Eurographics Symposium on Rendering 2023
– Symposium Track –
Delft, The Netherlands
28 – 30 June 2023

Organized by

Program Co-Chairs
Tobias Ritschel, University College London
Andrea Weidlich, NVIDIA

Conference Chair
Elmar Eisemann, TU Delft
Ricardo Marroquim, TU Delft

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)

Sponsored by EUROGRAPHICS Association

DOI: 10.2312/sr.20232013
Table of Contents

Table of Contents ... iii
Partners .. v
International Programme Committee ... vi
Author Index .. viii
Keynotes ... ix

Ray Tracing

Mean Value Caching for Walk on Spheres .. 1
Ghada Bakbouk and Pieter Peers

Spectral

A Microfacet Model for Specular Fluorescent Surfaces and Fluorescent Volume Rendering using Quantum Dots ... 11
Alexis Benamira and Sumant Pattanaik

NeRF

Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training ... 25
Julien Philip and Valentin Deschaintre

Materials

SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions ... 37
Behnaz Kavoosighafi, Jeppe Revall Frisvad, Saghi Hajisharif, Jonas Unger, and Ehsan Miandji

Data-driven Pixel Filter Aware MIP Maps for SVBRDFs ... 51
Pauli Kemppinen, Miika Aittala, and Jaakko Lehtinen

Patterns and Shadows

Learning Projective Shadow Textures for Neural Rendering of Human Cast Shadows from Silhouettes ... 63
Farshad Einabadi, Jean-Yves Guillemaut, and Adrian Hilton

pEt: Direct Manipulation of Differentiable Vector Patterns ... 77
Marzia Riso and Fabio Pellacini

FloralSurf: Space-Filling Geodesic Ornaments ... 87
Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti, and Fabio Pellacini
Table of Contents

Perception

An Inverted Pyramid Acceleration Structure Guiding Foveated Sphere Tracing for Implicit Surfaces in VR

Andreas Polychronakis, George Alex Koulieris, and Katerina Mania

Practical Temporal and Stereoscopic Filtering for Real-time Ray Tracing

Henrik Philippi, Jeppe Revall Frisvad, and Henrik Wann Jensen

Gaze-Contingent Perceptual Level of Detail Prediction

Luca Surace, Cara Tursun, Ufuk Celikcan, and Piotr Didyk
International Programme Committee

Alla Chaitanya, Chakravarty R. – Facebook Reality Labs
Belcour, Laurent – Intel Corporation
Benard, Pierre – Université de Bordeaux - Inria
Bitterli, Benedikt – NVIDIA
Bittner, Jiří – Czech Technical University in Prague
Christensen, Per – Pixar
Clarberg, Petrik – NVIDIA Corporation
d’Eon, Eugene – NVIDIA
Deschaîntre, Valentin – Adobe Research
Dhillon, Daljit Singh – Clemson University
Dischler, Jean-Michel – ICUBE - Université de Strasbourg
Drettakis, George – Inria, Université Côte d’Azur
Droske, Marc – Weta Digital
Dupuy, Jonathan – Intel Corporation
Fichet, Alban – Intel Corporation
Garces, Elena – Universidad Rey Juan Carlos, Seddi
Georgiev, Iliyan – Adobe Research
Grittmann, Pascal – Saarland University
Grosch, Thorsten – TU Clausthal
Gruson, Adrien – École de Technologie Supérieure
Günther, Tobias – FAU Erlangen-Nuremberg
Hachisuka, Toshiya – University of Waterloo
Hanika, Johannes – Karlsruhe Institute of Technology
Herholz, Sebastian – Intel Corporation
Iseringhausen, Julian – Google Research
Jarabo, Adrian – Meta Reality Labs Research
Jarosz, Wojciech – Dartmouth College
Kettunen, Markus – NVIDIA
Khademi Kalantari, Nima – Texas A&M University
Kim, Min H. – KAIST
Kuffner dos Anjos, Rafael – University of Leeds
Lee, Sungkil – Sungkyunkwan University
Leimkuhler, Thomas – MPI Informatik
Lensch, Hendrik – University of Tübingen
Liktor, Gabor – Intel Corporation
Marschner, Steve – Cornell University
Meister, Daniel – Advanced Micro Devices, Inc.
International Programme Committee

Meng, Xiaoxu – Tencent
Meyer, Quirin – Coburg University
Montazeri, Zahra – University of Manchester
Mueller, Joerg – Graz University of Technology
Munkberg, Jacob – NVIDIA Corporation
Nguyen-Phuoc, Thu – Reality Labs Research, Meta
Nimier-David, Merlin – NVIDIA
Papas, Marios – Disney Research | Studios
Peers, Pieter – College of William & Mary
Peters, Christoph – Intel Corporation
Pharr, Matt – NVIDIA
Philip, Julien – Adobe Research
Reshetov, Alexander – NVidia
Rousselle, Fabrice – NVIDIA
Salvi, Marco – NVIDIA
Selgrad, Kai – OTH Regensburg
Serrano, Ana – Universidad de Zaragoza
Silvennoinen, Ari – Activision Publishing, Inc.
Singh, Gurprit – Max-Planck Institute for Informatics, Saarbrucken
Sintorn, ERIK – CHALMERS UNIVERSITY
Sýkora, Daniel – CTU in Prague, FEE
Tatarchuk, Natalya –
Tursun, Cara – University of Groningen
Vaidyanathan, Karthik – Intel
Vardis, Konstantinos – Athens University of Economics and Business
Vicini, Delio – Walt Disney Animation Studios
Vorba, Jiří – Weta Digital
Walter, Bruce – Cornell University
Wang, Beibei – Nanjing University of Science and Technology
Wang, Rui – Zhejiang University
Wei, Li-Yi – Adobe Research
Wong, Tien-Tsin – The Chinese University of Hong Kong
Wu, Hongzhi – State Key Lab of CAD and CG, Zhejiang University
Xu, Zexiang – Adobe Research
Yan, Ling-Qi – UC Santa Barbara
Yuksel, Cem – University of Utah
Zeltner, Tizian – NVIDIA
Zhao, Shuang – University of California, Irvine
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aittala, Miika</td>
<td>51</td>
</tr>
<tr>
<td>Albano, Valerio</td>
<td>87</td>
</tr>
<tr>
<td>Bakbouk, Ghada</td>
<td>1</td>
</tr>
<tr>
<td>Benamira, Alexis</td>
<td>11</td>
</tr>
<tr>
<td>Celikcan, Ufuk</td>
<td>119</td>
</tr>
<tr>
<td>Deschaintre, Valentin</td>
<td>25</td>
</tr>
<tr>
<td>Didyk, Piotr</td>
<td>119</td>
</tr>
<tr>
<td>Einabadi, Farshad</td>
<td>63</td>
</tr>
<tr>
<td>Fanni, Filippo Andrea</td>
<td>87</td>
</tr>
<tr>
<td>Frisvad, Jeppe Revall</td>
<td>37, 111</td>
</tr>
<tr>
<td>Giachetti, Andrea</td>
<td>87</td>
</tr>
<tr>
<td>Guillemaut, Jean-Yves</td>
<td>63</td>
</tr>
<tr>
<td>Hajisharif, Saghi</td>
<td>37</td>
</tr>
<tr>
<td>Hilton, Adrian</td>
<td>63</td>
</tr>
<tr>
<td>Jensen, Henrik Wann</td>
<td>111</td>
</tr>
<tr>
<td>Kavoosighafi, Behnaz</td>
<td>37</td>
</tr>
<tr>
<td>Kemppinen, Pauli</td>
<td>51</td>
</tr>
<tr>
<td>Koulieris, George Alex</td>
<td>97</td>
</tr>
<tr>
<td>Lehtinen, Jaakko</td>
<td>51</td>
</tr>
<tr>
<td>Mania, Katerina</td>
<td>97</td>
</tr>
<tr>
<td>Miandji, Ehsan</td>
<td>37</td>
</tr>
<tr>
<td>Pattanaik, Sumant</td>
<td>11</td>
</tr>
<tr>
<td>Peers, Pieter</td>
<td>1</td>
</tr>
<tr>
<td>Pellacini, Fabio</td>
<td>77, 87</td>
</tr>
<tr>
<td>Philip, Julien</td>
<td>25</td>
</tr>
<tr>
<td>Philippi, Henrik</td>
<td>111</td>
</tr>
<tr>
<td>Polychronakis, Andreas</td>
<td>97</td>
</tr>
<tr>
<td>Riso, Marzia</td>
<td>77</td>
</tr>
<tr>
<td>Surace, Luca</td>
<td>119</td>
</tr>
<tr>
<td>Tursun, Cara</td>
<td>119</td>
</tr>
<tr>
<td>Unger, Jonas</td>
<td>37</td>
</tr>
</tbody>
</table>
Keynote

Wētā FX: The Way of Water Technology

Pavani Rao Boddapati

Abstract

Join Wētā FX’s VFX Supervisor, Pavani Rao Boddapati, as she takes a deep dive into the story behind the creation of the 2,225 water shots seen in Avatar: The Way of Water. The ambitious story required new technology and techniques as well as close collaboration between researchers, developers, artists, production, and of course, Director James Cameron, to bring his artistic vision to life. The films development spanned over five years, beginning in 2017 with the Water Development Project. Pavani will discuss what this project entailed and how it was used to evaluate and continuously refine the water pipeline to ensure the toolset could support a crew rapidly onboarding to deliver thousands of these shots with consistent industry leading high fidelity. It was essential that the look and feel of the water felt cohesive throughout the sequences as it interacted with other elements and characters. To achieve this realism and ensure scalability and consistency across the shots, the team took a physics-based approach while developing our in-house technology. Pavani will touch on some of the new features that were introduced to our existing rendering system Manuka – including the ability to look through water and manipulate reflections and refractions using secondary deep data. Pavani will also explore our new unified simulation framework, Loki, which enabled meticulous control of water, fire, hair and cloth elements. The culmination of these technological advancements helped push the boundaries of visual effects and expanded the immersive world of Pandora.

Short Biography

Pavani began her visual effects career at Rhythm and Hues in Los Angeles before joining the lighting team at Wētā FX for James Cameron’s Avatar. She moved on to Rise of the Planet of the Apes and worked as a CG Supervisor on all three of Peter Jackson’s The Hobbit films. Pavani was also CG Supervisor on Maze Runner: The Scorch Trials and on Steven Spielberg’s The BFG. She was a Sequence VFX Supervisor on Alita: Battle Angel, for which she spearheaded the underwater sequence for the Crashed Warship environment. Pavani has been leading the development of Wētā FX’s next generation water pipeline. As part of this, a cross-functional team of artists and researchers across disciplines integrates lighting, fluids, rendering and animation to create photorealistic water for any conceivable situation or sequence. This monumental work has led to Pavani’s role as a VFX Supervisor on Avatar: The Way of Water.
Keynote

What are mental images, and why do we have them?

Thomas Naselaris

Abstract

For many people the experience of mental imagery is inseparable from thinking and remembering. Others don’t experience mental imagery at all. Individual variation in the subjective experience of mental imagery has fueled millennia of debate about what mental images are, and what our minds do with them. We argue that mental images are approximate visual representations that are independent of visual input. Using computational models that map mental images to human brain activity, and map human brain activity to mental images, we provide strong evidence for this characterization of mental imagery, and reveal some of the ways in which mental images approximate seen ones. To answer the “why” question, we propose a theory about the computational work that mental images do. According to this hypothesis, mental imagery functions as a useful form of inference that is conditioned on visual beliefs. We implement this form of inference in a simple generative model of natural scenes, and show that it makes testable predictions about differences in tuning to seen and imagined features. We confirm these predictions with a large-scale neuroimaging experiment in which human brain activity was sampled while subjects generated hundreds of mental images. Finally, we will offer some speculations about why the subjective experience of mental imagery varies so dramatically across individuals and states of consciousness.

Short Biography

Thomas Naselaris received a Ph.D. in Neuroscience at the University of Minnesota and completed a postdoctoral fellowship at the University of California, Berkeley. He is an Associate Professor in the Department of Neuroscience at the University of Minnesota, and a member of the Medical Discovery Team on Optical Imaging and Brain Science at the Center for Magnetic Resonance Research. He is co-founder and currently Executive Chair of the Conference on Cognitive Computational Neuroscience.
Keynote

Multum In Parvo: Level of Detail and Approximation Models at the Graphics Nexus

Tamy Boubekeur

Abstract

MIP maps, level-of-details, approximation models, multiresolution processing and multiscale analysis play a central role in 3D computer graphics. In this talk, I will delve into some aspects of our recent contributions to the 3D digital content creation pipeline. From material capture to real-time ray tracing, through surface reconstruction, I will emphasize how these methodologies not only allow for faster and more scalable 3D graphics, but indeed play a major role in the way we design algorithms in 3D and, ultimately, are a fundamental aspect of what we do in our field and how we can impact other areas of applied sciences.

Short Biography

Tamy Boubekeur is a researcher in computer science, specialized in 3D computer graphics. He is currently a Lab Director and Senior Principal Research Scientist at Adobe Research, as well as a Professor at the Computer Science Department of Ecole Polytechnique, Institut Polytechnique de Paris. He is also a Professor (on leave) at Telecom Paris, Institut Polytechnique de Paris. He was previously the founder and head of the Computer Graphics Group at Telecom Paris and chief scientist at Allegorithmic. He was also an Associate Researcher at TU Berlin and a PhD student at INRIA. His lab at large works on 3D visual computing. His personal research areas focus on 3D Computer Graphics, with a special interest in Modeling, Rendering and Learning efficiently 3D data.