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Abstract
Interpolation between objects of varying dimensionality is a common task in computer graphics; however, high-quality dynamic
natural interpolation for appearance remains scarce. In this paper, we propose a blending framework for general appearances
that can be integrated into renderers without modifying the rendering pipeline. For natural interpolation calculations, we
use the mathematical tool optimal transport (OT), known for its promising blending quality. Although recent advancements
in OT theory have improved computational performance, integrating runtime OT calculations into the path tracing rendering
pipeline compromises algorithm efficiency and increases storage requirements. To address this, we propose a novel solution that
precomputes appearances into a proxy distribution and introduces a hierarchical query structure. This enables efficient online
point or range data querying, allowing for the generation or retrieval of large data sets as needed. Additionally, the proxy and
hierarchical query structure facilitate multi-way barycenter computation. With this efficient query structure and barycentric
calculation, we demonstrate several applications of our method, including 2D and 3D interpolation, as well as isotropic BRDF
interpolation.

Keywords: appearance synthesis, proxy, query
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1. Introduction

Interpolation of varying dimensionality is a common task in com-
puter graphics; valid inputs include 2D and 3D shapes, textures,
volumes, BRDFs, color histograms, and many other types of data.
However, simple linear blending operations often produce ghost-
ing artifacts, and it is rare to have precise correspondences between
features of the objects being interpolated. Even with a high-quality
interpolation method, it may still fall short of practical application
needs in computer graphics, which demand high performance and
additional capabilities, such as the ability to point-sample and/or
importance-sample the interpolated objects without fully construct-
ing them. Point-sampling textures or volumes and importance sam-
pling BRDFs are critical operations for successful integration into
real rendering systems.

To avoid ghosting artifacts, we introduce the theory of optimal
transport (OT), which offers a promising solution for designing
high-quality interpolation methods due to its ability to produce
natural interpolated barycenters between distributions [Vil03]. OT
has garnered increased attention in the graphics community, due
to a sequence of works demonstrating interpolation results scal-
able to non-trivial instance sizes [BvdPPH11, SdGP∗15]. The OT
theory defines the Wasserstein distance between two objects, typ-
ically formalized as probability distributions or densities. The key
step is to optimize a transportation plan to minimize the work of

carrying mass from one distribution to another, resulting in natural
mass transport. Several techniques exist to accelerate this compu-
tation [SdGP∗15, BC19, PBC∗20], typically by introducing some
form of regularization. However, computing barycenters remains
computationally expensive, and no existing methods support point
queries or spatially varying interpolation weights.

Our ultimate goal is to integrate a general, efficient, and cross-
dimensional natural appearance synthesis and rendering solution
into traditional renderers. Though OT provides blending results
with high fidelity, several additional requirements must be satis-
fied. Firstly, based on the Monte Carlo point-sampling structure of
renderers, interpolation or blending operations should work with
discrete point sets, which also requires one-to-one mapping. More-
over, rendering is already a computationally intensive process, so
introducing a lightweight blending algorithm is essential. Unfortu-
nately, most of the accelerated OT techniques still cannot meet the
performance requirements. Finally, the efficiency and storage con-
straints limit the possibility of generating a complete set of appear-
ance data during rendering. Therefore, an efficient query structure
that can directly return the value of any single point efficiently is
essential.

In this paper, we introduce a proxy distribution to our pipeline
and precompute OT from the appearance distribution to a proxy.
The proxy can be any simple distribution, such as uniform or Gaus-
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sian. During the precomputation, mappings from the original distri-
bution to the proxy are calculated. At runtime, these mappings are
efficiently queried, separating the OT calculation from the render-
ing process and saving computation time. Additionally, a proxy dis-
tribution enables interpolation (barycenter computation) between
K distributions. To further accelerate runtime efficiency, a hierar-
chical query structure is introduced, allowing for the retrieval of
each point’s value without querying the entire dataset. Finally, our
method can be easily integrated into the renderer, enabling swift
data queries and barycenter calculations.

Here, we primarily focus on using existing OT solvers to better
fit renderers and explore more appearance synthesis applications,
rather than introducing novel OT solutions. Considering the struc-
ture and Monte Carlo properties of renderers, we prefer discrete
OT solvers, with or without regularization, that calculate one-to-
one distribution mappings across different dimensions. Based on
these criteria, we chose the recent work on Sinkhorn divergences
by Feydy et al. [FSV∗19] and the fast GPU-based implementa-
tion of their approach in the GeomLoss PyTorch library [Geo19].
Sinkhorn divergences are a modification of regularized Wasserstein
distances, offering several additional desirable properties that re-
duce blurring and artifacts compared to other regularization ap-
proaches. In summary, our contributions include:

1. a novel, efficient, and general appearance synthesis framework
that enhances various rendering applications and can be easily
integrated with renderers;

2. a new pipeline that uses optimal transport (OT) to precompute
natural mappings between input distributions and a common
proxy distribution;

3. a hierarchical point or range query structure for OT-integrated
rendering calculations.

2. Related Work

2.1. Appearance Synthesis and Blending

Appearance synthesis has always been an attractive topic in
computer graphics. Texture synthesis and bidirectional texture
function (BTF) synthesis, along with their applications, have
been extensively studied in computer vision and computer
graphics [WL00, WL01, TZL∗02, RPDB12, LH06, MMS∗05].
Recently, neural networks have emerged as another solution for
appearance synthesis and interpolation. For example, Sztrajman et
al. encoded MERL materials [MPBM03] and interpolated them to
generate new materials [SRRW21]. Zsolnai-Feh’er et al. proposed
a learning-based system using Gaussian process regression to
perform material synthesis, recommending novel materials to
artists [ZFWW18]. Fan et al. extended neural blending to layered
materials [FWH∗22], while Rainer et al. performed nonlinear
interpolation on BTF [RJGW19]. Neural networks provide a
general and straightforward solution to appearance synthesis;
however, these methods often result in blurry outputs due to the
high compression rate.

2.2. Optimal Transport in Computer Graphics and Rendering

Optimal transport (OT) has a long history within mathematics, pos-
sibly starting with Gaspard Monge in 1781 [Mon81], who formal-

ized the Monge map problem, searching for a mapping between
inputs and outputs that minimizes the moving energy. Later, math-
ematician Leonid Kantorovich defined the modern version of opti-
mal transport as a minimization of a transportation plan from inputs
to outputs [Kan42].

The application of Optimal Transport (OT) across various fields
in computer graphics and rendering has demonstrated versatility
and profound impacts. Bonneel et al. summarized a series of OT ap-
plications, such as texture interpolation, sampling, reflectance ma-
nipulation, etc. [BD23]; and Peyré et al. surveyed the solvers to
compute OT [PC∗19]. In texture synthesis, Matusik et al. utilized
1D OT for blending textures [MZD05], while Nadar et al. explored
continuous OT maps in 2D [NG18]. Heeger et al. innovatively cre-
ated textured 3D objects using human texture perception models
to avoid distortions typical in texture mapping [HB95]. For BRDF
blending, Bonneel et al. [BvdPPH11] applied displacement inter-
polation, showing impressive interpolation results but still relying
on relatively expensive, exact linear programming solutions. Later
work by Bonneel et al. [BPC16] introduced Wasserstein barycen-
tric coordinates; this method is more focused on the better fitting
of histograms using optimal transport, rather than fast barycen-
ter computation like our work. Cuturi pioneered entropic regular-
ization, presenting a fast, approximate solution through iterative
Sinkhorn updates [Cut13]. Solomon et al. extended this method-
ology to computer graphics, enabling scalable barycenter compu-
tation between large discretized distributions [SdGP∗15], albeit at
the expense of some blurriness in the results. Further, OT has also
been applied to BSDF measurement [WKB14]. Apart from tex-
ture and BRDF blending, Slice Optimal Transport (SOT) [PBC∗20]
generates arbitrary dimension of sample distribution to improve the
accuracy of Monte Carlo integration, Salaün et al. extended SOT
to scalable multi-class sampling [SGSS22]. Bonneel et al. applied
Sliced Partial Optimal Transport (SPOT) [BC19] to color transfer
and point cloud mapping, and OT also allows blue noise genera-
tion [DGBOD12]. Bai et al. precomputed BRDF sample mapping
using optimal transport and used lightweight neural networks to
compress the mapping for more efficient runtime use [BWZ∗22],
while Lavenant et al. enabled interpolation over discrete surfaces,
showcasing OT’s broad applicability [LCCS18].

While our approach shares similarities with linear optimal trans-
port (LOT) [WSB∗13], there are distinct differences between them.
LOT can easily compute pairwise distance metrics within a large
image database, and it allows for using pixel intensities as the parti-
cle density. It first calculates an estimated template image and then
calculates OT based on a linearized version of the Kantorovich-
Wasserstein OT distance. In contrast, our method operates on gen-
eral appearances across different dimensions rather than being lim-
ited to 2D images. Importantly, we leverage OT purely as a tool
for providing natural transitions. We do not impose constraints on
the choice of OT solver or distance metric, as long as the solver
aligns with our renderer integration requirements. Our primary fo-
cus remains on utilizing the natural blending capabilities OT offers.
Additionally, our proxy distribution is a common and straightfor-
ward distribution, such as Gaussian, instead of requiring a newly
calculated template.
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3. Background

3.1. Appearances and Appearance Synthesis

In physically-based rendering, appearances illustrate the light-
scattering properties of materials, commonly represented through
textures, volumes, and bidirectional scattering distribution func-
tions (BSDFs).

Consequently, appearance synthesis is often employed in ren-
dering to create additional materials by blending and interpolating
existing appearances [DRS10]. To make the synthesized materials
as photo-realistic as the original ones, simple linear blending or
interpolation methods are tricky since they result in ghosting arti-
facts, including most of the neural solutions. Therefore, a strategy
that ensures natural interpolation and preserves the intricate details
of the original appearances is essential. To address this, we employ
optimal transport (OT), renowned for facilitating natural interpola-
tions, to enhance our approach to appearance synthesis.

3.2. Optimal Transport and Barycenters

In this subsection, we briefly review the concepts and properties of
optimal transport, particularly its natural blending property. Many
treatments of the topic in the applied mathematics literature model
the transported quantities as probability distributions or measures
on abstract domains, which could be continuous or discrete; this
approach provides maximal generality. However, to better fit the
Monte Carlo framework of the path tracing rendering pipeline, we
focus on discretized point distributions at any dimension and one-
to-one mappings.

To be more specific, we focus on a Lagrangian approach to ap-
proximate optimal transport, treating the points as particles in a
d-dimensional Euclidean space whose positions can move, as op-
posed to the Eulerian approach of fixing a discretization of a do-
main and solving for the values of the distribution at the predeter-
mined grid points, like in Solomon et al. [SdGP∗15]. While nei-
ther of these approaches is universally superior, we choose the La-
grangian approach to define a fast point query for better renderer
integration.

Point distributions. We define a point distribution ααα with n points
as

ααα =
n

∑
i=1

αiδxi , (1)

where the xi ∈ Rd are the sample positions, αi are the probabilities
such that ∑i αi = 1, and the δxi are Dirac delta impulses at positions
xi, intuitively representing units of mass that are infinitely concen-
trated at locations xi.

Similarly, we define a second point distribution βββ, with n samples
at positions yi ∈ Rd and probabilities βi summing to one. In our
specific situation, we constrain the transported point distributions
to have the same number of points n to fit the Monte Carlo path
tracing framework.

The particles can carry other quantities (colors, weights, recon-
struction kernel widths, etc.), which do not participate in the opti-
mal transport computation, but affect how the final result is used

Figure 1: Visualizations of point distribution ααα
m (color-coded to

show the movement of particles) and βββ (purple) after m = 0, 1, 2
and 10 iterations from left to right using the GeomLoss PyTorch
library [Geo19].

in a graphics application. A visualization of discrete point mapping
and movement is shown in Figure 1.

Wasserstein distances and barycenters. Define the Wasserstein
distance W(ααα,βββ) between two such point distributions ααα and βββ

as the cost ∑i j πi j of the optimal transportation plan π. For many
practical applications in computer graphics, the pairwise squared
distance has nice properties and physical interpretation [BD23].

Now we can define the k-way Wasserstein barycenter B between
point distributions ααα1, · · · ,αααk as the point distribution βββ that mini-
mizes a convex combination of Wasserstein distances from β to the
input distributions, and w1, · · · ,wk are weights that sum to one:

B(ααα1, · · · ,αααk) = argmin
βββ

k

∑
i=1

wiW(αααi,βββ). (2)

Wasserstein barycenters often provide plausible interpolations of
the input point clouds. For example, given two input Gaussian dis-
tributions with different means and standard deviations, Wasser-
stein barycenter interpolation will naturally interpolate their means
and shapes. In contrast, linear blending would result in a simplistic
solution, with both distributions merely changing in weight without
shifting positions.

4. Our Method

With the high-quality blending results using squared distance cost
and the notable capability of the optimal transport framework for
multi-way interpolation [BD23], we introduce our method of pre-
computed appearance synthesis with the help of OT in this section.

4.1. Our Pipeline

Precomputation. Before the rendering process, we calculate the
optimal transport from a proxy distribution βββ to a target input dis-
tribution αααi, as shown in Figure 2. Note that the figure illustrates
2D textures, but there is no dimensional constraint on the distribu-
tions. The proxy now serves as the common distribution, containing
mapping connections to all the other input distributions. Since OT
calculation is time-consuming, performing it during the precompu-
tation stage alleviates the extra performance burden on the renderer.

Runtime. During the rendering process, the renderer uses the pre-
computed proxy-to-input OT mappings for appearance synthesis.
However, to accurately illustrate the appearances, an enormous
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Figure 2: During the precomputation, optimal transport is calcu-
lated from a common proxy distribution βββ to all the input target
distributions αααi, where i stands for the i-th input. Note that this fig-
ure only shows a 2D texture as an example, and we do not constrain
the appearance dimensions.

number of samples are required, and sometimes millions of sam-
ples need to be stored and looked up. Therefore, before the per-
pixel rendering process, we build a hierarchical structure for faster
data queries, which we will explain in Section 4.2.

Proxy selection. For the generalization of our method, we do not
constrain any distribution as the "optimal" one. Figure 3 shows the
2D texture synthesis results using different distributions as prox-
ies. The results show that using different proxies causes subtle vi-
sual differences, which are acceptable for rendering purposes since
natural transitions and blending are already guaranteed by optimal
transport.

4.2. 2-way and K-Way Interpolation with Query

Fast 2-Way Interpolation Without Proxy Consider the problem
of computing the barycenter at an interpolation point u between
distributions ααα1 and ααα2. Having established the approximate two
distributions ααα1 and ααα2, we can compute the barycenter βββ at an
interpolation point u by simply linearly interpolating the positions
for all corresponding pairs of points:

yi = (1−u)x1
i +ux2

i . (3)

However, note that this is only correct barycenter if the distance
cost function is Euclidean; otherwise, this approach will give plau-
sible blends that are not equivalent to barycenters. This fast 2-way
interpolation method contributes to the last row in Figure. 3.

The query structure. Now we introduce a variation of the above
2-way interpolation algorithm that supports point query or range
query. Instead of having to fully construct the point distribution at
an interpolation point u, we can query the value of the final contin-
uous reconstructed distribution at interpolation point u and a spatial
point p ∈ Rd in logarithmic time relative to the number of samples
n. This is useful for many graphics algorithms that need to query
the result point-wise or range-wise, such as implicit surface or vol-
ume ray tracing algorithms applied to the resulting distribution. To

Gaussian

Square

Spiral

No proxy

Figure 3: Comparisons on different choices of proxies. The first
three rows show our approximate optimal transport results using
a Gaussian proxy, a square proxy, and a spiral line-shaped proxy,
respectively. The last row is computed by linearly interpolating the
Monge map between two inputs directly. As seen, the differences in
using different proxies are subtle. Note again that our method works
on discrete point clouds and we reconstructed the results shown in
this figure.

achieve such a sub-linear point query capability, we need an accel-
eration structure that guides the search for the nearest particles for
any u and any p.

We achieve this by building a hierarchical structure on top of the
particle positions x of αααi (where i stands for the i-th input) inspired
by bounding volume hierarchy (BVH). Our BVH is similar to a
traditional BVH tree. Each node contains two axis-aligned AABB
bounding boxes, Ai j and B j (where j stands for hierarchical level),
for distribution αααi and proxy βββ. Additionally, each node includes
all samples in αααi and βββ, and two child pointers, as shown in Fig-
ure 4. When constructing the tree, we always calculate the splitting
dimension based on the longest Euclidean distance of samples in
one of the dimensions in βββ and divide the proxy bounding box B j
in half along this dimension until only one sample remains. The
OT-mapped samples in αααi are assigned to one of the child nodes
based on their corresponding proxy sample division, allowing us
to calculate the input bounding box Ai j. This design enables us to
quickly map a query location by looking it up in the divided proxy
and facilitates easier calculations for range queries.

At runtime, our query function takes interpolation point u and a
spatial point p∈Rd . To use the BVH, our point query compares the
query location with the proxy bounding box B j until it traverses to
the leaf node. Note that the node already contains a matching sam-
ple location from αααi. Similarly, we perform the same traversal on
the same query location in different input trees to find the corre-
sponding input samples, keeping the proxy consistent as shown in
Figure 4. Finally, blending can be performed on these input sam-
ples.

Point query and range query. Apart from the leaf nodes, each

© 2024 The Authors.
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Figure 4: Visualization of our hierarchical structure. (Left) The bounding box subdivision at each level. OT ensures that each sample in the
blue bounding box Ai j will be mapped to a corresponding sample in the pink bounding box B j. (Right) For a four-way blending, we start
by querying the spatial point p in B j from βββ at level j and find the corresponding mapped location from the four inputs in Ai j from αααi. The
result will be obtained by blending the bounding boxes of the four inputs.

bounding box of the hierarchical structure in Figure 4 naturally
holds multiple point samples. In this case, our hierarchical struc-
ture is performing range query, while point query is a special case
in which only leaf bounding boxes are looked up.

Finally, note that we can easily compute the bounding boxes
for the distribution at any interpolation point u, by simply linearly
blending the vertices of corresponding boxes Ai j and B j. Indeed, as
the particles travel along straight lines, the blended bounding boxes
are guaranteed to cover the interpolated point distributions. There-
fore, given this hierarchical structure can quickly produce bounding
boxes for any interpolated distribution, we can execute any kind of
nearest neighbor search for the interpolated point cloud at point u
in Figure 4, without constructing any data structures specific to u.

5. Implementation Details

5.1. Data Preparation

Sampling input distributions. Since our approach works on point
distributions, it is important that the sample points accurately cap-
ture the original continuous input distributions. We convert the in-
puts into point clouds by importance sampling. In many cases, the
input distributions are defined on a regular grid (for example, 2D
images on pixels and 3D volumes/BRDFs discretized on 3D grids).
Assuming these are distributions, then the grids record the proba-
bility density functions (pdf-s).

Importance sampling of such d-dimensional discretized pdfs on
regular grids is a well-studied problem, common in applications
such as sampling a 2D environment map. Let us assume a 2D grid.
First, we calculate a cumulative distribution function (cdf) for each
row, then we marginalize the 2D data along each row to get a 1D
column vector and calculate the cdf for this column. For importance
sampling, we first importance sample a row from the marginal-
ized column, then importance sample the selected row using its cdf
to find a sample column. This approach easily extends to higher
dimensions. To guarantee our samples are evenly distributed, we

Figure 5: Comparison of different query sizes. (Left) A box with the
same size as a pixel. (Middle) A Gaussian with a standard deviation
of 1/3 of a pixel’s side length. (Right) A Gaussian with a standard
deviation of 4 times a pixel’s side length. As can be seen, our choice
of Gaussian (middle) creates a similar but more anti-aliased result
as compared to be box (left) and is not overblurred as using a larger
Gaussian (right).

Figure 6: Comparison of the performance between point query (left
two images, ∼ 0.032s each) and kernel splatting (right two images,
∼ 0.004s each). The trade-off between flexibility for rendering and
speed for image/model generation has widened the practical use of
our method.

draw d-dimensional Sobol pseudo-random numbers in the [0,1]d

space.

One special case is to sample uniformly inside a solid object
(water-tight mesh). In this case, we simply draw random 3D points
within the object’s bounding box and then determine whether each
point is inside the object. To do this, we shoot a ray from the sample
point towards a random direction and count the number of intersec-
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tions found along this ray. An odd number of intersections indicates
that the random sample is inside the object, and vice versa.

As a reference, the storage cost of a precomputed 1 million sam-
ple 2D texture with all colors, such as the inputs in Figure 9, Fig-
ure 12, and Figure 10, is 19 MB. For precomputed 1 million 3D
volumes without color, as shown in Figure 13 and Figure 11, as
well as the 4D BRDF data (explained further in Section 6), the
storage is 11 MB.

5.2. Results Generation and Renderer Integration

Reconstruction.For results outside renderers, reconstruction is re-
quired since discrete samples are technically delta functions. To
turn the resulting barycenter point cloud into final rendering re-
sults, we convert each delta function into a small normalized Gaus-
sian kernel, truncating the Gaussians at (typically) 3 standard devia-
tions. Larger and smaller queries simply trade-off between blurring
and noise. For 2D images, we make the size of the kernel query
comparable to the pixel size. Figure 5 provides a comparison using
different sizes of point queries.

Query and splatting. For applications that do not require point or
range queries, the barycenters are explicitly generated, as demon-
strated in Figure 6. As expected, the kernel splatting method is
much faster for explicitly generating entire barycenters compared
to exhaustively performing point queries for every pixel of the re-
sult. On the other hand, the point query allows for greater flexibil-
ity, larger/smoother queries, and may potentially be more efficient
than splatting in higher dimensions, as the number of neighbors
increases with dimensionality.

Renderer integration. For all other applications inside the
renderer, we integrate our framework into the Mitsuba ren-
derer [Jak10] with minimal revisions, specifically to the evaluation
functions within the corresponding appearance classes such as tex-
ture, volume, and BRDF. These evaluation functions provide pairs
of query locations in the form of texture UV coordinates, locations
inside the volume, and pairs of incident and outgoing ray direc-
tions. We convert these query locations to a range between 0 and 1
for each dimension, and then look up the precomputed hierarchical
structure to obtain the mapping location and color value. Since the
query location can only be implicitly provided by these evaluation
functions, splatting does NOT work inside the renderer.

6. Applications, Results, and Comparisons

In this section, we present practical applications of appearance syn-
thesis and rendering using our framework. We have implemented
these applications inside the Mitsuba renderer [Jak10]. All timings
in this section are measured on a 3.60GHz Intel i9 CPU (8 cores,
hyperthreaded to 16 threads) with 32 GB of main memory.We also
used an NVIDIA GTX 1080 GPU, but only for OT precomputation.

6.1. Interpolating 2D Shapes

4-way barycenters in 2D. In Figure 7, we show a 4-way blending
of different shapes using our approximate optical transport. In this
example, we choose the proxy as a 2D Gaussian with a standard

(a) Ours: proxy approx. Pre.: 834.7s
Point.: 7.3s / Splat.: 0.4s

(b) Convolutional Wasserstein
ϵ = 0.005, 21.2s

Figure 7: 4-way barycenters of different shapes (at the corners) us-
ing (a) our approximate optimal transport with a Gaussian proxy,
and (b) convolutional Wasserstein. As we can see, the convolu-
tional Wasserstein method produces blurred results and is much
slower than our runtime method. Moreover, the precomputation of
our method is performed on GPU (marked in bold).

deviation of 1/6 the side length of the input images. The resolution
of the input images is 256×256, so are the generated barycenters.
During the precomputation stage, we treat the input images as 2D
probability distributions and draw 250K points from each input by
importance sampling. We present a side-by-side comparison with
the convolutional Wasserstein method [SdGP∗15], using the imple-
mentation in the Python Optimal Transport (POT) library [POT19].
The convolutional Wasserstein method produces blurrier results
compared to ours.

Additionally, the decoupling of the precomputation and runtime
computation in our method significantly improves performance. As
introduced in Section 4, our method can compute barycenters either
fully using kernel splatting or through a point query. The full com-
putation approach yields a 53× performance improvement com-
pared to the convolutional Wasserstein method. If the barycenter is
point queried for every pixel, our method is still 2.9× faster than
the convolutional Wasserstein method, which computes the entire
barycenters at once.

6.2. Interpolating 2D Textures

Apart from interpolating 2D shapes, we would like to explore more
2D texture rendering applications.

Tileable textures interpolation. Tileable textures are another
ubiquitous appearance used in rendering and by artists. Since
tileable properties allow infinite extension, a natural interpolation
strategy will greatly benefit rendering in terms of storage and ef-
ficiency optimization. Figure 8 shows a bathroom with a blended
marble back wall. The back wall is a 4-way interpolation using the
input tileable images shown in Figure 9. Four-way texture interpo-
lation can be easily integrated into the renderer with any input im-
ages and our appearance synthesis framework. To further demon-
strate the tileable properties of our input images, we created a zig-
zag blending similar to [MZD05].

Interpolating 2D tileable textures with Perlin noise. Blending

© 2024 The Authors.
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Figure 8: The rendering result of a bathroom with four marble
tileable images as the textures at the back. The input images can
be found in Figure 9.

Figure 9: (Top) A zig-zag blending of 4 tileable images. (Bottom)
The input tileable 2D textures, generated from Adobe Substance 3D
Asset.

two textures using Perlin noise [Per85] as the interpolation weight
can create smooth and infinitely extendable results. Inspired by
these properties of Perlin noise, we extend the previous tileable tex-
ture blending results that merely used linear interpolation to adopt
Perlin noise as the blending weight. Figure 10 shows the render-
ing result of a mountain with leaves and pebbles tileable textures
blended. With the tileable textures, Perlin noise as the blending
weight, and our appearance synthesis framework, an infinitely ex-
tensive terrain with two textures can be easily generated, with the
storage cost of only two precomputed OT hierarchical structures.

Range Query and Level of Detail. In computer graphics, level

Figure 10: (Top) The rendering result of a mountain using two
tileable images as textures and Perlin noise as the blending weight.
A video sequence included in the supplementary material shows a
flyover of the blended mountain. (Bottom) The input tileable tex-
tures are generated from Adobe Substance 3D Asset.

Figure 11: A triangle of interpolated 3D volumes using a 3D Gaus-
sian proxy. All the barycenters, including the three inputs at the
three vertices of the triangle, are point queried on the fly without
being explicitly generated.

of detail (LOD) refers to the technique where the complexity of
a model, texture, or other metrics such as object importance and
viewpoint-relative speed or position decreases as the model moves
away from the viewer. This is because rendering all the details be-
comes less critical at greater distances. LOD is widely used in the
game and animation industry. Introducing the idea of LOD into our
framework allows for a significant boost in appearance rendering
efficiency and is extensively applied in real-time rendering. To im-
plement LOD, we include a range query in our rendering pipeline
that calculates a summed or averaged value over a specified range.
Figure 12 shows rendering comparisons between three sets of 2D
texture interpolation. While we demonstrate LOD results for 2D
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blending weights (1.0,0.0), (0.75,0.25), (0.5, 0.5), (0.25, 0.75), (0.0, 1.0)
512 spp, time = 33.17 mins

blending weights (1.0,0.0), (0.75,0.25), (0.5, 0.5), (0.25, 0.75), (0.0, 1.0)
512 spp, time = 27.51 mins

Figure 12: When a model or texture is far from the camera, LoD helps reduce its complexity to save on rendering calculations. We present a
comparison of five texture blending results. (Left) All five textures are positioned at an equal distance from the camera. (Right) The middle
three textures are moved away from the camera along the view direction. The performance comparisons show a significant decrease in
rendering time when the textures are moved further away.

textures, it is important to note that the LOD application of our
method does NOT have a dimension constraint.

6.3. Interpolating 3D Volume

We now apply our method to blend 3D shapes, which we then ren-
der as densities of participating media. We treat each input 3D mesh
as a 3D distribution, and importance sample the volume it bounds
it with 1 million samples. To compute the k-way correspondences,
we choose a 3D Gaussian as the proxy, which is easily importance-
sampled due to its separability.

previous optimal transport solutions would need to fully realize
each 3D barycenter using optimal transport on the fly and then use it
for rendering. However, with the point query option enabled by our
method, we no longer need to explicitly generate the 3D barycen-
ters. Instead, we query the density at any point in any barycen-
ter whenever needed by the underlying renderer. In Figure 11, we
show an example of 3-way blending among three uniformly sam-
pled models: cow, duck, and torus. Using our point query method,
no intermediate 3D volumes need to be generated, thus introducing
no additional memory consumption at runtime.

Figure 13 shows another example of a 2-way heterogeneous ap-
proximate optimal transport between 3D shapes. In this example,
the monkey model is uniformly sampled and the smoke model is
importance sampled. We present the blended results at different
time steps.

6.4. Interpolating BRDF

Another application of our method is measured BRDF blending.
Given k different BRDFs, we aim to find a smooth transition be-
tween them. Specifically for rendering, we benefit from a point
query for BRDF evaluation for arbitrary pairs of incident and out-
going directions. We use the MERL BRDF database [MPBM03],
where all data is purely measured without fitting any analytical rep-
resentation, and spans a wide range of material types.

The BRDFs in the MERL database are isotropic, and we follow
the original 3D (θi,θo,φd) setting from the MERL dataset for more

efficient calculation. Previous optimal transport interpolations of
BRDFs [SdGP∗15] would interpolate 2D slices for a fixed incom-
ing direction, which we could also do; however, our method scales
to interpolating BRDFs as entire 3D objects. We first prepare each
BRDF as a 3D grid with resolution 1803 in the (θi,θo,φd = φo−φi)
space, reshaped from the original data. Each grid cell stores an
RGB component and a corresponding luminance. We also record
an average luminance for each BRDF.

With the prepared data, we now use the optimal transport to in-
terpolate the BRDFs. Similar to previous applications, we

1. importance-sample each 3D BRDF with 1 million samples,
2. precompute the optimal transport between the samples from

each BRDF and a sampled 3D Gaussian proxy, and
3. during runtime, use point query to find the value of any barycen-

ter at any incoming and outgoing direction.

However, recall that optimal transport traditionally assumes the
inputs to be probability distributions and produces barycenters as
probability distributions as well. Therefore, the point query is es-
sentially giving us the interpolated BRDF’s normalized luminance.
We linearly interpolate the per-BRDF average luminance to get the
overall luminance normalization constant of the barycenter. After
that, we re-introduce color to the BRDF, by tracking the color-to-
luminance ratio (an RGB triple) per point. When any point on the
implicit barycenter is found, we compute the interpolated color-
to-luminance ratio from all the inputs. This ratio is then used to
reconstruct the true BRDF value at a query point.

In Figure 14, we show the 4-way blending results of four dif-
ferent BRDFs selected from the MERL database. We also provide
a visualization of 2D BRDF slices at θi = 45◦. As we can see,
not only the shapes of different BRDFs are plausibly interpolated,
providing a natural glossy-to-diffuse transition, but also the overall
luminance and spatially varying colors. Note that the BRDF slices
in Figure 14 are meant to be mostly dark, and we have adjusted
the curves to make them more visible; thus, the noise level also
perceptually increases.

In Figure 15, we show a series of 2-way blending results between
two input BRDFs without a proxy. The interpolated BRDFs in be-
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weight=(1.0, 0.0) weight=(0.8, 0.2) weight=(0.6, 0.4) weight=(0.4, 0.6) weight=(0.2, 0.8) weight=(0.0, 1.0)

Figure 13: 3D heterogeneous volume interpolation from a monkey model to a smoke model. The images are rendered using a Gaussian proxy,
and 1 million point samples. We also include a video in the supplementary material.

Figure 14: (Left) A 5×5 array of renderings of 4-way blended BRDFs on the matpreview scene. The 4 input BRDFs are at the corners and
are chosen from the MERL database [MPBM03] as representatives (diffuse, plastic, iridescence, and metallic). For each corner, the blending
weight starts at 1.0 for each BRDF and decreases by 0.2 with each step. Note that the diffuse component, the highlight, and the colors are
all plausibly blended. (Right) A visualization of corresponding 2D BRDF slices on unit disks with a fixed θi = 45◦ coming from the right. We
also include a video about our BRDF blending transition in the supplementary material.

Figure 15: 2-way barycenters of the same two inputs from the first
row of Figure 14 (excluding the two inputs themselves), using the
proxy (top row) and without proxy (bottom row). Similar to the 2D
case, the differences in using these two methods are subtle.

tween are explicitly generated without point queries. The two input
BRDFs are the same as the ones in the top-left and top-right cor-
ners in Figure 14. Compared to the first row in Figure 14, we find

that there’s no visible difference, indicating that our proxy method
also works well in this task.

For anisotropic BRDFs, we could extend our method to
importance-sample the full 4D input BRDF data–the sampling and
BVH structure for point query extends to 4D naturally, and the La-
grangian method for optimal transport makes no assumptions on
the dimension of the sample points. The limiting factor is the lack
of measured data in the MERL database. Again, we could also in-
terpolate per 2D BRDF slice rather than directly in the 4D space.

7. Conclusion and Future Work

In this paper, we leverage recent improvements in the field of
optimal transport to enable applications in appearance synthesis.
Our techniques convert input distributions into point clouds, scal-
ing easily to one million points. We precompute maps between a
proxy distribution and each input distribution, allowing us to com-
pute barycenters almost immediately after an initial precomputa-
tion stage. Furthermore, we introduce an efficient point or range
query operation, enabling us to query the resulting interpolated ob-
jects at points of our choosing. We demonstrate several applications

© 2024 The Authors.
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of this point query operation to 2D and 3D shape interpolation, as
well as fully measured BRDF interpolation based on MERL data.

There are challenges not yet solved by our approach. We cur-
rently lack a theoretical analysis that could explain the surprisingly
good performance of the proxy approach for k-way barycenters.
Additionally, we do not have a theoretical understanding of which
proxy works best. These are key areas we aim to explore and extend
in future work.

While optimal transport usually produces visually plausible
results, this is not guaranteed from a human perspective; even
"ground truth" barycenters can occasionally contain objectionable
artifacts, such as the splitting of features that, from a human per-
spective, should remain intact. Exploring human-oriented metrics
in optimal transport would also be an interesting area of study.
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