any scene-dependent
parameters. Additionally, Shadow Silhouette Maps can exhibit no-
ticeable zig-zag artifacts.

Adaptive Shadow Maps and temporal reprojected shadow maps
do not handle dynamic scenes well, while our algorithm can handle
dynamic objects and slow-moving lights.

6. Conclusion and Future Work

We introduced Leak Tracing, a simple algorithm that approximates
a ray traced shadow using a shadow map. Our algorithm is easy
to implement into existing systems and significantly speeds up ray
traced shadows on alpha-test heavy scenes.

For future work, it would be interesting to examine the scaling of
our algorithm with more than one light source, we imagine that our
algorithm will scale very well with an increased amount of lights.
Up to 42 lights would currently be possible with our temporal mask
as one RGBA32 texture. Due to the extent of a real light source,
perfect hard shadows do not exist. Therefore, it would be interest-
ing to adjust our algorithm to support soft shadows. The inner part
of the shadow could still be produced by a shadow map, while the
penumbra region could be determined by ray tracing.

Supplemental Materials

Full source code for our implementation, an intractable demo
and videos are available at: https://github.com/TU-Clausthal-
Rendering/LeakTracing

Acknowledgements

This work was supported by the German Research Foundation
(DFG) grant GR 3833/4-1, Project Nr. 524961573: Optimal Com-
bination of Ray Tracing and Rasterization (R2)

References

[AL04] AILA T., LAINE S.: Alias-Free Shadow Maps. In Eurographics
Symposium on Rendering (2004), EGSR’04, The Eurographics Associa-
tion. doi:10.2312/EGWR/EGSR04/161-166. 2, 9

[AMB∗07] ANNEN T., MERTENS T., BEKAERT P., SEIDEL H.-P.,
KAUTZ J.: Convolution shadow maps. In Eurographics Symposium
on Rendering (2007), EGSR’07, Eurographics Association, p. 51–60.
doi:10.2312/EGWR/EGSR07/051-060. 2

[AMD21] AMD: FidelityFX Hybrid Shadows, 2021. Part of
the FidelityFX framework. URL: https://gpuopen.com/
fidelityfx-hybrid-shadows/. 2, 8, 9

[AMS∗08] ANNEN T., MERTENS T., SEIDEL H.-P., FLERACKERS E.,
KAUTZ J.: Exponential shadow maps. In Proceedings of Graphics In-
terface (2008), GI ’08, CIPS, p. 155–161. 2, 3

[Arv07] ARVO J.: Alias-free shadow maps using graphics hardware.
Journal of Graphics Tools 12, 1 (2007), 47–59. doi:10.1080/
2151237X.2007.10129231. 2, 9

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/TU-Clausthal-Rendering/LeakTracing
https://github.com/TU-Clausthal-Rendering/LeakTracing
https://doi.org/10.2312/EGWR/EGSR04/161-166
https://doi.org/10.2312/EGWR/EGSR07/051-060
https://gpuopen.com/fidelityfx-hybrid-shadows/
https://gpuopen.com/fidelityfx-hybrid-shadows/
https://doi.org/10.1080/2151237X.2007.10129231
https://doi.org/10.1080/2151237X.2007.10129231


10 of 10 R. Kern & F. Brüll & T.Grosch / Real-Time Pixel-Perfect Hard Shadows with Leak Tracing

[Cho21] CHOI J.: Hybrid shadows, 2021. Presentation, in NVIDIA GPU
Technology Conference (GTC) 2021. URL: https://www.nvidia.
com/en-us/on-demand/session/gtcspring21-e32638/.
3

[Cro77] CROW F. C.: Shadow algorithms for computer graphics. In Pro-
ceedings of the 4th Annual Conference on Computer Graphics and In-
teractive Techniques (1977), SIGGRAPH ’77, ACM, p. 242–248. doi:
10.1145/563858.563901. 2

[DL06] DONNELLY W., LAURITZEN A.: Variance shadow maps. In Pro-
ceedings of the 2006 Symposium on Interactive 3D Graphics and Games
(2006), I3D ’06, ACM, p. 161–165. doi:10.1145/1111411.
1111440. 1, 2, 3

[Eng06] ENGEL W.: Cascaded shadow maps. In Shader X5: Advanced
Rendering Techniques (2006), Charles River Media, Inc., pp. 197–206.
1, 2

[Fer05] FERNANDO R.: Percentage-closer soft shadows. In ACM SIG-
GRAPH 2005 Sketches (2005), SIGGRAPH ’05, ACM, p. 35–es. doi:
10.1145/1187112.1187153. 3

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREENBERG
D. P.: Adaptive shadow maps. In Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques (2001), SIG-
GRAPH ’01, ACM, p. 387–390. doi:10.1145/383259.383302.
2, 9

[JLBM05] JOHNSON G. S., LEE J., BURNS C. A., MARK W. R.:
The irregular z-buffer: Hardware acceleration for irregular data struc-
tures. ACM Trans. Graph. 24, 4 (2005), 1462–1482. doi:10.1145/
1095878.1095889. 2, 9

[KCK∗22] KALLWEIT S., CLARBERG P., KOLB C., DAVIDOVIČ T.,
YAO K.-H., FOLEY T., HE Y., WU L., CHEN L., AKENINE-MÖLLER
T., WYMAN C., CRASSIN C., BENTY N.: The Falcor rendering frame-
work, 2022. URL: https://github.com/NVIDIAGameWorks/
Falcor. 6

[Lau07] LAURITZEN A.: Summed-area variance shadow maps.
In GPU Gems 3: Chapter 8 (2007), Addison-Wesley Pro-
fessional. URL: https://developer.nvidia.com/
gpugems/gpugems3/part-ii-light-and-shadows/
chapter-8-summed-area-variance-shadow-maps. 2

[LM08] LAURITZEN A., MCCOOL M.: Layered variance shadow maps.
In Proceedings of Graphics Interface (2008), GI ’08, CIPS, p. 139–146.
2, 3

[LSK∗05] LEFOHN A., SENGUPTA S., KNISS J., STRZODKA R.,
OWENS J. D.: Dynamic adaptive shadow maps on graphics hardware.
In ACM SIGGRAPH 2005 Sketches (2005), SIGGRAPH ’05, ACM,
p. 13–es. doi:10.1145/1187112.1187126. 2, 9

[LSO07] LEFOHN A. E., SENGUPTA S., OWENS J. D.: Resolution-
matched shadow maps. ACM Trans. Graph. 26, 4 (2007), 20–es. doi:
10.1145/1289603.1289611. 2, 9

[Lum17] LUMBERYARD A.: Amazon lumberyard bistro, open re-
search content archive (ORCA), 2017. URL: http://developer.
nvidia.com/orca/amazon-lumberyard-bistro. 1, 6

[MT04] MARTIN T., TAN T.-S.: Anti-aliasing and continuity with trape-
zoidal shadow maps. In Eurographics Symposium on Rendering (2004),
EGSR’04, Eurographics Association, p. 153–160. 1, 2

[ND23] NICHOLAS-3D: Low poly tree scene free, 2023. URL: https:
//sketchfab.com/Nicholas01. 6

[NHB17] NICHOLAS HULL K. A., BENTY N.: Nvidia emerald
square, open research content archive (ORCA), 2017. URL: http://
developer.nvidia.com/orca/nvidia-emerald-square.
1, 6

[OSK∗14] OLSSON O., SINTORN E., KÄMPE V., BILLETER M., AS-
SARSSON U.: Efficient virtual shadow maps for many lights. In Pro-
ceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (2014), I3D ’14, ACM, p. 87–96.
doi:10.1145/2556700.2556701. 1, 2

[PK15] PETERS C., KLEIN R.: Moment shadow mapping. In Proceed-
ings of the 19th ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games (2015), i3D ’15, ACM, pp. 7–14. doi:10.1145/
2699276.2699277. 1, 2, 3

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Rendering an-
tialiased shadows with depth maps. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques (1987),
SIGGRAPH ’87, ACM, p. 283–291. doi:10.1145/37401.37435.
1, 2, 3

[Sal08] SALVI M.: Rendering filtered shadows with exponential shadow
maps. In ShaderX6: Advanced Rendering Techniques (2008), Charles
River Media, p. 257–274. 2, 3

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.: Shadow silhouette
maps. In ACM SIGGRAPH 2003 Papers (2003), SIGGRAPH ’03, ACM,
p. 521–526. doi:10.1145/1201775.882301. 2, 9

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective shadow maps.
In Proceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques (2002), SIGGRAPH ’02, ACM, p. 557–562.
doi:10.1145/566570.566616. 1, 2

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample Based
Visibility for Soft Shadows using Alias-free Shadow Maps. Computer
Graphics Forum (2008). doi:10.1111/j.1467-8659.2008.
01267.x. 2, 9

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.: Pixel-Correct
Shadow Maps with Temporal Reprojection and Shadow Test Confidence.
In Eurographics Symposium on Rendering (2007), EGSR’07, The Euro-
graphics Association. doi:10.2312/EGWR/EGSR07/045-050. 2,
9

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.: Per-
triangle shadow volumes using a view-sample cluster hierarchy. In Pro-
ceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (2014), I3D ’14, ACM, p. 111–118.
doi:10.1145/2556700.2556716. 2, 9

[SOA11] SINTORN E., OLSSON O., ASSARSSON U.: An efficient alias-
free shadow algorithm for opaque and transparent objects using per-
triangle shadow volumes. In Proceedings of the 2011 SIGGRAPH
Asia Conference (2011), SA ’11, ACM. doi:10.1145/2024156.
2024187. 2, 9

[Sto15] STORY J.: Hybrid ray-traced shadows, 2015. Presen-
tation, in Game Developers Conference (GDC) 2015. URL:
https://developer.download.nvidia.com/assets/
events/GDC15/hybrid_ray_traced_GDC_2015.pdf. 2

[Tur19] TURCHYN P.: Parallax-corrected cached shadow maps. In GPU
Zen 2: Advanced Rendering Techniques, Engel W., (Ed.). Black Cat Pub-
lishing, 2019, pp. 143–152. 9

[WHL15] WYMAN C., HOETZLEIN R., LEFOHN A.: Frustum-traced
raster shadows: revisiting irregular z-buffers. In Proceedings of the 19th
Symposium on Interactive 3D Graphics and Games (2015), i3D ’15,
ACM, p. 15–23. doi:10.1145/2699276.2699280. 2, 9

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12, 3 (1978), 270–274. doi:10.1145/
965139.807402. 1, 2, 3

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.: Light
space perspective shadow maps. In Proceedings of the Fifteenth Euro-
graphics Conference on Rendering Techniques (2004), EGSR’04, Euro-
graphics Association, p. 143–151. doi:10.2312/EGWR/EGSR04/
143-151. 1, 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-e32638/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-e32638/
https://doi.org/10.1145/563858.563901
https://doi.org/10.1145/563858.563901
https://doi.org/10.1145/1111411.1111440
https://doi.org/10.1145/1111411.1111440
https://doi.org/10.1145/1187112.1187153
https://doi.org/10.1145/1187112.1187153
https://doi.org/10.1145/383259.383302
https://doi.org/10.1145/1095878.1095889
https://doi.org/10.1145/1095878.1095889
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-8-summed-area-variance-shadow-maps
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-8-summed-area-variance-shadow-maps
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-8-summed-area-variance-shadow-maps
https://doi.org/10.1145/1187112.1187126
https://doi.org/10.1145/1289603.1289611
https://doi.org/10.1145/1289603.1289611
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://sketchfab.com/Nicholas01
https://sketchfab.com/Nicholas01
http://developer.nvidia.com/orca/nvidia-emerald-square
http://developer.nvidia.com/orca/nvidia-emerald-square
https://doi.org/10.1145/2556700.2556701
https://doi.org/10.1145/2699276.2699277
https://doi.org/10.1145/2699276.2699277
https://doi.org/10.1145/37401.37435
https://doi.org/10.1145/1201775.882301
https://doi.org/10.1145/566570.566616
https://doi.org/10.1111/j.1467-8659.2008.01267.x
https://doi.org/10.1111/j.1467-8659.2008.01267.x
https://doi.org/10.2312/EGWR/EGSR07/045-050
https://doi.org/10.1145/2556700.2556716
https://doi.org/10.1145/2024156.2024187
https://doi.org/10.1145/2024156.2024187
https://developer.download.nvidia.com/assets/events/GDC15/hybrid_ray_traced_GDC_2015.pdf
https://developer.download.nvidia.com/assets/events/GDC15/hybrid_ray_traced_GDC_2015.pdf
https://doi.org/10.1145/2699276.2699280
https://doi.org/10.1145/965139.807402
https://doi.org/10.1145/965139.807402
https://doi.org/10.2312/EGWR/EGSR04/143-151
https://doi.org/10.2312/EGWR/EGSR04/143-151

