
Eurographics Symposium on Rendering (2023)
T. Ritschel and A. Weidlich (Editors)

Fast Procedural Noise By Monte Carlo Sampling

Marcos Fajardo1 Matt Pharr2

1Shiokara–Engawa Research, Madrid, Spain 2NVIDIA, Santa Clara, CA, USA

Abstract
Procedural noise functions are widely used in computer graphics as a way to add texture detail to surfaces and volumes. Many
noise functions are based on weighted sums that can be expressed in terms of random variables, which makes it possible to
compute Monte Carlo estimates of their values at lower cost. Such stochastic noise functions fit naturally into many Monte
Carlo estimators already used in rendering. Leveraging the dense image-plane sampling in modern path tracing renderers, we
show that stochastic evaluation allows the use of procedural noise at a fraction of its full cost with little additional error.

CCS Concepts
• Computing methodologies → Rendering; Texturing;

1. Introduction

A meaningful amount of the runtime of modern path-tracing ren-
derers is spent in pattern generation—computing the local surface
or volumetric scattering properties at points in the scene [GIF∗18,
KCSG18,BAC∗18,CFS∗18]. As the geometric ray tracing compo-
nent of path tracing is becoming more efficient thanks to special-
ized hardware [Bur20], the fraction of runtime devoted to pattern
generation has correspondingly increased.

Procedural noise functions are often a large contributor to this
cost. Since their invention in the eighties [Per85,Lew89], they con-
tinue to be used today to render irregular or natural-looking objects
such as marble, wood, rock, clouds and smoke. Their success lies
in the ease with which layers of detail can be stacked upon and
combined to form rich textures with little effort.

This shading overhead is problematic in the context of path trac-
ing, where shaders are evaluated on every single ray and sometimes
on every single ray–object intersection (for opacity mapping). Ren-
dering volumes modeled (or augmented) with procedural noise is
particularly expensive since many samples are taken along each ray.

Noise functions are traditionally viewed as black boxes that
return exact, analytical results. We observe that by opening up
these black boxes we can derive stochastic estimators of them
that are more efficient and fit naturally with the stochastic sam-
pling machinery in Monte Carlo ray tracing renderers. We ap-
ply this idea to a range of widely-used noise functions, includ-
ing Perlin noise [Per85], sparse convolution noise [Lew89], cel-
lular noise [Wor96], Gabor noise [LLDD09], as well as to sums of
noise functions used to create fractal patterns. We show that these
stochastic estimators introduce negligible additional error when
used with Monte Carlo path tracing, especially given the gener-

ous pixel sampling rates in offline rendering today. For noise-heavy
scenes, we show as much as a 6.1× performance improvement.

2. Background and Previous Work

Stochastic evaluation has been at the heart of rendering since the pi-
oneering work of Cook et al. [CPC84, Coo86] and Kajiya [Kaj86]
who showed that Monte Carlo integration is an effective technique
for the complex and discontinuous integrals that are commonly
used in physically based rendering [PJH23b]. In rendering, the in-
tegrands themselves are usually comprised of deterministic func-
tions. However, because expectation and integration are linear op-
erators, factors of the integrand may themselves be stochastically
evaluated. If both the Monte Carlo algorithm and any stochastic
factors of the integrand are unbiased, then the estimate of the inte-
gral remains unbiased.

This observation has been previously applied in a number of
areas in rendering to improve efficiency. It was central to Ka-
jiya’s original formulation of path tracing, where only a single
light source was sampled for direct lighting at each vertex. One of
the earliest uses of Monte Carlo was in matrix inversion [FL50]
and Monte Carlo radiosity applies stochastic techniques to sys-
tems of linear equations [Shi92]. Other examples include the work
of Szécsi et al. [SSK03], who evaluated single randomly-sampled
lobes of multi-lobe BSDFs. Hofmann et al. [HHCM21] replaced
trilinear interpolation of volume densities with random sampling
of a single voxel value. Enderton et al. [ESSL10] and Wyman and
McGuire [WM17] avoid the z-sorting step in conventional trans-
parency algorithms through stochastic sampling. Another notable
example of this idea is many-light sampling algorithms that sample
a limited number of light sources [SWZ96, EK18]. All of these ap-
proaches increase error due to their randomness, yet they improve
performance by skipping relatively unimportant work.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/sr.20231141 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0001-7707-2761
https://orcid.org/0000-0002-0566-8291
https://doi.org/10.2312/sr.20231141

M. Fajardo & M. Pharr / Fast Procedural Noise By Monte Carlo Sampling

In this paper we apply stochastic evaluation to procedural
noise functions [Per85, Lew89, Wor96, LLDD09]. See Lagae et
al. [LLC∗10] for a comprehensive survey of research on noise
functions. Important recent advances include further improvements
to Gabor noise [TNVT19], texton noise [GLM17], and Heitz and
Neyret’s high-performance by-example noise [HN18]. All proce-
dural noise functions that we are aware of are evaluated determin-
istically, with the exception of the work of Galerne et al., who
randomly subsampled sums of many terms of by-example Gabor
noise [GLLD12]. We apply stochastic evaluation to both sums of
noise as well as to the underlying noise functions, consider a wider
variety of noise functions, and show application of stochastic eval-
uation to both surface and volumetric path tracing.

2.1. A Toolbox of Stochastic Evaluation Techniques

Our algorithms are based on the basic application of a few princi-
ples from probability theory that we summarize for reference. See
for example Ross [Ros19] or Pharr et al. [PJH23b] for background.

Discrete sums: A sum of values fi in a discrete set A, S = ∑
|A|
i=1 fi

has the unbiased single-sample estimator

〈S〉=
f j

p j
, (1)

with j sampled according to discrete probabilities p j. Variance is
reduced when p j approximates f j/S.

Linear interpolation: From Equation 1, it follows that linear in-
terpolation over the interval [0,1], lerp(f0, f1, t) = (1− t) f0 + t f1
has the unbiased single-sample estimator

〈lerp〉=

{
f0, if ξ > t
f1 otherwise,

(2)

where ξ is a uniform random value in [0,1); note that only one of
f0 and f1 need be evaluated.

Bilinear interpolation: In two dimensions, bilinear interpolation
over [0,1]2 is expressed by nested linear interpolations:

bilerp(f00, f10, f01, f11,x,y) =

lerp(lerp(f00, f10,x) , lerp(f10, f11,x) ,y)

Applying Equation 2 gives an estimator that avoids evaluating the
fi four times, and which uses two independent random samples:

〈bilerp〉=

f00, if ξ1 > x and ξ2 > y
f01, if ξ1 > x and ξ2 ≤ y
f10, if ξ1 ≤ x and ξ2 > y
f11, if ξ1 ≤ x and ξ2 ≤ y

(3)

Conveniently, a single random sample ξ can be reused to sample
all dimensions by remapping it to [0,1) after each sampling deci-
sion [SWZ96], which is useful when ξ is well-distributed (e.g. with
a blue noise spectrum [GF16] or with low discrepancy), allowing
all dimensions to benefit from its distribution:

〈bilerp〉=

f00, if ξ > x and (ξ− x)/(1− x)> y
f01, if ξ > x and (ξ− x)/(1− x)≤ y
f10, if ξ≤ x and ξ/x > y
f11, if ξ≤ x and ξ/x≤ y

(4)

Arbitrary d-dimensional interpolation is approached similarly by
repeated nesting of linear interpolations. The number of evaluations
of fi is thus reduced by a factor of 2d .

Russian roulette: Given a function f̂ that approximates another
function f , an unbiased estimator of f is given by:

〈 f 〉=

{
f̂ (x) ξ < p
f (x)−p f̂ (x)

1−p otherwise,
(5)

where p is the probability of evaluating the approximation.

Transformation of noise values: Values from noise functions are
often transformed in shaders by additional functions. However, ap-
plying a convex function g to a random variable X does not preserve
expectation: 〈g(X)〉 6= g(〈X〉). This is a consequence of Jensen’s
inequality; its significance was first brought to the attention of the
graphics community by Raab et al. [RSK08] for transmittance es-
timation. In the context of our work, this implies that any stochas-
tic values that have a non-affine effect on the function being inte-
grated will introduce bias, though if g is well-approximated by a
Taylor expansion, an efficient unbiased estimator of g(X) can be
derived [Boo07, MBGJ22].

3. Perlin Noise

The most popular form of procedural noise was introduced to
graphics by Perlin [Per85]. Perlin noise is a smooth d-dimensional
interpolation of pseudo-random, isotropic gradient values gi at the
integer lattice points surrounding the shading point p. The gradi-
ents are calculated via repeated permutation and hashing of values
stored in a small table. Following Perlin’s improved noise reference
implementation [Per02], two-dimensional noise has the form

Perlin(p) = bilerp(g00,g10,g01,g11, fade({px}), fade({py})) (6)

where fade(x) is a smooth quintic curve, and {x} is the fractional
part of x. The implementation of this analytical function requires
the evaluation of gradients at 2d lattice corners, as well as 2d − 1
linear interpolations.

One way to derive a stochastic form of Perlin noise is to apply
Equation 4, which gives an algorithm with no linear interpolations
and a single gradient evaluation, using a single random number ξ;
see Algorithm 1. The same mechanism can be applied to 3D and
4D noise, where the number of gradient evaluations is reduced by
8× and 16× respectively, while still using a single ξ.

The top row of Figure 1 compares stochastic evaluation of Perlin
noise to a reference image; even at low sampling rates the estima-
tor converges quickly. Note that variance is lower close to lattice
points since the contribution of a single gradient that is likely to be
sampled dominates the final result there.

Simplex Noise. Perlin [Per01] later introduced a lower-cost pro-
cedural noise that replaces the regular lattice with a more isotropic
simplicial one. This can be stochastically sampled using the same
approach; its 2d−1 linear interpolations and d+1 gradients would
then reduce to no linear interpolations and a single gradient.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

132

M. Fajardo & M. Pharr / Fast Procedural Noise By Monte Carlo Sampling

Pe
rl

in
Sp

ar
se

co
nv

.
G

ab
or

M
ul

ti-
oc

ta
ve

Vo
ro

no
i

1 spp 4 spp 16 spp 64 spp Reference

Figure 1: 2D slices of various 3D noise functions, stochastically
evaluated with increasing samples per pixel (spp). At even moder-
ate sampling rates, results are very close to the reference images.

4. Sparse Convolution Noise

Lewis introduced sparse convolution noise to avoid the structured
artifacts in lattice-based interpolation [Lew89]. A kernel function
k of finite support (e.g., a quintic) is convolved with a set of point
impulses of random weights wi distributed at random 3D locations
pi. Lewis provided an efficient algorithm to procedurally generate
these pi and wi by associating them with a grid of unit cell size
equal to the kernel radius where wi and pi inside each cell are gen-
erated on the fly using a random number generator that is seeded
based on the cell’s coordinates. Given this grid, only the block of 27
cells surrounding the point of interest p has to be considered. The
density of points n relative to the kernel radius controls the quality
of the noise. (Typically n≤ 10.) The noise function is then

SparseConv(p,n) =
1
n

27

∑
c=1

n

∑
i=1

wi,c k(|p− pi,c|), (7)

where pi,c is the ith point in the cth cell.

Using Equation 1, we can uniformly sample either of the sums,
giving respective reductions of n× and 27× in computation, or we
can sample a single term from both sums, giving a savings of 27n×.

ALGORITHM 1: Stochastic 2D Perlin Noise
input: position (x,y) and a uniform random ξ ∈ [0,1)
x′,y′← x−bxc,y−byc;
fx, fy← fade(x′), fade(y′);
if ξ > fx then

ξ← (ξ− fx)/(1− fx);
if ξ > fy then

return grad(bxc,byc,x′,y′);
else

return grad(bxc,byc+1,x′,y′−1);
end

else
ξ← ξ/ fx;
if ξ > fy then

return grad(bxc+1,byc,x′−1,y′);
else

return grad(bxc+1,byc+1,x′−1,y′−1);
end

end

(a) Random wi (b) Stratified wi (c) Constant wi

Figure 2: Our modified sparse convolution algorithm (b) retains
the overall visual properties of Lewis’ original algorithm (a).

Of course, the more aggressively the sums are sampled, the greater
the variance.

Importance sampling. We can design a better estimator by sam-
pling points according to their weights. However, because the
weights are computed on demand, all random weights in a cell must
be generated to sample from them. The pi are random enough al-
ready, so a more efficient approach is to slightly modify Lewis’
original algorithm to use deterministic, implicitly sorted weights
wi = (i+ 1/2)/n, giving a discrete PDF p(i) = wi/2 that can be im-
portance sampled directly with i = dn

√
ξe. The estimator is then

〈SparseConv(p,n)〉= 1
2

27

∑
c=1

k(|p− pi,c|). (8)

See the second row of Figure 1 for images of this estimator. These
stratified weights seem to also improve the noise signal compared
to Lewis’ original algorithm, as there is less sporadic clumping.
Our stratified wi sit somewhere between Lewis’ random wi and
Tavernier et al.’s constant wi [TNVT19] in terms of clumpiness as
shown in Figure 2.

Gabor Noise. Lagae et al. [LLDD09] introduced a sparse con-
volution noise with a more complex kernel around each point that
allows anisotropy and better control of frequency content, and nc
Poisson-distributed points per cell with parameter λ. We use strat-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

133

M. Fajardo & M. Pharr / Fast Procedural Noise By Monte Carlo Sampling

ified weights wi,c = (i+ 1/2)/nc and sample a single term of each
inner sum using i = dnc

√
ξe. See Figure 1 for images.

5. Multi-octave Noise

Perlin also showed that summing multiple octaves of a noise func-
tion, each with increasing frequency but lower contribution, leads
to fractal patterns similar in appearance to fractional Brownian mo-
tion (fBm) [Per85]. For n octaves and lacunarity 1/w, where for ease
of notation we use w = 1/lacunarity,

Fractal(p,n,w) =
n

∑
i=1

wi−1 Noise
(p

wi−1

)
. (9)

Applying Equation 1 makes it possible to compute an estimate at
the cost of a single octave, regardless of the number of octaves
requested. Thus, n− 1 evaluations of the underlying noise func-
tion are saved. Furthermore, the noise function used may itself be
stochastic.

Importance sampling. The weights wi−1 are a truncated geomet-
ric series, so the probability for sampling each term proportional to
its weight is

pi = wi−1 1−w
1−wn+1 . (10)

The corresponding cumulative distribution can be inverted, allow-
ing for direct importance sampling with a uniform sample ξ:

i =

⌊
log(1+ξ(wn+1−1))

logw

⌋
. (11)

However, even with an optimized logarithm function, we found that
it is more efficient to sample by linearly searching the CDF, incre-
mentally computing its values. Factors of wi−1 and the pi cancel in
the final estimator, leading to Algorithm 2. See the fourth row of
Figure 1 for images.

ALGORITHM 2: Stochastic 2D Multi-Octave Fractal Noise
input: position (x,y), inverse lacunarity w, uniform ξ ∈ [0,1)
p← 1−w

1−wn+1 ;

while ξ > p do
ξ← ξ− p;
p← p×w;
x,y← x/w,y/w;

end

return Noise(x,y)× 1−wn+1

1−w ;

6. Voronoi Noise

Worley introduced the concept of cellular textures, some-
times called Voronoi textures [Wor96]. We follow the smooth
Voronoi implementation by Quilez that computes the distance to
procedurally-generated points in a 3×3×3 grid around the evalu-
ation point [Qui10]:

SmoothVoronoi(p) =− 1
32

log

(
1

∑
x=−1

1

∑
y=−1

1

∑
z=−1

e−32|p−px,y,z|
)
,

(12)

where px,y,z is the random point in a cell. Applying Equation 1 to
sample a single summand gives a biased estimator, since the loga-
rithm is nonlinear. Debiasing with a Taylor expansion is not effec-
tive since the logarithm is not well-approximated by a polynomial.

In this case, the estimator in Equation 5 is effective; as an ap-
proximation to the noise function, we randomly select a single
adjacent cell (x,y,z), compute the point’s distance to the cell’s
sample point, and clamp it to the average of the noise function—
approximately 0.5. Likely-accurate distance estimates are kept,
while likely-inaccurate ones are set to the average. We find slightly
lower error by randomly selecting px,y,z from just the 2×2×2 cube
of cells closest to p; see Algorithm 3. Images of the estimator are
shown in Figure 1.

ALGORITHM 3: Stochastic 3D Voronoi Noise
input: position p, probability q, uniform random ξ ∈ [0,1)
x,y, z← bpxc,bpyc,bpzc;
if px−bpxc < 0.5 then x← x−1;
if py−bpyc < 0.5 then y← y−1;
if pz−bpzc < 0.5 then z← z−1;
bits← b8×ξc;
ξ← 8×ξ−bits;
x,y, z← x+(bits&1),y+(bits� 1)&1, z+(bits� 2)&1;
approx← min(0.5,‖p− px,y,z‖);
if ξ < q then

return approx;
else

n← SmoothVoronoi(p);
return (n−q×approx)/(1−q);

end

7. Results

We have implemented our stochastic noise evaluation algorithms
in pbrt-v4 [PJH23a]. Random samples are generated using pbrt’s
sampling classes, allowing both stratification and blue noise dither-
ing [GF16]. Our implementation, evaluation code, and test scenes
are all included in the paper’s supplemental material and will be
made publicly available.

All measurements were taken using an AMD 3970X CPU and an
NVIDIA RTX 4090 GPU. All images are rendered at 1080p reso-
lution. The multi-octave fractal noise functions summed 10 octaves
of noise with lacunarity = 2, we set n = 10 for sparse convolution
noise and q = 0.875 for stochastic Voronoi noise. Neither the refer-
ence noise functions nor our stochastic variants have seen low-level
optimization (e.g., explicit SIMD instructions on CPU); we expect
that both would benefit from such optimizations roughly equally.

Table 1 lists the runtime required to evaluate various noise func-
tions, measured by averaging the time for one billion evaluations.
All stochastic noise algorithms are faster than the deterministic
ones, with the greatest performance benefits for the most expensive
noise functions.

7.1. Contemporary Bathroom Scene

We evaluated stochastic noise for texturing of surface albedos using
the Contemporary Bathroom scene from the pbrt-v4 scenes distri-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

134

M. Fajardo & M. Pharr / Fast Procedural Noise By Monte Carlo Sampling

Deterministic Stoch. Speedup
Perlin 7.36 ns 3.84 ns 1.92×
Perlin (fractal) 71.85 ns 5.85 ns 12.28×
Sparse convolution 449.00 ns 41.21 ns 10.89×
Sparse conv. (fractal) 3311.53 ns 39.00 ns 84.90×
Gabor (Poisson) 814.26 ns 135.72 ns 6.00×
Voronoi 28.56 ns 7.02 ns 4.07×

Table 1: Runtime for a single evaluation of each noise function in
3D on an NVIDIA RTX 4090 GPU.

Deterministic Stochastic Reference

Det. Stoch.

32 spp

Det. Stoch.

16k spp

Figure 3: The Contemporary Bathroom scene, rendered with path
tracing. At 32 samples per pixel (left and middle slices), the error
due to stochastic evaluation of noise functions is not visually ev-
ident, since the error from sampling the indirect lighting is much
higher. At 16k spp, which is necessary to sample the indirect light-
ing well, there is no visual harm from stochastic procedural noise.

bution, modified to use noise heavily, with multi-octave sparse con-
volution noise for the wood grain pattern on the cabinets, Gabor
noise adding mottling to the walls, and multi-octave Perlin noise
adding variation to the sinks’ base layer; see Figure 3. Even at low
sampling rates, error from using stochastic noise functions is not
evident. Numerical measurement of error confirms these visual re-
sults; see Table 2, which includes error measured with the FLIP
metric [ANSA21], mean relative squared error (MRSE) and run-
time. Stochastic evaluation only slightly increases error, with a sub-
stantial performance benefit.

7.2. Cloud Scene

We also evaluated stochastic noise functions for volumetric render-
ing, using two versions of a procedurally-defined cloud. The first,
shown in Figure 4, defines the cloud’s density using 10 octaves
of sparse convolution noise, squaring the noise value, and further

Noise FLIP MRSE CPU GPU
Deterministic 0.396 2.640 41.20s 1.51s
Stochastic 0.400 2.663 17.40s 1.16s

Table 2: Error and rendering time for the Contemporary Bathroom
scene with 32 spp. Stochastic evaluation of noise functions gives a
2.37× speedup on the CPU and a 1.30× speedup on the GPU.

Deterministic Stochastic Reference

Det. Stoch.

32 spp

Det. Stoch.

1024 spp

Figure 4: Procedural cloud model defined using 10 octaves of
sparse convolution noise. This image is rendered using volumet-
ric path tracing and compares traditional sparse convolution noise
to our more efficient stochastic estimator of it. GPU rendering is
up to 5.9× faster with our estimator, without an increase in error.

modulating the density based on height and proximity to a number
of points that define the cloud’s general shape. Because the square
of a random variable is given by the product of two independent
realizations of it, using a stochastic noise function requires evalu-
ating it twice with independent [0,1] samples, doubling the cost.
(This can also be seen as a simple example of debiasing.) In or-
der to evaluate our approach in the context of less expensive noise
functions, a second version of this scene instead uses 10 octaves of
Perlin noise. (Images are included in the supplemental material.)

Integrator. The underlying volumetric path tracer is based on delta
tracking with null scattering [KHLN17, MGJ19]. The cloud’s den-
sity is used to scale the underlying absorption and scattering coef-
ficients, and because those coefficients are factors of terms of the
volumetric light transport equation, using stochastic (and even neg-
ative [SGM∗17]) values for them does not introduce bias. For trans-
mittance algorithms like ratio tracking [NSJ14] and power-series
estimators [GMH∗19], those coefficients are used as multiplicative
factors and stochastic coefficients also do not introduce bias. (This
is unfortunately not so for Kettunen et al.’s estimator [KdPN21].)

Majorants. However, delta tracking requires a majorant for sam-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

135

M. Fajardo & M. Pharr / Fast Procedural Noise By Monte Carlo Sampling

(a) Deterministic (b) Stochastic (Equation 8)

Figure 5: Plastic sphere bump-mapped with sparse convolution
noise. Stochastic evaluation biases the distribution of normals.

pling the volume; if the majorant does not bound the true maximum
density, variance may be high [KHLN17]. Because our stochas-
tic noise estimators span a wider range of values than the true
noise functions, they require a larger majorant. In turn, smaller
steps are taken in the volume, requiring more noise function eval-
uations. Nevertheless, we have found that even with majorants set
to bound the noise function, stochastic noise improves rendering
performance by as much as 3.8×; see the top half of Table 3.

Non-bounding majorants can further improve performance if
they are chosen with care. We found optimized majorants for each
noise function variant via a parameter sweep, choosing the small-
est majorant that left MRSE unchanged. Interestingly, we found
that for the deterministic noise functions, the majorants could only
be reduced by 65–80% before variance increased rapidly, but ma-
jorants could be much lower for the stochastic noise functions—as
low as 40% of the true majorants. Consequently, there was a greater
performance benefit for the stochastic noise functions—as high as
6.14× for sparse convolution noise; see the bottom half of Table 3.

8. Discussion and Future Work

We have shown that replacing procedural noise functions with
stochastic estimators improves the efficiency of Monte Carlo path
tracing, where the error from sampling indirect lighting is much
higher than that from our estimators. Beyond the specific noise
functions examined here, the underlying techniques are directly ap-
plicable to other functions such as texton noise [GLM17], phasor
noise [TEZ∗19], and high-performance noise by-example [HN18].

If a stochastic noise function does not make an affine contribu-
tion to the Monte Carlo estimator in which it is being used, it will
introduce bias in the final result unless a debiasing technique is
used [MBGJ22]. This limits the settings where they can be used—
notably, they cannot be used to modulate surface roughness or for
bump or displacement mapping, as seen in Figure 5. However, a
shader compiler [GSKC10] could transparently switch to stochas-
tic evaluation when appropiate on a case by case basis. Debiasing
Monte Carlo estimators and providing bounds on the Jensen gap is
an active area of research, including in machine learning, physics
and finance.

We have not evaluated our stochastic estimators with post-
rendering denoising algorithms. While their error is minimal, it is

nevertheless present in the albedo images that are often taken as
input to denoisers, which generally assume an accurate albedo.

There are ample opportunities to develop efficient stochastic
variations of other functions used in rendering. For example, tex-
tures are often organized in graphs [Coo84] that could be traversed
stochastically, greatly reducing the number of textures evaluated.
Stochastic evaluation may also allow the development of new noise
functions where no closed-form representation is available.

Acknowledgements

Thanks to the anonymous reviewers for their constructive criticism,
and to Iliyan Georgiev and Chris Wyman for feedback. Thanks also
to Aaron Lefohn and NVIDIA for supporting this research, and to
Autodesk for providing software licenses.

References
[ANSA21] ANDERSSON P., NILSSON J., SHIRLEY P., AKENINE-

MÖLLER T.: Visualizing the Error in Rendered High Dynamic Range
Images. In Eurographics Short Papers (May 2021). doi:10.2312/
egs.20211015. 5

[BAC∗18] BURLEY B., ADLER D., CHIANG M. J.-Y., DRISKILL H.,
HABEL R., KELLY P., KUTZ P., LI Y. K., TEECE D.: The design and
evolution of Disney’s Hyperion renderer. ACM Transactions on Graphics
37, 3 (July 2018), 33:1–33:22. doi:10/gfjm8w. 1

[Boo07] BOOTH T. E.: Unbiased Monte Carlo estimation of the recipro-
cal of an integral. Nuclear Science and Engineering 156, 3 (July 2007),
403–407. doi:10.13182/NSE07-A2707. 2

[Bur20] BURGESS J.: RTX on—The NVIDIA Turing GPU. IEEE Micro
40, 2 (2020), 36–44. doi:10.1109/MM.2020.2971677. 1

[CFS∗18] CHRISTENSEN P., FONG J., SHADE J., WOOTEN W., SCHU-
BERT B., KENSLER A., FRIEDMAN S., KILPATRICK C., RAMSHAW
C., BANNISTER M., RAYNER B., BROUILLAT J., LIANI M.: Ren-
derMan: An advanced path-tracing architecture for movie rendering.
ACM Transactions on Graphics 37, 3 (Aug. 2018), 30:1–30:21. doi:
10/gfznbs. 1

[Coo84] COOK R. L.: Shade trees. Computer Graphics (Proceedings of
SIGGRAPH) 18, 3 (1984), 223–231. 6

[Coo86] COOK R. L.: Stochastic sampling in computer graphics. ACM
Transactions on Graphics 5, 1 (Jan. 1986). doi:10/cqwhcc. 1

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed ray trac-
ing. Computer Graphics (Proceedings of SIGGRAPH) 18, 3 (July 1984),
137–145. doi:10.1145/964965.808590. 1

[EK18] ESTEVEZ A. C., KULLA C.: Importance sampling of many
lights with adaptive tree splitting. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques 1, 2 (Aug. 2018), 25:1–25:17.
doi:10/ggh89v. 1

[ESSL10] ENDERTON E., SINTORN E., SHIRLEY P., LUEBKE D.:
Stochastic transparency. In Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games (2010). 1

[FL50] FORSYTHE G. E., LEIBLER R. A.: Matrix inversion by a Monte
Carlo method. Mathematics of Computation 4, 31 (1950), 127–129. 1

[GF16] GEORGIEV I., FAJARDO M.: Blue-noise dithered sampling. In
ACM SIGGRAPH Talks (2016), ACM Press, pp. 35:1–35:1. doi:10/
gfznbx. 2, 4

[GIF∗18] GEORGIEV I., IZE T., FARNSWORTH M., MONTOYA-
VOZMEDIANO R., KING A., LOMMEL B. V., JIMENEZ A., ANSON
O., OGAKI S., JOHNSTON E., HERUBEL A., RUSSELL D., SERVANT
F., FAJARDO M.: Arnold: A brute-force production path tracer. ACM
Transactions on Graphics 37, 3 (Aug. 2018). doi:10/gfznb2. 1

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

136

https://doi.org/10.2312/egs.20211015
https://doi.org/10.2312/egs.20211015
https://doi.org/10/gfjm8w
https://doi.org/10.13182/NSE07-A2707
https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10/gfznbs
https://doi.org/10/gfznbs
https://doi.org/10/cqwhcc
https://doi.org/10.1145/964965.808590
https://doi.org/10/ggh89v
https://doi.org/10/gfznbx
https://doi.org/10/gfznbx
https://doi.org/10/gfznb2

M. Fajardo & M. Pharr / Fast Procedural Noise By Monte Carlo Sampling

Noise Majorant FLIP MRSE CPU Speedup GPU Speedup
Sparse conv., deterministic Strict 0.075 0.0281 1111.00s 49.15s
Sparse conv., stochastic Strict 0.075 0.0276 288.50s 3.85× 12.72s 3.86×
Perlin, deterministic Strict 0.082 0.0341 150.10s 4.35s
Perlin, stochastic Strict 0.082 0.0338 55.80s 2.69× 3.48s 1.25×
Sparse conv., deterministic Optimized 0.076 0.0290 720.10s 33.78s
Sparse conv., stochastic Optimized 0.075 0.0298 117.20s 6.14× 5.73s 5.90×
Perlin, deterministic Optimized 0.083 0.0345 126.90s 3.83s
Perlin, stochastic Optimized 0.082 0.0343 44.00s 2.88× 2.99s 1.28×

Table 3: Comparison of error and rendering time for the cloud scene in Figure 4. All images were rendered at 1080p resolution with 32 spp.

[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.:
Gabor noise by example. ACM Trans. Graph. 31, 4 (July 2012). doi:
10.1145/2185520.2185569. 2

[GLM17] GALERNE B., LECLAIRE A., MOISAN L.: Texton Noise.
Computer Graphics Forum (Jan. 2017). 2, 6

[GMH∗19] GEORGIEV I., MISSO Z., HACHISUKA T.,
NOWROUZEZAHRAI D., KŘIVÁNEK J., JAROSZ W.: Integral for-
mulations of volumetric transmittance. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 38, 6 (Nov. 2019), 154:1–154:17.
doi:10/dffn. 5

[GSKC10] GRITZ L., STEIN C., KULLA C., CONTY A.: Open Shading
Language. SIGGRAPH 2010 Talks, July 2010. 6

[HHCM21] HOFMANN N., HASSELGREN J., CLARBERG P.,
MUNKBERG J.: Interactive path tracing and reconstruction of
sparse volumes. Proc. ACM Comput. Graph. Interact. Tech. 4, 1 (Apr.
2021). doi:10.1145/3451256. 1

[HN18] HEITZ E., NEYRET F.: High-performance by-example noise
using a histogram-preserving blending operator. Proc. ACM Comput.
Graph. Interact. Tech. 1, 2 (Aug. 2018). doi:10.1145/3233304. 2,
6

[Kaj86] KAJIYA J. T.: The rendering equation. Computer Graph-
ics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143–150. doi:
10/cvf53j. 1

[KCSG18] KULLA C., CONTY A., STEIN C., GRITZ L.: Sony Pictures
Imageworks Arnold. ACM Transactions on Graphics 37, 3 (Aug. 2018),
29:1–29:18. doi:10/gfjkn7. 1

[KdPN21] KETTUNEN M., D’EON E., PANTALEONI J., NOVAK J.:
An unbiased ray-marching transmittance estimator. arXiv:2102.
10294. 5

[KHLN17] KUTZ P., HABEL R., LI Y. K., NOVÁK J.: Spectral and de-
composition tracking for rendering heterogeneous volumes. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017),
111:1–111:16. doi:10/gbxjxg. 5, 6

[Lew89] LEWIS J. P.: Algorithms for solid noise synthesis. Computer
Graphics (Proceedings of SIGGRAPH) 23, 3 (July 1989). 1, 2, 3

[LLC∗10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T., DRET-
TAKIS G., S.EBERT D., LEWIS J. P., PERLIN K., ZWICKER M.: A
survey of procedural noise functions. Computer Graphics Forum 29, 8
(2010), 2579–2600. 2

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRÉ P.: Pro-
cedural noise using sparse Gabor convolution. In ACM SIGGRAPH 2009
Papers (New York, NY, USA, 2009), SIGGRAPH ’09, Association for
Computing Machinery. doi:10.1145/1576246.1531360. 1, 2, 3

[MBGJ22] MISSO Z., BITTERLI B., GEORGIEV I., JAROSZ W.: Unbi-
ased and consistent rendering using biased estimators. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH) 41, 4 (July 2022), 48:1–
48:13. doi:10/gqjn66. 2, 6

[MGJ19] MILLER B., GEORGIEV I., JAROSZ W.: A null-scattering path
integral formulation of light transport. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 38, 4 (July 2019), 44:1–44:13. doi:10/
gf6rzb. 5

[NSJ14] NOVÁK J., SELLE A., JAROSZ W.: Residual ratio tracking
for estimating attenuation in participating media. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov. 2014), 179:1–
179:11. doi:10/f6r2nq. 5

[Per85] PERLIN K.: An image synthesizer. Computer Graphics (Pro-
ceedings of SIGGRAPH) 19, 3 (July 1985), 287–296. doi:10/
bbsdxj. 1, 2, 4

[Per01] PERLIN K.: Noise hardware. In Realtime Shading, ACM SIG-
GRAPH Courses. 2001. 2

[Per02] PERLIN K.: Improving noise. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 21, 3 (July 2002), 681–682. doi:10.
1145/566654.566636. 2

[PJH23a] PHARR M., JAKOB W., HUMPHREYS G.: pbrt-v4 rendering
system, 2023. URL: https://github.com/mmp/pbrt-v4. 4

[PJH23b] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation, 4th ed. MIT Press, Cam-
bridge, MA, 2023. 1, 2

[Qui10] QUILEZ I.: Smooth voronoi, 2010. URL: https://
iquilezles.org/articles/smoothvoronoi. 4

[Ros19] ROSS S. M.: A First Course in Probability, tenth ed. Pearson,
2019. 2

[RSK08] RAAB M., SEIBERT D., KELLER A.: Unbiased global illumi-
nation with participating media. In Monte Carlo and Quasi-Monte Carlo
Methods, Keller A., Heinrich S., Niederreiter H., (Eds.). Springer-Verlag,
2008, pp. 591–605. doi:10.1007/978-3-540-74496-2_35. 2

[SGM∗17] SZIRMAY-KALOS L., GEORGIEV I., MAGDICS M., MOL-
NÁR B., LÉGRÁDY D.: Unbiased estimators to render procedurally gen-
erated inhomogeneous participating media. Computer Graphics Forum
(Proceedings of Eurographics) 36, 2 (2017). 5

[Shi92] SHIRLEY P.: Time complexity of Monte Carlo radiosity. Com-
puters & Graphics 16, 1 (1992), 117–120. doi:10/bkkjq9. 1

[SSK03] SZÉCSI L., SZIRMAY-KALOS L., KELEMEN C.: Variance re-
duction for Russian-roulette. Journal of the World Society for Computer
Graphics (WSCG) 11, 1–3 (2003). 1

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte Carlo tech-
niques for direct lighting calculations. ACM Transactions on Graphics
15, 1 (Jan. 1996), 1–36. doi:10/ddgbgg. 1, 2

[TEZ∗19] TRICARD T., EFREMOV S., ZANNI C., NEYRET F.,
MARTÍNEZ J., LEFEBVRE S.: Procedural phasor noise. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH) 38, 4 (July 2019), 57:1–
57:13. doi:10/ggfgzm. 6

[TNVT19] TAVERNIER V., NEYRET F., VERGNE R., THOLLOT J.:
Making Gabor noise fast and normalized. Proceedings of Eurograph-
ics Short Papers (2019). doi:10.2312/egs.20191009. 2, 3

[WM17] WYMAN C., MCGUIRE M.: Hashed alpha testing. In Proceed-
ings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games (2017), pp. 7:1–7:9. 1

[Wor96] WORLEY S.: A cellular texture basis function. Annual Con-
ference Series (Proceedings of SIGGRAPH) (1996), 291–294. doi:
10.1145/237170.237267. 1, 2, 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

137

https://doi.org/10.1145/2185520.2185569
https://doi.org/10.1145/2185520.2185569
https://doi.org/10/dffn
https://doi.org/10.1145/3451256
https://doi.org/10.1145/3233304
https://doi.org/10/cvf53j
https://doi.org/10/cvf53j
https://doi.org/10/gfjkn7
http://arxiv.org/abs/2102.10294
http://arxiv.org/abs/2102.10294
https://doi.org/10/gbxjxg
https://doi.org/10.1145/1576246.1531360
https://doi.org/10/gqjn66
https://doi.org/10/gf6rzb
https://doi.org/10/gf6rzb
https://doi.org/10/f6r2nq
https://doi.org/10/bbsdxj
https://doi.org/10/bbsdxj
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
https://github.com/mmp/pbrt-v4
https://iquilezles.org/articles/smoothvoronoi
https://iquilezles.org/articles/smoothvoronoi
https://doi.org/10.1007/978-3-540-74496-2_35
https://doi.org/10/bkkjq9
https://doi.org/10/ddgbgg
https://doi.org/10/ggfgzm
https://doi.org/10.2312/egs.20191009
https://doi.org/10.1145/237170.237267
https://doi.org/10.1145/237170.237267

