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Abstract
In the field of low-light image enhancement, images captured under low illumination suffer from severe noise and artifacts,
which are often exacerbated during the enhancement process. Our method, grounded in the Retinex theory, tackles this chal-
lenge by recognizing that the illuminance component predominantly contains low-frequency image information, whereas the
reflectance component encompasses high-frequency details, including noise. To effectively suppress noise in the reflectance
without compromising detail, our method uniquely amalgamates global, local, and non-local priors. It utilizes the tensor
train rank for capturing global features along with two plug-and-play denoisers: a convolutional neural network and a Color
Block-Matching 3D filter (CBM3D), to preserve local details and non-local self-similarity. Furthermore, we employ Proximal
Alternating Minimization (PAM) and the Alternating Direction Mthod of Multipliers (ADMM) algorithms to effectively separate
the reflectance and illuminance components in the optimization process. Extensive experiments show that our model achieves
superior or competitive results in both visual quality and quantitative metrics when compared with state-of-the-art methods.
Our code is available at https://github.com/YangWeipengscut/GLON-Retinex.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

In the realm of low-light image enhancement (LLIE), the quest
for optimal methods that proficiently balance noise suppression
with detail preservation remains paramount. In the domain of
optimization-based methods, algorithms based on the Retinex the-
ory [Lan77] aim to decompose the observed image SSS into illumi-
nance LLL and reflectance RRR, according to the Retinex theory formula
SSS = LLL ◦ RRR, where ◦ denotes element-wise multiplication. The il-
luminance LLL represents the influence of light source intensity and
color on the object’s color, which is typically piecewise smooth.
while the reflectance RRR represents the object’s inherent detail infor-
mation and also contains noise present in low-light images. Sub-
sequently, the enhancement result is obtained by applying gamma
correction to the illuminance and multiplying it by the denoised
reflectance component [LLY∗18, LL22, YGZ∗23].

When it comes to noise reduction in low-light images, there
are typically two approaches. One involves denoising the image
after enhancement, but this method struggles to eliminate noise
that has already been amplified during the enhancement process
[GLL16]. The other, and more commonly employed approach, is
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to leverage prior knowledge about the image and noise to construct
noise removal regularizers pertaining to the reflectance and estab-
lish a unified optimization objective function. This allows for the
simultaneous estimation of the illuminance and reflectance, and
such methods are referred to as variational Retinex-based meth-
ods [XHR∗20].

In the construction of the regularizers for the reflectance, the
most commonly employed approach is the use of singular lo-
cal prior knowledge from the image. Methods such as WVM
[FZH∗16b], JieP [CXG∗17], SRRR [LLY∗18], STAR [XHR∗20],
and PnPRetinex [LL22] implement total variation (TV), relative
total variation, or exponential relative total variation to formulate
the regularizers for the reflectance. Furthermore, the BTRetinex
[YGZ∗23] method pioneered the use of dictionary learning, a type
of local prior, for noise removal in the reflectance. Local priors are
geared towards preserving details in smaller regions and maintain-
ing edges and textures, yet they might result in inconsistencies and
are less effective against uniformly distributed noise. Therefore, in
addition to utilizing TV regularizers, the LR3M [RYCL20] method
innovatively employs non-local self-similarity as the regularizers
for the reflectance. Non-local priors exploit the similarity in dis-
tant regions, demonstrating superior performance in noise suppres-
sion. However, the use of non-local self-similarity priors often faces
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Figure 1: Close-up comparative analysis of enhanced results on the LSRW [HXY∗23] dataset. Our proposed method integrating global-
local-nonlocal priors excels in brightness enhancement, noise suppression, structural information preservation, and color fidelity. Zoom in
for a better view.

challenges like low computational efficiency, substantial memory
consumption, and a tendency to cause loss of image details.

In addition, the global prior, such as inherent low-rankness, is of-
ten neglected by existing variational Retinex-based LLIE methods.
However, natural images can typically be well-approximated with
low-rank structures [ZHZ∗19]. Leveraging this trait can effectively
eliminate noise that doesn’t adhere to this low-rank feature from the
reflectance. Furthermore, current variational Retinex-based LLIE
methods often process RGB images channel-by-channel or convert
them to the HSV color space, focusing solely on the V channel.
This approach, including matrix vectorization, typically leads to the
loss of spatial and spectral relationships [YGZ∗23]. Tensors, which
extend vectors and matrices into higher dimensions, offer a supe-
rior way to represent high-dimensional data. By using tensors, the
inherent high-dimensional nature of data is preserved, along with
its contiguous structural information, as highlighted in [CYZ17].
This is particularly relevant as most real-world data are charac-
terized by multidimensionality that goes beyond two orders. For
example, RGB images are third-order tensors with dimensions of
height, width, and color channel, while videos are fourth-order ten-
sors, adding time as an extra dimension.

The remarkable advancements of deep learning technologies in
the field of image processing have propelled the application of
learning-based methods in LLIE, such as URetinex [WWZ∗22],
ZeroDCE [GLG∗20], and SCI [MML∗22]. Particularly, with the
growing prominence of flow and diffusion models, methods such as
LLFlow [WWY∗22] (based on flow models) and diffusion model-
based DIFFLL [JLF∗23] and GSAD [HZH∗23] have been intro-
duced. To date, DIFFLL and GSAD have achieved leading results
on paired datasets like LOL-v1/2 [WWYL18, YWH∗21]. How-
ever, these LLIE methods often face challenges with generalization
or require extensive training. Their success depends on accurate
physical modeling and diverse training data, which may not align
well with the vast range of real-world low-light conditions. Con-
sequently, this can limit their effectiveness on unpaired datasets,

potentially resulting in color distortion, overexposure, noise ampli-
fication, or artifacts in the output.

Building on the need to address these challenges, our approach
aims to overcome the limitations of existing LLIE methods, offer-
ing four key contributions.

1) Integration of Global-Local-Nonlocal Priors: We adopted a
strategy that integrates global tensor low-rankness, based on ten-
sor train rank [ZYM∗21], with local and nonlocal self-similarity
priors within a plug-and-play ADMM [CWE16] framework.
Utilizing denoisers CBDNet [GYZ∗19] for local detail preser-
vation and CBM3D [DFKE07] for nonlocal similarity, our ap-
proach blends model-based and learning-based strengths. This
integration effectively maintains detail preservation while re-
ducing noise, enhancing performance in diverse low-light en-
vironments.

2) Adaptive Visual Data Tensorization: To apply tensor train
rank priors to RGB images, we transform them into higher-
dimensional tensors using Visual Data Tensorization (VDT)
[YZGC19]. To overcome the limitations of traditional VDT,
which necessitates equal factor counts in an image’s height and
width dimensions, we designed an adaptive VDT method. This
innovative technique enables tensorization of images with arbi-
trary dimensions, thereby resolving the constraints that previ-
ously limited the processing of certain image sizes.

3) Innovative Algorithm Design: In order to tackle the complex-
ities of multivariate optimization and decouple the illumina-
tion and reflectance components, we designed a stable solu-
tion algorithm employing Proximal Alternating Minimization
(PAM) [ABS11] and Alternating Direction Method of Multipli-
ers (ADMM) [LLS11].

4) Superior Experimental Performance: We designed numerous
experiments, with results revealing that our approach surpasses
existing LLIE methods in several key aspects such as brightness
enhancement, noise reduction, and detail retention under diverse
low-light conditions.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



W. Yang, H. Gao, T. Liu, J. Ma, W. Zou & S. Huang / Employing Multiple Priors in Retinex-Based Low-Light Image Enhancement 3 of 11

Figure 2: Schematic diagram of our proposed model’s framework. Initially, a low-light input image is used as the initial value for illuminance
L0. After computing L1, the initial reflectance R0 is obtained by element-wise division of the low-light input image by L1. This value is then
processed through the auxiliary variable and reflectance update module. The iteration stops when the maximum number of iterations K is
reached or when the iteration error is less than δ. The final enhanced image is obtained by element-wise multiplication of the corrected
illuminance and reflectance values.

2. Our method

2.1. Adaptive Visual Data Tensorization

In this paper, an N-order tensor is denoted by an Euler script letter,
for instance, Z ∈ RI1×I2×···×IN . A matrix, representing a 2-order
tensor, is denoted by a capital letter, such as Z.

Traditional VDT requires equal factorization of the spatial di-
mensions m and n in a third-order visual data tensor Z ∈ Rm×n×p,
a constraint often impractical for images with incompatible dimen-
sions. Adaptive VDT addresses this by padding image dimensions
with edge pixels, allowing for uniform factorization.

The adaptive process can be explained as follows: Given the
original dimensions m and n of an image, the image is aug-
mented to dimensions m̃ and ñ through edge pixel replication until
m̃ = ∏

q̃
d=1 m̃d and ñ = ∏

q̃
d=1 ñd are achieved, with q̃ representing

the new equal number of factors for both m̃ and ñ. We then per-
mute and reshape these dimensions for tensorization, transforming
m̃× ñ → m̃1 × ñ1 × m̃2 × ñ2 × . . .× m̃q̃ × ñq̃. The tensor is then per-
muted and reshaped into a higher-order form Z ′, with dimensions
m̃1ñ1 × . . .× m̃q̃ñq̃ × p.

The adaptive approach allows VDT to be used with images of
any dimension, establishing it as a robust tool in tensor-based image
processing.

2.2. Our method

Different from previous methods which required an RGB to
HSV color space conversion, our Gobal-LOcal-Non-local Retinex
(GLON-Retinex) model directly processes low-light images in the
RGB space. The optimization objective function of our variational
Retinex-based model for LLIE is as follows:

argmin
L,R,X ,Y

∥S −L◦R∥2
F +λ1

3mn

∑
d=1

mBTV (L)d

+λ2

l−1

∑
i=1

αi

2

∥∥∥K(R)[i]−XiYi

∥∥∥2

F
+ΦL(R)+λ3ΦN(R),

(1)

where λ1,λ2 and λ3 are penalty parameters, S,L,R ∈ Rm×n×3

signify the low-light image, illuminance, and reflectance, respec-
tively. mBTV is the modified Bilateral Total Variation [YGZ∗23]
used to obtain an illuminance that has clear image boundary while
also being sufficiently piecewise smooth. d is pixel indices. In
our model, the prior for the reflectance R is thoughtfully formu-
lated by merging a global prior, which is based on tensor train
rank, indicated by the third term, with two plug-and-play priors,
namely ΦL(R) using CBDNet and ΦN(R) using CBM3D. K () de-
notes the VDT operator and l is the order of the high-dimensional
tensor augmented by applying VDT to R. K(R) ∈ RI1×I2×···×Il

is the tensor augmented by VDT. K (R)[i] denotes the tensor’s
canonical matricization [Ose11] operation. αi are positive weight-
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ing parameters that adhere to the constraint ∑
l
i=1 αi = 1. The sets

X = (X1,X2, . . . ,Xl−1) and Y = (Y1,Y2, . . . ,Yl−1) constitute factor
matrices. For details on tensor train rank and canonical matriciza-
tion, see [Ose11].

2.3. Solution for Our Model

Utilizing the half quadratic splitting (HQS) [GR92] technique, we
introduce auxiliary variables P and P1, thereby reformulating Eq.
(1) into the following problem:

argmin
L,R,P ,P1,X ,Y

∥S −L◦P1∥2
F +λ1

3mn

∑
d=1

mBTV (L)d

+λ2

l−1

∑
i=1

αi

2

∥∥∥K(R)[i]−XiYi

∥∥∥2

F
+ΦL(R)+λ3ΦN(P)

+
β

2
∥P −R∥2

F +
β1
2
∥P1 −R∥2

F ,

(2)

where β and β1 is a penalty parameter. Figure 2 presents a simpli-
fied flowchart of the solution process for our model.

Leveraging the Proximal Alternating Minimization (PAM) algo-
rithm [ABS11], we design an algorithm to decompose problem (2)
into a series of more manageable subproblems. Within this alter-
nating minimization framework, we systematically update the vari-
ables L, R, X , Y , P , and P1, in an iterative manner as follows:

Lk+1 = argmin
L

Z(L,Xk,Y k,Pk,Pk
1 ,R

k)

+
ρ

2

∥∥∥L−Lk
∥∥∥2

F

Xk+1 = argmin
X

Z(Lk+1,X ,Y k,Pk,Pk
1 ,R

k)

+
ρ

2

∥∥∥X −Xk
∥∥∥2

F

Y k+1 = argmin
Y

Z(Lk+1,Xk+1,Y,Pk,Pk
1 ,R

k)

+
ρ

2

∥∥∥Y −Y k
∥∥∥2

F

Pk+1 = argmin
P

Z(Lk+1,Xk+1,Y k+1,P,Pk
1 ,R

k)

+
ρ

2

∥∥∥P−Pk
∥∥∥2

F

Pk+1
1 = argmin

P1

Z(Lk+1,Xk+1,Y k+1,Pk+1,P1,Rk)

+
ρ

2

∥∥∥P1 −Pk
1

∥∥∥2

F

Rk+1 = argmin
R

Z(Lk+1,Xk+1,Y k+1,Pk+1,Pk+1
1 ,R)

+
ρ

2

∥∥∥R−Rk
∥∥∥2

F

(3)

Here, Z(L,R,P,P1,X ,Y ) denotes the objective function in Eq.
(2), with ρ as a positive constant and k indicating the iteration
count. Within this alternating minimization framework, we system-
atically update variables L, X , Y , P , P1, and R in an iterative man-
ner.

(1) Update L: The subproblem for L is as follows:

Lk+1 = argmin
L

∥∥∥S −L◦Pk
1

∥∥∥2

F
+λ1

3mn

∑
d=1

mBTV (L)d

+
ρ

2

∥∥∥L−Lk
∥∥∥2

F

= argmin
L

LT
(
Pk

1,diag

)T
Pk

1,diagL+ρLTL/2

+λ1LT
(
CT

h WhCh +CT
v WvCv

)
L

−2ST
(
Pk

1,diag

)T
L−ρ

(
Lk

)T
L

(4)

where Ch, Cv are Toeplitz matrices from discrete gradient operators
with forward difference. The weight Wh, Wv are computed accord-
ing to the methods described in [YGZ∗23]. Pk

1,diag is obtained by

diagonalizing Pk
1 . Subsequently, finding the solution for L can be

reformulated into solving a sequence of linear equation systems:

Lk+1 =Q−1
((

Pk
1,diag

)T
S+ρLk/2

)
(5)

where Q=
(
Pk

1,diag

)T
Pk

1,diag+ρI/2+λ1CT
h WhCh+λ1CT

v WvCv.

(2) Update X and Y : The minimization processes for Xi and Yi
are decoupled, allowing us to break them down into l −1 indepen-
dent subproblems. At the k + 1 iteration, we update Xi and Yi by
resolving the ensuing optimization problems.

For Xi:

Xk+1 = argmin
X

λ2

l−1

∑
i=1

αi

2

∥∥∥K(Rk)[i]−XiYi

∥∥∥2

F

+
ρ

2

∥∥∥X −Xk
∥∥∥2

F

(6)

which has the closed-form solution:

Xk+1 =

(
λ2αiK(Rk)[i]

(
Y k

i

)T
+ρXk

i

)
(

λ2αiY
k
i

(
Y k

i

)T
+ρI

)−1 (7)

For Yi:

Y k+1 = argmin
Y

λ2

l−1

∑
i=1

αi

2

∥∥∥K(Rk)[i]−Xk+1
i Yi

∥∥∥2

F

+
ρ

2

∥∥∥Y −Y k
∥∥∥2

F

(8)

which has the closed-form solution:

Y k+1
i =

(
λ2αi

(
Xk+1

i

)T
Xk+1

i +ρI
)−1

(
λ2αi

(
Xk+1

i

)T
K(Rk

[i])+ρY k
i

) (9)

where I ∈ Rri×ri is an identity matrix.
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(3) Update P : The subproblem for P is as follows:

Pk+1 = argmin
P

λ3ΦN(P)+
β

2

∥∥∥P−Rk
∥∥∥2

F

+
ρ

2

∥∥∥P−Pk
∥∥∥2

F

(10)

Specifically, the computation of Pk+1 involves:

Pk+1 = argmin
P

λ3ΦN(P)+
β+ρ

2

∥∥∥∥∥P− βRk +ρPk

β+ρ

∥∥∥∥∥
2

F

(11)

Incorporating a denoiser with input βRk+ρPk

β+ρ
, we arrive at the up-

dated P:

Pk+1 =DN

((
βRk +ρPk

)
/(β+ρ) ,σ2

)
(12)

where σ2 =
√

λ3/(β+ρ) and DN represents the denoiser, captur-
ing the nonlocal prior within the Plug-and-Play ADMM [CWE16]
framework. Here, (βRk+ρPk)/(β+ρ) is regarded as the observed
tensor, and the output Pk+1 constitutes the refined estimate follow-
ing the denoising process enabled by the applied prior.

(4) Update P1 : The subproblem for P1 is as follows:

Pk+1
1 = argmin

P1

∥∥∥S −Lk+1 ◦P1

∥∥∥2

F
+

β1
2

∥∥∥P1 −Rk
∥∥∥2

F

+
ρ

2

∥∥∥P1 −Pk
1

∥∥∥2

F

(13)

This problem is characterized as a least squares problem, and the
closed-form solution is expressed as:

Pk+1
1 =

(
2
(
Lk+1

diag

)T
Lk+1

diag +(β1 +ρ)I
)−1

(
2
(
Lk+1

diag

)T
S+β1Rk +ρPk

1

) (14)

We applies the preconditioned conjugate gradient (PCG) method
[BBC∗94] to efficiently solve this linear systems problem.

(5) Update R : The subproblem for R is as follows:

Rk+1
1 = argmin

R
λ2

l−1

∑
i=1

αi

2

∥∥∥K(R)[i]−Xk+1
i Y k+1

i

∥∥∥2

F
+ΦL(R)

+
β1
2
∥P1 −R∥2

F +
β

2
∥P −R∥2

F +
ρ

2

∥∥∥R−Rk
∥∥∥2

F
(15)

The resolution of Eq.(15) is approached iteratively using the Al-
ternating Direction Method of Multipliers (ADMM) [LLS11]. By
introducing the auxiliary variable E , Eq.(15) is reformulated as fol-
lows:

Rk+1
1 = argmin

R
λ2

l−1

∑
i=1

αi

2

∥∥∥K(R)[i]−Xk+1
i Y k+1

i

∥∥∥2

F
+ΦL(E)

+
β1
2
∥P1 −R∥2

F +
β

2
∥P −R∥2

F +
ρ

2

∥∥∥R−Rk
∥∥∥2

F

s.t. E =R
(16)

The augmented Lagrangian function corresponding to Eq. (6) is

expressed as:

L (R,E ,J ) = λ2

l−1

∑
i=1

αi

2

∥∥∥K(R)[i]−Xk+1
i Y k+1

i

∥∥∥2

F

+ΦL(E)+
β1
2

∥∥∥Pk+1
1 −R

∥∥∥2

F
+

β

2

∥∥∥Pk+1 −R
∥∥∥2

F

+
ρ

2

∥∥∥R−Rk
∥∥∥2

F
+

θ

2

∥∥∥∥E −R+
J
θ

∥∥∥∥2

F

(17)

where J is Lagrange multiplier, ρ is the penalty parameter. The
solution for R and E is then obtained by iteratively solving the
following two subproblems.

1) Solving the Subproblem of E: The subproblem for E is

E t+1 = argmin
E

ΦL(E)+
θ

2

∥∥∥∥E −Rt +
J t

θ

∥∥∥∥2

F
(18)

where t is the iteration number during the iterative solution of R
and E . Based on the Plug-and-Play ADMM framework, we can
view this problem as a denoising step, the solution for E is

E t+1 = DL
(
Rt −J t/θ

)
(19)

where Rt −J t/θ is used as the input to the denoiser, denoted by
DL, which effectively captures the nonlocal prior.

2) Solving the Subproblem of R: The subproblem for R is

Rk+1,t+1 = argmin
R

λ2

l−1

∑
i=1

αi

2

∥∥∥K(R)[i]−Xk+1
i Y k+1

i

∥∥∥2

F

+
β1
2

∥∥∥Pk+1
1 −R

∥∥∥2

F
+

β

2

∥∥∥Pk+1 −R
∥∥∥2

F

+
ρ

2

∥∥∥R−Rk
∥∥∥2

F
+

θ

2

∥∥∥∥E t+1 −R+
J
θ

∥∥∥∥2

F

(20)

This problem is also a least squares problem, and its closed-form
solution is

Rk+1,t+1 =M/(λ2 +θ+β1 +β+ρ). (21)

where M = λ2 ∑
l−1
i=1 αiK(Xk+1

i Y k+1
i )−1

[i] + θE t+1 +J t + β1P1 +

βP + ρRk,t . Operator K ()−1
[i] represents the inverse of the VDT

and canonical matricization, used to reconstruct the original three-
dimensional RGB image.

3) Update multiplier J : The Lagrangian multiplier is updated
as follows

J t+1 = J t +θ

(
E t+1 −Rk+1,t+1

)
. (22)

It is noteworthy that our method employs a rank-increasing strat-
egy tailored for the Tensor Train (TT) rank of the reflectance com-
ponent, which is critical for capturing the global structure of the
tensor. This adaptive strategy adjusts the TT-rank based on the size
of the unfolding matrices, with alterations being triggered upon
meeting the specific norm ratio criterion described in [XHYS13].
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2.4. Illuminance Adjustment

Upon acquiring estimates for illuminance L and reflectance R, we
apply gamma correction to L, as outlined in [CXG∗17, LL22], to
adjust the estimated illuminance. The final enhanced image is for-
mulated as

Ŝ =

(
L
Ω

) 1
γ

◦R, (23)

where γ is empirically set to 2.2. In gamma correction, Ω is typ-
ically set to the maximum possible value of the image, which is
255. However, to enhance the brightness of the results more effec-
tively and prevent over-enhancement, we experientially employed
the following strategy for setting the value of Ω:

Ω =

{
min(max(L),255)) max(L)≥ 140
max(max(L),100) else

(24)

Algorithm 1 outlines the procedure for LLIE with our GLON-
Retinex model.

Algorithm 1 Low-Light Image Enhancement Based on the GLON-
Retinex Model in Eq. (1)
Input: Observed image S, parameters λ1,λ2 and λ3, stopping cri-

teria δ.
1: Initialize k = 0, L0 = S, β,β1, and θ;

2: while
∥∥∥Rk+1 −Rk

∥∥∥2

F
/
∥∥∥Rk

∥∥∥2

F
⩾ δ and k ⩽ 10 do

3: Update Lk+1 via Eq. (5) and initialize R0 = S/L1.
4: for i = 1 to l −1 do
5: Update Xk+1

i via Eq. (7).
6: Update Y k+1

i via Eq. (9).
7: end for
8: Update Pk+1 via Eq. (12).
9: Update Pk+1

1 via Eq. (14).

10: while
∥∥∥Rt+1 −Rt

∥∥∥2

F
/
∥∥Rt∥∥2

F ⩾ δ and t ⩽ 15 do

11: Update Rt+1 via Eq. (21).
12: Update E t+1 via Eq. (19).
13: Update J t+1 via Eq. (22).
14: Update the parameter θ

t+1 = min
(

1.2θ
t ,106

)
.

15: end while
16: end while
Output: The enhanced image Ŝ via Eq. (23).

3. Experiments

In this section, we evaluate the performance of our model against
state-of-the-art LLIE methods through both subjective and objec-
tive comparisons. Experiments were conducted using MATLAB
2022b on a PC equipped with AMD Ryzen 5 3600 6-Core Pro-
cessor and NVIDIA RTX 2070 GPU. For additional visual results,
please refer to the supplementary materials provided with our pa-
per.

Datasets and Evaluation Metrics: We utilized a dataset named
PG660 [YGZ∗23], comprising 660 unpaired images collected from
datasets MF [FZH∗16a], LIME [GLL16], SIRE [WBSS04], DICM

[LLK13], NPE [WZHL13], MEF [MZW15], and ExDark [LC19]
to test the generalization performance of various methods on real-
world low-light images. This dataset includes low-light images un-
der a range of lighting conditions and noise levels that one might
encounter in real-world scenarios. In PG660 dataset, we employed
Natural Image Quality Evaluator (NIQE) [MSB12], No-reference
Image Quality Metric for Contrast distortion (NIQMC) [GLZ∗16],
and Visual Information Fidelity (VIF) [SB06] metrics to assess the
proximity between the enhanced results and the characteristics of
natural images, contrast, and visual information fidelity, respec-
tively. A lower value for the NIQE indicates higher perceived im-
age quality, whereas the opposite is true for the latter two. Ad-
ditionally, for a more precise characterization of natural image
features, we utilized 424 ground truth nighttime images from the
SID [CCXK18] dataset and 2560 high-resolution images from the
Flickr2K [TAVG∗17] dataset to compute the distribution of natural
images, which was then used in the calculation of the NIQE metric.

Furthermore, we evaluated noise suppression and detail reten-
tion capabilities of various methods using paired datasets LOL-v1
[WWYL18], LOL-v2 [YWH∗21], and LSRW [HXY∗23], which
have 15, 100, and 50 paired images, respectively, employing PSNR,
SSIM [WBSS04], and LPIPS [ZIE∗18] for assessment. PSNR
(Peak Signal-to-Noise Ratio) measures the ratio between the max-
imum possible power of a signal and the power of corrupting
noise, where a higher value indicates better image quality. SSIM
(Structural Similarity Index Measure) assesses visual impact of
three characteristics of an image: luminance, contrast, and struc-
ture, with higher values indicating more similarity to the original
image. LPIPS (Learned Perceptual Image Patch Similarity) quan-
tifies perceptual differences between images using deep learning
features, where lower values indicate lesser perceptual differences.

Parameters Setting: In the experiments conducted on the non-
paired dataset PG660, the parameters of our model were set as
λ1 = 0.05,λ2 = 0.01,λ3 = 0.0015,β = 0.5,β1 = 6,θ = 0.13,ρ =
0.07,K = 5,δ = 2e − 6. Due to the extremely low brightness of
most low-light images in the paired datasets LOL-v1, LOL-v2,
and LSRW, these images exhibit significant noise. Consequently,
we adjusted the parameters λ3 = 0.1,β = 15,θ = 0.05, to enhance
noise suppression more effectively.

3.1. Experimental Results on Unpaired Dataset PG660

The comparative methods are shown in Table 1, where methods
URetinex, GSAD, and DIFFLL are supervised and also included
to assess their generalization on unpaired datasets. Table 1, along
with Figure 3 and 4, display quantitative and visual results of
these comparisons. From Table 1, it’s clear that our method sig-
nificantly outperforms others in the NIQE, indicating a closer sta-
tistical resemblance to high-quality images in the SID and Flickr2K
datasets. Besides LR3M and GSAD, other methods demonstrated
lower NIQE scores than the original low-light images, indicating
that while brightness was enhanced, overall image quality deterio-
rated. This deterioration is characterized by various issues such as
overexposure in SCI and URetinex; color distortion in LLFlow and
ZeroDCE; noise amplification in WVM, JieP, STAR, PnPRetinex,
BTRetinex, and ZeroDCE; loss of detail in SRRR; and the intro-
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Figure 3: Global Comparative analysis of enhanced results on the DICM [LLK13] dataset: The visual quality of the results from our proposed
method is notably impressive. Zoom in for a better view.

Table 1: Comparison of NIQE, NIQMC, and VIF metrics for en-
hanced results by various methods on unpaired dataset PG660.
Bold numbers indicate the best results, while underlined numbers
represent the second-best results.

Metric NIQE↓ NIQMC↑ VIF↑
Input 3.46 4.14 1.00

WVM [FZH∗16b] 3.74 4.68 1.82
JieP [CXG∗17] 3.84 4.73 1.82

SRRR [LLY∗18] 4.04 4.92 1.85
LR3M [RYCL20] 3.45 4.84 1.85
STAR [XHR∗20] 3.79 4.81 1.75

PnPRetinex [LL22] 4.14 5.00 2.94
BTRetinex [YGZ∗23] 4.03 4.94 2.34
ZeroDCE [GLG∗20] 4.17 4.93 2.06

SCI [MML∗22] 4.41 5.28 3.06
URetinex [WWZ∗22] 3.94 5.17 2.34
LLFlow [WWY∗22] 3.52 5.30 2.75

GSAD [HZH∗23] 3.26 4.75 1.63
DIFFLL [JLF∗23] 3.87 5.06 1.87

Ours 3.072 5.14 2.99

duction of artifacts in URetinex, LLFlow, and DIFFLL, as illus-
trated in Figure 3 and 4.

On the contrast metric NIQMC and the visual fidelity metric VIF,
our results achieved third and second places, respectively. Although

the SCI and URetinex methods may attain superior outcomes on
these metrics, it is noteworthy that excessively high NIQMC and
VIF values are often caused by over-enhancement, as seen in the
SCI and URetinex methods (shown in Figure 3).

Overall, our method yields competitive contrast and visual fi-
delity on non-paired datasets while maintaining optimal perceptual
quality, as indicated by the best NIQE scores achieved.

3.2. Experimental Results on Paired Datasets

To comprehensively evaluate the capability of various unsupervised
methods in enhancing image brightness while suppressing noise
and preserving details, we conducted experiments on the paired
datasets LOL-v1, LOL-v2, and LSRW. The methods involved in
the comparison are listed in Table 2.

Table 2, Figure 1, and Figure 5 collectively present detailed
quantitative comparisons and visual results. According to the data
in Table 2, our method demonstrates the best performance in both
PSNR and SSIM metrics on LOL-v1 and LSRW datasets, with
PSNR values exceeding the second-best method by 3.38dB and
1.19dB, respectively. Additionally, on the LOL-v2 dataset, our
method also leads in the PSNR metric, outperforming the second-
best method by 1.21dB, and is closely competitive in the SSIM
metric with the top method SRRR. Although the SRRR method
achieves the highest SSIM values at this time, it typically smooths
out a significant amount of image details, as illustrated in Figure 1
and 5.
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Figure 4: Close-Up comparative analysis of enhanced results on the ExDark [LC19] dataset. Zoom in for a better view.

Figure 5: Close-Up comparative analysis of enhanced results on the LOL-v1 [WWYL18] and LOL-v2 [YWH∗21] datasets. Zoom in for a
better view.

Regarding the LPIPS metric, our method ranks as the best on
both the LOL-v1 and LOL-v2 datasets, with a particularly signif-
icant lead on the LOL-v1 dataset. Although not the top performer
on the LSRW dataset, our score of 0.342 is very close to the best
score of 0.318 by ZeroDCE. Overall, these outcomes confirm that
our method is highly competitive in retaining perceptual quality, as
corroborated by the visualizations presented in our paper.

In Table 3, we present the performance metrics of two super-
vised methods, DIFFLL and GSAD, on paired datasets. Since these
methods were trained on the LOL-v1 and LOL-v2 datasets, we can
naturally expect them to achieve excellent results on the PSNR,
SSIM, and LPIPS metrics for these datasets, significantly outper-
forming the unsupervised methods mentioned earlier. However,

their lack of training on the LSRW dataset has resulted in a dras-
tic decline in their performance metrics on this dataset, potentially
even falling below the levels achieved by the unsupervised methods
we proposed.

In Figure 6, we present a visual comparison of the supervised en-
hancement methods DIFFLL and GSAD applied to paired datasets.
As depicted in Figure 6, both methods generally achieve good re-
sults on the LOL-v1 and LOL-v2 datasets. However, in the LSRW
dataset, the DIFFLL method not only produces significant arti-
facts but also suffers from severe color distortion. Additionally, the
GSAD method results in comparatively darker images with notice-
able noise.

These results highlight that our method not only excels at
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Table 2: Comparison of PSNR, SSIM, and LPIPS metrics for Unsupervised Methods on Paired Datasets.

Dataset LOL-v1 LOL-v2 LSRW
Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

WVM [FZH∗16b] 11.855 0.498 0.517 14.451 0.542 0.312 13.349 0.467 0.342
JieP [CXG∗17] 12.047 0.512 0.495 14.719 0.558 0.280 13.782 0.485 0.327

SRRR [LLY∗18] 13.877 0.658 0.446 17.345 0.686 0.254 15.023 0.556 0.445
LR3M [RYCL20] 13.900 0.646 0.487 17.423 0.658 0.315 15.079 0.557 0.472
STAR [XHR∗20] 12.637 0.538 0.490 15.576 0.572 0.276 14.336 0.497 0.341

PnPRetinex [LL22] 13.072 0.557 0.347 16.148 0.583 0.317 14.352 0.481 0.340
BTRetinex [YGZ∗23] 13.455 0.571 0.524 16.642 0.6200 0.300 14.527 0.504 0.341
ZeroDCE [GLG∗20] 14.861 0.585 0.335 18.059 0.603 0.313 15.876 0.497 0.318

SCI [MML∗22] 14.784 0.523 0.522 17.304 0.555 0.308 15.163 0.443 0.336
Ours 18.244 0.717 0.223 19.274 0.665 0.248 17.070 0.578 0.342

Table 3: Results of PSNR, SSIM, and LPIPS metrics for Supervised Methods on Paired Datasets.

Dataset LOL-v1 LOL-v2 LSRW
Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DIFFLL [JLF∗23] 26.318 0.849 0.118 28.881 0.895 0.010 17.206 0.451 0.450
GSAD [HZH∗23] 27.569 0.872 0.092 28.789 0.883 0.095 14.810 0.486 0.334

Figure 6: Visual Comparison of Supervised Methods DIFFLL
[JLF∗23] and GSAD [HZH∗23] on Paired Datasets. Zoom in for
a better view.

noise suppression, consistently achieving the highest or competi-
tive PSNR values, but also effectively preserves details. This dual
capability demonstrates our method’s strong competitiveness in
both PSNR and SSIM metrics.

3.3. Ablation Study

To assess the effectiveness of each component in our model, we
conducted ablation studies using the paired LOL-v1 dataset with
specific parameter settings (λ1 = 0.05,λ2 = 2,λ3 = 0.01,β =
15,β1 = 6,θ = 0.05). The findings are detailed in Table 4.

The results from these studies clearly demonstrate that each
module significantly enhances the performance of our model.

Table 4: Results of average PSNR, SSIM, and LPIPS metrics from
ablation experiments on paired dataset LOL-v1.

Global prior: TT-rank ✘ ✔ ✘ ✘ ✔

Local prior: CBDNet ✘ ✘ ✔ ✘ ✔

Non-local prior: CBM3D ✘ ✘ ✘ ✔ ✔

Avg PSNR↑ 17.599 17.803 17.794 18.178 18.267
Avg SSIM↑ 0.6202 0.6423 0.6416 0.7133 0.7203
Avg LPIPS↓ 0.3444 0.3260 0.3041 0.2067 0.2017

Specifically, the synergistic integration of global, local, and non-
local constraints delivers the most substantial improvements.

3.4. Limitation

One challenge with our optimization-based iterative algorithm is
its lack of computational efficiency. In particular, the mBTV and
CBM3D modules require several seconds per iteration for each im-
age, which substantially extends the processing time. For instance,
processing an image of 600× 400× 3 resolution from the LOL-
v1 dataset takes about 55 seconds with our method. While this is
significantly faster than LR3M’s 108 seconds, it still lags behind
PnPRetinex’s swift 4-second processing time.

Additionally, our model faces the issue of parameter tuning,
which demands adjustments based on both the physical interpre-
tation of the model and empirical observations—a notably time-
intensive task. We have provided comprehensive guidelines for pa-
rameter selection on our code page. Looking ahead, we aim to en-
hance the model’s adaptability by integrating advanced parameter
adjustment strategies, thus refining its overall utility.

4. CONCLUSION

Our method, rooted in Retinex theory and incorporating global, lo-
cal, and non-local priors, demonstrates outstanding performance in
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Low-Light Image Enhancement (LLIE). By combining tensor train
rank with two advanced plug-and-play denoisers, our approach not
only effectively suppresses noise but also preserves critical image
details. Although there is a compromise in processing speed, the
method’s capability to markedly improve visual quality and retain
essential details establishes it as a highly competitive and effective
solution in the field of LLIE.
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