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Figure 1: The inference of a material’s appearance parameters based on observations of the material is often under-constrained, causing the
point estimates to suffer from ambiguities and prone to baking artifacts. In this paper, we introduce a technique to quantify such ambiguities.
Given a set of observations and priors, our technique uses a Bayesian formulation to model uncertainties. This example uses real measured
data (under collocated configurations) from [LZBD21]. Using the same input images, we obtain four point estimates of the reflectance of the
toy horse (expressed as SVBRDF maps) using different gradient-descent methods (i.e., Adam [KB14] and SGD) with varying initializations.
Despite of such differences, renderings of the point estimates under novel conditions (b1–b4) share similar error patterns (as shown on
the bottom of these columns) due to uncertainties. Without the need of the groundtruth image (a), our predicted uncertainty (c) correlates
strongly with those errors. Note that the color map is used throughout most results.

Abstract
The inference of material reflectance from physical observations (e.g., photographs) is usually under-constrained, causing
point estimates to suffer from ambiguity and, thus, generalize poorly to novel configurations. Conventional methods address
this problem by using dense observations or introducing priors.
In this paper, we tackle this problem from a different angle by introducing a method to quantify uncertainties. Based on a
Bayesian formulation, our method can quantitatively analyze how under-constrained a material inference problem is (given
the observations and priors), by sampling the entire posterior distribution of material parameters rather than optimizing a
single point estimate as given by most inverse rendering methods. Further, we present a method to guide acquisition processes
by recommending viewing/lighting configurations for making additional observations. We demonstrate the usefulness of our
technique using several synthetic and one real example.
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1. Introduction

Acquiring the spatially varying reflectance of real-world materi-
als is an important topic in computer graphics and vision. Unfor-
tunately, despite decades of research, this remains a challenging
problem for multiple reasons.

One main reason, for example, is the limitation of material ap-
pearance models. Many real-world materials exhibit complex light
transport effects—including translucency, micro-scale interreflec-
tion, and wave effects—that cannot be fully captured by widely
adopted material models like the microfacet BRDF.

On the other hand, even for materials whose appearances can be
accurately modeled, the acquisition can still be challenging due to
ambiguities. This is because, when recovering a material’s appear-
ance parameters based observations (e.g., photographs) of the ma-
terial, the inference is usually under-constrained. In other words,
there normally exist multiple feasible solutions that can repro-
duce the observed appearance of the material—but may suffer from
“baking” artifacts and, thus, generalize poorly to non-observed con-
figurations.

At a high level, there are two ways to mitigate the problem of am-
biguity. The first approach is to use dense observations to minimize
ambiguity. Techniques in this category are usually robust but can
require lengthy acquisitions and large quantities of measured data.
The second way is to introduce priors—which can be hand-crafted
or data-driven (e.g., neural)—that models the (unconditional) dis-
tribution of “good” material parameters (e.g., those with little ar-
tifacts or baking). Methods in this category allow high-quality re-
constructions using sparse observations but depend heavily on the
choice of priors.

In this paper, we tackle this problem from a new angle by in-
troducing a technique to quantify ambiguities. Specifically, pro-
vided a set of observations and the prior, our method utilizes a
Bayesian formulation and offers the capability of quantitatively
analyzing how under-constrained the material acquisition is (us-
ing these observations). Based on this method, we also introduce
a technique that guides the acquisition process by recommend-
ing viewing/lighting configurations for making additional observa-
tions.

Concretely, our contributions include:

• Introducing stochastic particle-optimization sampling (SPOS)
[ZZCC20] to material acquisition to efficiently sample posterior
distributions of material appearance parameters (§3.2);

• Devising a statistical formulation for quantifying uncertainty in
both parameter and image spaces (§3.3);

• Developing a method that guides appearance acquisition pro-
cesses by recommending observation configurations that are
likely capable of greatly reducing uncertainty (§3.4).

We demonstrate the effectiveness of our method using several syn-
thetic and real examples in §4.

2. Related Work

Material appearance capture Real-world objects exhibit richly
diverse appearance that can be described with models like

spatially-varying bidirectional reflectance distribution functions
(SVBRDFs).

To minimize ambiguity, many conventional appearance acquisi-
tion techniques rely on dense observations (e.g, [Mat03, LKG∗03,
HLZ10, DWT∗10, CDP∗14, DWMG15, KCW∗18, LZBD21]). Al-
ternatively, to democratize the acquisition, some recent works
rely on hand-crafted priors (e.g., sparsity of SVBRDF parame-
ter spaces) to allow reconstructions using fewer observations (e.g.,
[YDMH99, DCP∗14, WWZ15, ZCD∗16, KGT∗17, PNS18]). In ad-
dition, several techniques leverage data-driven neural priors to
produce plausible reconstructions of material appearance using
small numbers of observations (e.g., [AAL16, HSL∗17, GLD∗19,
DAD∗19, GSH∗20]). Despite of their convenience, these tech-
niques are usually limited to objects with simple (e.g., planar) ge-
ometries.

Most material appearance capture techniques make point esti-
mates—That is, return a single estimation of material parameters.
However, our work is not the first to consider ambiguity in such
capture. [LTH∗23] addresses the ambiguity in joint reconstruction
of material and environment lighting, by using a diffusion prior.
[GHYZ20] performs Bayesian inference of procedural appearance
models. Our technique also leverages a Bayesian formulation but
with significantly different scope and objective.

Capture guidance has also been extensively used in computer
vision. For brevity we only discuss its use in appearance capture.
BRDF sampling techniques such as [NJR15] [XNY∗16] are able
to obtain a measured BRDF from an optimized set of limited sam-
ples. [FBLS07] adaptively samples a reflectance field, which can
then be used for image-space relighting. These methods are spe-
cialized for their specific measurement applications. [LLSS03] is
most related to our work. It analyzes the ambiguity in a captured
SVBRDF and plans a best view for capture. However, its analy-
sis is limited to a linear appearance model, utilizing only the local
property of the problem, which isn’t general enough for most para-
metric appearance models where non-linearity and multi-modality
are common. In contrast, our method generalizes to non-linear ap-
pearance models and arbitrary objective functions, with capability
of analyzing multi-modal distributions.

Posterior sampling A key ingredient for Bayesian inference is
drawing samples from (potentially unnormalized) posterior dis-
tributions. Conventionally, this is achieved using Markov-Chain
Monte Carlo methods such as the Metropolis-Hastings (MH) al-
gorithm [MRR∗53]. Unfortunately, these methods are known to
have difficulties scaling to large sets of observations. To address
this problem, stochastic gradient (SG)-MCMC methods that lever-
age Langevin Monte Carlo (LMC) [WT11] or Hamiltonian Monte
Carlo (HMC) [CFG14] have been proposed.

Another relatively new category of Bayesian inference algo-
rithm is particle-optimization methods. Unlike MCMC methods
that generate (and propose) one sample at a time, the particle-
optimization methods operate on multiple samples, or particles,
simultaneously. Widely adopted particle-optimization methods in-
clude Stein variational gradient descent (SVGD) [LW16] as well
as its many variants including annealed SVGD [DF21], MP-
SVGD [ZLS∗18], SVGD w/ matrix valued kernels [WTBL19],
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and stochastic particle-optimization sampling (SPOS) [ZZCC20]
(among others [DCM∗18, CWC∗19, CG20]).

In this paper, we utilize SPOS to draw samples of material ap-
pearance parameters from posterior probabilities.

3. Our Method

In what follows, we describe our method in details. In §3.1,
we present the main ingredient of our method—which is based
on Bayesian inference of material appearance. Then, in §3.3,
we demonstrate how this formulation can be used to quantify
the uncertainty of estimated material parameters. Lastly, in §3.4,
we discuss another application of our technique: Selecting view-
ing/lighting configurations to minimize uncertainty.

3.1. Bayesian Formulation

Our technique utilizes a Bayesian formulation that infers material
appearance parameters x (e.g., SVBRDF maps) given a set of ob-
servations Y := {y1,y2, . . .} (e.g., photographs) as the estimation
of the posterior probability ppost(x |Y) of x conditioned on Y .

According to Bayes’ theorem, the posterior probabil-
ity ppost(x |Y) satisfies that

ppost(x |Y)∝ L(Y |x) ppri(x), (1)

where L(Y |x) is the likelihood of Y given x, and ppri(x) is the
prior probability of x.

In practice, the likelihood L(Y |x) can be modeled based on the
difference between each observation yi (under lighting and viewing
conditioned expressed by θi) and the corresponding simulated re-
sult R(x;θi). For instance, we use the following variant motivated
by L1 loss which is commonly used in inverse rendering

L(Y |x) = ∏
i

exp
(
−∥yi −R(x;θi)∥1

σerr

)
, (2)

where ∥·∥1 denotes 1-norm, and σerr > 0 is a hyper-parameter usu-
ally set to a small value, e.g. 0.01.

Lastly, the prior probability ppri(x) is considered a user input that
can be, for example, a uniform distribution over all valid material
appearance parameters x.

3.2. Sampling Posterior Distribution

With the posterior distribution defined in Eq. (1), we draw a dis-
crete set of samples X := {x1,x2, . . . ,xn} from this distribution.
As we will explain in §3.3, these samples can be used to quantify
properties like uncertainly of the posterior distribution.

To draw the samples, we utilize a technique called stochas-
tic particle-optimization sampling (SPOS) [ZZCC20] originated in
Stein variational inference [LW16]. To our knowledge, this is the
first time SPOS is used for material appearance acquisition in com-
puter graphics. In the following, we describe how our sampling
works in details.

SPOS considers each sample xi as the position of a “particle”. By

iteratively refining these positions, SPOS ensures that, after conver-
gence, the particles are distributed proportionally to a nonnegative
target function f (x)—which we set based on the posterior proba-
bility ppost(x |Y) to

f (x) = L(Y |x) ppri(x). (3)

Let x(t)i denote the position of the i-th particle at iteration t (for

i= 1,2, . . . ,n). Then, SPOS computes the position x(t+1)
i at the next

iteration via

x(t+1)
i = x(t)i − λt

n

n

∑
j=1

k
(

x(t)j ,x(t)i

)
∇Ut

(
x(t)j

)

+
λt

n

n

∑
j=1

∇
x(t)j

k
(

x(t)j ,x(t)i

)
− λt

β
∇Ut

(
x(t)i

)
+

√
2λt

β
ξ
(t)
i ,

(4)

where:

• λt and λt/β are step sizes that can be further preconditioned using
methods like Adam [KB14];

• k is the commonly adopted RBF kernel [LW16, ZZCC20] con-
trolling the repulsive force between particles:

k(x j,xi) := exp
(
− logn

M2 ∥x j − xi∥2
)
, (5)

where M denotes the median of distances between all pairs of
particles in X .

• Ut is given by the logarithm of the target function f modulated
by an annealing [DF21] term γ:

Ut(x) :=−γ(t) log f (x), (6)

where γ(t) := tanh[(1.4 t/T )8] with T being the total number of
iterations.

• ξ
(t)
i ∼N (0, I) is a Gaussian noise.

Intuitively, the algorithm works by letting these particles repel
against each other to achieve divergence and collectively conform
to the shape of the target distribution. The added Gaussian noise
helps particles escape local modes, improving its robustness.

3.2.1. Comparison with simpler methods

While our core technique is orthogonal to the choice of poste-
rior sampling algorithm and comparing the performance of vari-
ous posterior sampling algorithms is not the focus of this paper, we
nonetheless provide a comparison under a simple setting to illus-
trate the difference between SPOS and other simpler alternatives.

One naive way of drawing multiple appearance samples is to run
an inverse rendering algorithm multiple times with different initial
values. This indeed gives some variety in the results, which may
be interpreted in the same way we treat samples from the posterior
distribution. However, this is not a sampling algorithm and may
produce biased results.

A popular inference algorithm is Langevin Monte Carlo (or
SGLD) [WT11]. In practice, we find that SPOS offers improved
accuracy and robustness compared to SGLD.

Table 1 shows the mean square error in estimating the mean and
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variance of a posterior distribution arising in appearance acquisi-
tion, using samples drawn by different algorithms. The distribution
represents a common scenario where diffuse reflectance and rough-
ness are ambiguously inferred from a single reflectance observa-
tion. The Mean square errors of estimated expectance/variance of
both diffuse reflectance and roughness are added together.

Algorithm MSE (Expectance) MSE (Variance)
SPOS 0.0023 0.0002
SGLD 0.0078 0.0010

multiple SGD 0.0045 0.0039

Table 1: Mean square error of estimated expectance and variance
from 16 samples drawn using different methods, averaged over 20
runs.

3.3. Point Estimates and Uncertainties

With the material samples X := {xi : i = 1,2, . . . ,n} drawn from
the posterior distribution (§3.2), we use these samples to (i) obtain
a point estimate of the material appearance; and (ii) estimate the
uncertainty associated with the observations Y and prior ppri.

3.3.1. Obtaining Point Estimates

Material acquisition applications usually take point estimates (in-
stead of posterior probabilities) of material parameters as output.
Although obtaining point estimates is not our main focus, our tech-
nique is capable of providing those with little computational over-
head.

Specifically, we provide maximum-a-posteriori (MAP) estimates
xMAP that maximize the posterior probability ppost(xMAP |Y) and
hence the target function defined in Eq. (3):

xMAP = argmax
x

f (x). (7)

To obtain xMAP, we first set it to the position of the sam-
pled particle where the target function is maximized: xMAP =
argmaxx∈X f (x). Then, as an optional step, we apply gradient-
based optimization (e.g., Adam [KB14]) to further refine xMAP.

3.3.2. Estimating Uncertainties

A main benefit of using a Bayesian formulation is the capability of
estimating uncertainties. Specifically, our technique offers the ca-
pability of estimating uncertainties defined over both the parameter
space and the image space—which we explain in the following.

Parameter-space uncertainty We first define the parameter-
space uncertainty σx as the component-wise standard deviation
of the posterior probability:

σx[ j] := stdx∼ppost(x |Y)x[ j], (8)

where x[ j] denotes the j-th component of x, and std indicates the
standard deviation.

In practice, we approximate this uncertainty using the standard
deviation of the samples X = {xi : i = 1,2, . . . ,n}:

σx[ j]≈ std{xi[ j] : i = 1,2, . . . ,n}. (9)

The parameter-space uncertainty captures how “tight” the pos-
terior distribution is around any potential point estimate (such as
xMAP), and a greater standard deviation implies being more uncer-
tain.

Image-space uncertainty Estimated material appearance parame-
ters are commonly used for renderings under some novel illumina-
tion and/or viewing conditions. Given a novel condition specified
with θ, we define the image-space uncertainty σR as an image
given by

σR(θ)[ j] := stdx∼ppost(x |Y)R(x;θ)[ j], (10)

where σR(θ)[ j] and R(x;θ)[ j] denote the j-th pixels of the uncer-
tainty image σR(θ) and the rendering R(x;θ) using the material
parameter x and viewing/lighting configuration θ, respectively.

In practice, similar to the parameter-space uncertainty in Eq. (9),
we approximate σR(θ) using

σR(θ)[ j]≈ std{R(xi;θ) : i = 1,2, . . . ,n}. (11)

Discussion We note that higher parameter-space uncertainty does
not always lead to higher image-space uncertainty because, for ex-
ample, under smooth illumination, variations of surface roughness
may only lead to small changes in object appearance.

Additionally, we emphasize that the uncertainties estimated us-
ing Eqs. (9) and (11) are not specific to any point-estimation
methods—including our MAP-based one presented in §3.3.1—but
statistical properties determined by the posterior probability. We
demonstrate this in Figures 1 and 4.

3.4. Guiding Appearance Acquisitions

Besides quantifying uncertainties (§3.3), another application of our
SPOS-based sampling (§3.2) is to guide appearance acquisition
processes. Specifically, given a set of observations Y , we intro-
duce a technique to recommend viewing/lighting configurations θ

so that additional observations acquired under these configurations
are likely to be “informative” (and greatly reduce uncertainties).

In what follows, we introduce a formulation that quantifies the
amount of information a not-yet-acquired observation with given
viewing/lighting conditions is likely to offer in §3.4.1. Based on
this formulation, we develop an algorithm for recommending new
viewing/lighting configurations in §3.4.2.

3.4.1. Mutual Information

To this end, we consider the unknown observation Y (θ) taken un-
der some fixed viewing/lighting condition θ. Motivated by the like-
lihood L(Y |x) defined in Eq. (2), we formulate Y (θ) as a random
variable

Y (θ) = R(θ)+W , (12)

where R(θ) :=R(X ;θ) is a random rendering generated using the
same viewing/lighting conditions θ and random material param-
eters X subject to the posterior probability ppost(x |Y), and the
term W is an independent noise image with zero mean. In other
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words, we treat the random rendering R(θ)—which we can exam-
ine statistically—as an approximation of the unknown observation
Y (θ).

Inspired by the inequality in information theory h(A|B)≤ h(A),
which states that having additional observation will decrease un-
certainty, we formulate the selection of an informative configura-
tion θ as maximizing such uncertainty reduction, i.e. the mutual
information between material parameters X and the random ren-
dering R(θ), which models the amount of information gained about
one variable by observing the other variable [Sha48]:

h(X)−h(X |R(θ)) = I(X ↔ R(θ))

= h(R(θ))−h(R(θ) |X),
(13)

where h denotes the differential entropy and is defined as

h(Z) :=−
∫

Ω

p(z) log p(z)dΩ(z), (14)

for any random variable Z over some domain Ω with the probability
density p(z). At a high level, high differential entropy implies high
uncertainty, and vice versa.

With fixed material parameters x and viewing/lighting conditions
θ, we consider the corresponding rendering R(x;θ) a mostly con-
stant image except for having a small amount of pixel-wise inde-
pendent rendering noise which can result from, for example, Monte
Carlo integration and is not to be confused with the noise W . It fol-
lows that, on the right-hand side of Eq. (13), the conditional differ-
ential entropy h(R(θ) |X) emerges solely from the rendering noise,
which we model as a small Gaussian noise when using sufficient
render samples. Then, we approximate the maximization of the mu-
tual information I(X ↔ R(θ)) with maximizing the differential en-
tropy h(R(θ)):

argmax
θ

I(X ↔ R(θ))≈ argmax
θ

h(R(θ)). (15)

According to Eq. (14), estimating h(R(θ)) requires evaluating
the corresponding probability p(r) which, unfortunately, has no an-
alytical expression. To this end, we utilize kernel density estimation
(KDE) [Sil86] as follows. Let X := {xi : i = 1,2, . . . ,n} be n sam-
ples of material parameters drawn using SPOS (§3.2). Then, for
any image r, the probability density can be approximated via:

pKDE(r;X ,θ) =
1

n σ̄k (2π)k/2

n

∑
i=1

exp

(
−∥r−R(xi;θ)∥2

2σ̄2

)
, (16)

where σ̄ ∈ R+ is the kernel bandwidth, k denotes the number of
pixels in the image r, and R(xi;θ) is the image rendered using ma-
terial parameters xi and viewing/lighting conditions θ.

Unfortunately, since r is usually high-dimensional, for pKDE(r)
defined in Eq. (16) to accurately approximate the true probability
p(r), an impractically large number of samples (i.e., large n) may
be needed. To mitigate this obstacle, we focus on the case when
each dimension (i.e., pixel) r[ j] of the image r is approximately
independent to the others, leading to

p(r)≈
k

∏
j=1

p(r[ j]). (17)

Then, the differential entropy h(R(θ)) of the random image R(θ)

can be computed by summing the entropy h(R(θ)[ j]) of the image’s
individual pixel R(θ)[ j]. That is,

I(X ↔ R(θ)) = h(R(θ))−h(R(θ) |X)

≈
k

∑
j=1

h(R(θ)[ j])−hnoise[ j]

=−
k

∑
j=1

∫
p j(r;θ) log p j(r;θ)dr−hnoise[ j],

(18)

where p j(r;θ) is the probability density function of the rendered
j-th pixel; hnoise[ j] quantifies the uncertainty of the j-th pixel due
to render noise. The probability density p j for the j-th pixel can be
estimated using one-dimensional KDE via

pKDE
j (r;θ,X ) =

1
n σ̄ j

√
2π

n

∑
i=1

exp

(
− (r−R(xi;θ)[ j])2

2σ̄2
j

)
. (19)

In this equation, R(xi;θ)[ j] denotes the j-th pixel of the rendering
R(xi;θ), and σ̄ j is the kernel bandwidth for the j-th pixel.

In practice, we use Silverman’s rule of thumb [Sil86]

σ̄ j = 0.9n−
1/5 min(σ, IQR/1.34), (20)

where σ j := std{R(xi;θ)[ j] : i= 1,2, . . . ,n} is the sample standard
deviation, and IQR is the interquartile range defined as the differ-
ence between 75-th and 25-th percentile of the samples.

We note that although image-space uncertainty (standard devia-
tion) can also be used in place of the mutual information, i.e. max-
imizing image-space uncertainty instead of the mutual information
of the chosen configuration, it’s both less theoretically grounded
and offering less uncertainty reduction in practice.

Numerical estimation In practice, given a set X of sampled ma-
terial parameters and viewing/lighting configurations θ, we es-
timate Eq. (18) using Monte Carlo estimation. Specifically, for
each j = 1,2, . . . ,k, we draw r j with the probability density
pKDE

j (r j;θ,X )—which can be achieved by (i) sampling r j,i ∈ R
from the normal distribution N (R(xi;θ), σ̄2

j) for i= 1,2, . . . ,n; and
(ii) choosing r j from {r j,1,r j,2, . . . ,r j,n} uniformly at random. With
all r j sampled, we obtain the following single-sample Monte Carlo
estimator for the differential entropy h(R(θ)):

⟨h(R(θ))⟩=−
k

∑
j=1

log pKDE(r j;θ,X ). (21)

Handling redundant pixels When inferring SVBRDF parameters
using high-resolution renderings/observations, multiple pixels may
correspond to a single texel, violating our assumption of pixel-wise
independency.

We address this problem by analyzing pixel footprint in the tex-
ture space. Precisely, if one texel contains the footprints of multiple
pixels (under the viewing configuration encoded in θ), we treat all
these pixels identical. When formulating h(R(θ)) using Eq. (18),
we exclude all but one of these pixels from the summation on the
right-hand side.

© 2024 The Authors.
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ALGORITHM 1: Material acquisition guided with our technique

1 GuidedAcquisition(Y , Θ̄, m; n)
Input: Preexisting observations Y0; candidate viewing/lighting

configurations Θ̄; number m of additional observations
Output: Selected configurations Θ with |Θ| = m

2 begin
3 Y ←Y0;
4 Θ←∅;
5 while |Θ| < m do
6 Draw n samples X from ppost(x |Y) using SPOS ; // §3.2
7 θ

∗← argmax{I(X ↔ R(θ)) : θ ∈ Θ̄} ; // Eq. (18)
8 Acquire the observation y∗ using the configuration θ

∗;
9 Y ←Y ∪{y∗};

10 Θ← Θ∪{θ∗};
11 end
12 return Θ;
13 end

3.4.2. The Guiding Algorithm

With the mutual information formulated using Eq. (18), we now
present an algorithm that guides material acquisition processes.

Specifically, let Θ̄ := {θ1,θ2, . . .} be a (discrete) set of candi-
date viewing/lighting configurations, and Y0 := {y1,y2, . . .} be a
set of (already-conducted) observations. Given the number m of
additional observations needed, our method selects the m-element
subset Θ ⊆ Θ̄ so that, under these configurations, the observations
are likely to maximize information (and minimize uncertainty).

To this end, as outlined in Algorithm 1, we conduct a greedy
process that iteratively selects the configuration θ

∗ that maximizes
the mutual information I(X ↔ R(θ)) given by Eq. (18).

Batched recommendations In Algorithm 1, the SPOS sampling
(Line 6) and mutual information computation (Line 7) steps can
both be computationally intensive. To improve the performance of
Algorithm 1, we introduce an approximation that allows a batch of
observations to be added in each iteration. Specifically, after draw-
ing the samples X (Line 6), our goal is to select K configurations
θ
∗
1 ,θ

∗
2 , . . . ,θ

∗
K ∈ Θ̄ (where K is a hyper-parameter).

We note that adding one observation with configuration θ
∗

would cause all the other configurations similar to θ
∗ to be non-

informative afterward. Based on this observation, to select the K
configurations, we repeatedly select the top candidate θ

∗ ∈ Θ̄ (that
maximizes mutual information) before removing all candidates that
reside within a hyper-sphere centered at θ

∗ from the set Θ̄.

4. Results

We implement the algorithms described in §3 in PyTorch with
the rendering function R handled with a GPU-based differentiable
renderer based on [ZZC∗22]. On a workstation equipped with an
NVIDIA RTX 4090, our uncertainty estimation takes a couple to
20 minutes depending on the required number of renderings—That
is, how many times R needs to be evaluated in Eq. (19).

Ablation of particle count As presented in §3.2, the SPOS
method we utilize for drawing sampling from posterior probabil-
ities maintains and updates the positions of some n particles with n
being a hyper-parameter. In Figure 2, we conduct an ablation on the
value of n by estimating parameter-space uncertainty using Eq. (9)
for a synthetic SVBRDF inference problem using 20 observations.
As shown in this figure, the estimated uncertainty approximately
converges after n ≥ 16. Hence, we use n = 20 for all the following
experiments.

4.1. Uncertainty Estimation

A main component of our technique is the estimation of parameter-
space and image-space uncertainties (§3.3)—which we evaluate us-
ing several SVBRDF inference problems.

Evaluation setup Given a fixed set of observations of an ob-
ject (with known geometry and lighting), we estimate uncertain-
ties emerging from inferring the SVBRDF parameters expressed
as per-texel diffuse albedo and roughness (based on the microfacet
model). To evaluate our estimated uncertainties, we obtain (one or
multiple) point estimates and examine the correlation between the
uncertainties and (parameter- or image-space) errors.

As discussed at the end of §3.3, our estimated uncertainties are
not specific to any point estimate but rather quantify the intrinsic
ambiguity emerging from the posterior (determined by the obser-
vations and the priors).

Parameter-space uncertainty We evaluate our estimation of
parameter-space uncertainty in Figure 3, where the SVBRDF of
a planar wooden object is inferred using different numbers of ob-
servations (under both collocated and environment light configura-
tions). As shown in this figure, our estimated parameter-space un-
certainties do reduce when the number of observations increases.
On the other hand, these uncertainties do not correlate closely with
point estimate error maps. This is somewhat expected because,
when there is high uncertainty, one point estimate can still get
“lucky” and return an answer with low error. In other words, we
expect to observe low error in regions with low uncertainty and,
on average, higher error in regions with high uncertainty—which
is the case in this result.

2 4 8 16 32
−1.75

−1.50

−1.25

1e6

particles

(a) (b) (c) (d)

Figure 2: We conduct an ablation to study how our uncertainty
estimation is affected by the number n of particles used by the SPOS
process. To this end, we obtain multiple estimates of the parameter-
space uncertainty using Eq. (9) for a synthetic SVBRDF inference
problem using n = 2,4,8,16,32. Column (b–d) visualize estimated
uncertainties in surface roughness using n = 2,4,32, respectively.
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Figure 3: Parameter-space uncertainty: We estimate parameter-space uncertainties using a synthetic SVBRDF inference problem where a
wooden plane is observed from different directions under two different lighting configurations. In the 1st and 3nd row, we show 2 different
point estimates of surface roughness using 3, 10, and 100 observations. In the 2nd and 4th row, we show L1 error of these point estimates.
In the last row, we show our estimated parameter-space uncertainties of surface roughness. The error and uncertainty visualizations use the
same color map as Figure 1.

Image-space uncertainty We now evaluate our estimations of
image-space uncertainty.

Figure 4 shows results obtained using two synthetic SVBRDF
inference problems. For each problem, we compare our estimated
uncertainties with the errors of novel renderings of four point esti-
mates obtained with: (b1) Adam optimizer with high initial rough-
ness; (b2) Adam optimizer with low initial roughness; (b3) SGD
optimizer with random initial roughness; (b4) our point estimate
described in §3.3.1. As shown in column (c), our estimated uncer-
tainties correlate with the errors closely.

This result demonstrates that image-space uncertainties—which
take into consideration not only posterior probabilities but also

rendering configurations—tend to be more informative than
parameter-space uncertainties.

In addition, Figure 1 shows an example obtained using an
SVBRDF inference problem with real measurements from the
work by Luan et al. [LZBD21]. Similar to the synthetic experiment
(Figure 4), our predicted image-space uncertainty correlates well
with rendering errors under novel configurations.

Prior awareness As discussed in §3.3, our estimation of
parameter-space and image-space uncertainties are prior-aware due
to the fact that the prior probability is a factor of the posterior prob-
ability. We demonstrate such prior awareness in Figure 5 that uses
a simple setting where the SVBRDF of a homogeneous object is in-
ferred using observations under collocated configurations. Without
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a strong prior on roughness (shown on the top), the point estimate
suffers from severe baking. With a prior modeled as a Gaussian
around the groundtruth roughness, the point estimate matches the
groundtruth much better with little baking. Our estimated uncer-
tainties successfully capture these effects, as shown in (c).

Using Neural priors Lastly, we show a proof-of-concept exam-
ple that goes beyond per-texel SVBRDF capture. Fig. 6 uses an
example where the material reflectance is modeled using a neu-
ral prior—the MaterialGAN [GSH∗20]. In other words, instead of
directly specifying diffuse albedo and roughness per texel, this
models specifies material appearance uses a latent representation
which is then decoded (using a pre-trained GAN network) into the
SVBRDF maps.

We apply our algorithm on the latent space of MaterialGAN,
inferring the posterior distribution of θ = {w,z} where w,z are
the latent vector and noise respectively, in the same practice as
[GSH∗20]. We do not apply any additional prior on the latent space,
hence a uniform prior ppri(θ) = 1 is used.

Our estimation of image-space uncertainties generalizes well to
this setup. As shown in the figure, our estimated uncertainties cor-
relate well with errors in novel renderings.

4.2. Guiding Captures

Lastly, we evaluate our capture guidance method (§4.2) using two
synthetic settings in Figure 7.

The top and bottom sections of this figure use, respectively,
SVBRDF inference problems where the handplane model is be-
ing observed under collocated and light-stage-like configurations,
respectively. For the collocated light configuration, we have 1000
candidate camera positions. For the light stage configuration, we
have 5000 candidate camera positions and 30 available lights.

We compare rendering errors (under novel configurations) and
estimated image-space uncertainty using observations determined
by two methods:

• Baseline method: As a baseline, we use a low-discrepancy sam-
pler to evenly sample viewing directions. For the light stage con-
figuration, we pair each camera with a randomly selected light.

• Our method: Using our guidance scheme, for the collocated
light configuration we recommend 5 views in addition to 5
uniformly drawn viewing configurations (using the same low-
discrepancy sampler), and in each subsequent round add 10 more
recommended cameras. For the light stage configuration, we
start with 3 uniformly drawn viewing configurations and recom-
mend 3 views in each round.

As shown in Figure 7, observations recommended by our method
consistently outperforms those given by the baseline method.
Specifically, as shown in the uncertainty (c) and rendering error
plots (b), using the same number of total observations, our tech-
nique offers consistently lower image-space uncertainty (averaged
over all pixels) as well as rendering error (using one point estimate
under a novel configuration).

Below the plots, we also show novel renderings, rendering er-
rors, and estimated uncertainties obtained with 10 observations un-
der collocated light setup and 9 observations under light stage setup
using both methods.

5. Discussion and Conclusion

Limitations and future work As discussed in §1, errors in re-
flectance acquisition can emerge from not only ambiguities but also
limitations of appearance models. Our method does not model the
latter and, thus, can fail when that type of error is severe.

When the computational budget for rendering is limited, the ren-
der noise will be a significant factor that affects estimating uncer-
tainties. Formulating and practically handling render noise will be
a challenging topic that we leave for future work.

In addition, our technique—especially the guiding method dis-
cussed in §3.4—remains computationally expensive due to the
need of generating large numbers of renderings (when evaluating
Eq. (19) for each particle j and candidate configuration θ). Accel-
erating this process will drastically improve its practical usefulness
in, for example, an interactive appearance reconstruction pipeline.

Conclusion In this paper, we introduced a Bayesian formulation
to quantify ambiguities in material appearance acquisition. Specif-
ically, given a set of observations and priors, our technique uses
stochastic particle-optimization sampling (SPOS) to efficiently
draw material parameter samples from posterior probabilities de-
termined by the input observations and priors. Based on this pro-
cess, we developed a method to estimate uncertainties over the
parameter-space and the image-space. In addition, we proposed
a pipeline that guides acquisition processes by iteratively recom-
mending viewing/lighting configurations for making future obser-
vations. We evaluated our methods using several synthetic and one
real examples.
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Figure 4: Image-space uncertainty: We compare our estimated image-space uncertainties for two objects each under two novel light-
ing/viewing conditions. The handplane on the top and bust on the bottom have their SVBRDFs inferred using 20 observations under collo-
cated and environmental illuminations, respectively. In this figure, we show renderings of the inferred reflectance using four point estimates
(b1–b4) under novel viewing/lighting conditions. Our estimated image-space uncertainties (c) correlate closely with the rendering errors.
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Figure 5: Prior awareness: Reconstruction of a smooth plane cap-
tured from 10 angles without and with the low-roughness prior.
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Figure 6: Using Neural priors: Appearance of a wooden bowl re-
constructed using MaterialGAN [GSH∗20], captured from 7 views.
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Figure 7: Guiding captures: We show two examples with each us-
ing an SVBRDF inference problem using varying numbers of ob-
servations. For both examples, using observations recommended
by our method leads to lower uncertainties (c), allowing point esti-
mates to produce lower error under novel configurations (b). Gray
dashed line illustrates number of views used in shown examples.
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