
FloralSurf : Space-Filling Geodesic Ornaments

V. Albano1, F. A. Fanni2, A. Giachetti2 and F. Pellacini3

1Sapienza University of Rome
2University of Verona

3University of Modena and Reggio Emilia

Figure 1: Three examples of models decorated with our method. From left to right, a floral pattern is applied to the fertility model, an
abstract pattern on a tight prime knot, and a spiral pattern on a hoodie. All these models pose significant challenges to traditional texturing
techniques, either involving UV unwrapping or Euclidean space colonization with reprojection. Our method is instead able to handle them
correctly, without introducing discontinuities or deformations, and following the topology of the surface even in the folds of the models.

Abstract
We propose a method to generate floral patterns on manifolds without relying on parametrizations. Taking inspiration from
the literature on procedural space-filling vegetation, these patterns are made of non-intersecting ornaments that are grown on
the surface by repeatedly adding different types of decorative elements, until the whole surface is covered. Each decorative
element is defined by a set of geodesic Bézier splines and a set of growth points from which to continue growing the ornaments.
Ornaments are grown in a greedy fashion, one decorative element at a time. At each step, we analyze a set of candidates, and
retain the one that maximizes surface coverage, while ensuring that it does not intersect other ornaments. All operations in our
method are performed in the intrinsic metric of the surface, thus ensuring that the derived decorations have good coverage,
with neither distortions nor discontinuities, and can be grown on complex surfaces.
In our method, users control the decorations by selecting the size and shape of the decorative elements and the position of the
growth points. We demonstrate decorations that vary in the length of the ornaments’ lines, and the number, scale and orientation
of the placed decorations. We show that these patterns mimic closely the design of hand-drawn objects. Our algorithm supports
any manifold surface represented as triangle meshes. In particular, we demonstrate patterns generated on surfaces with high
genus, with and without borders and holes, and that can include a mixture of thin and large features.

CCS Concepts
• Computing methodologies → Graphics systems and interfaces; Shape modeling;

1. Introduction

Procedural vector patterns are used to decorate vector drawings
in applications such as Adobe Illustrator [Ado21], where they of-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

Eurographics Symposium on Rendering (2023)
T. Ritschel and A. Weidlich (Editors)

DOI: 10.2312/sr.20231127 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/sr.20231127

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

Figure 2: A comparison of tracing ornaments on surfaces and ap-
plying them using parameterizations. We created a texture using
our algorithm on a square and then convert it to a bitmap texture,
which was then applied to the model, parameterized with [SC17]
(center) and [Ble23] (right). We highlight in red some of the dis-
continuities and in purple the most evident distortions. We then ran
our algorithm directly on the model with the same pattern. To keep
the comparison fair and have a similar visualization, we render our
results after rasterizing the curves into a texture (left).

ten work as “vector textures” to fill large shapes in the drawings.
Different algorithms are used to generate a variety of patterns:
from simple tiling to stochastic patterns, from example-driven ap-
proaches [ŠBM∗10, GJB∗20, GBLM16, TWY∗20] to space-filling
decorations, such as tangles [SP16] and floral ornaments [WZS98,
GALF17]. These vector patterns can be used to decorate 3D sur-
faces. The most common way to do so is to rasterize the pat-
tern as a bitmap texture and then project it onto the surface via a
parametrization. The distortions and seams that parametrizations
necessarily exhibit on complex surfaces may be reasonable for
some patterns, but become problematic for patterns that have a clear
structure [NPP21]. Recent works have begun exploring the idea of
generating structured procedural patterns directly on objects’ sur-
faces.

In this work, we focus on floral ornaments, which are patterns
composed of smooth curves that split like tree branches and fill
the space without overlapping each other, accompanied by small
decorations such as leaves and flowers. In the real world, floral or-
naments are commonly used to decorate painted ceramics, etched
metals and carved woods. When applying 2D floral ornaments to
surfaces via parametrizations, the resulting patterns exhibit distor-
tions and discontinuities of the ornaments lines and changes to
the spatial distribution and orientation of the individual decora-
tions, as shown in Figure 2. These artifacts are inherently present
when using parametrization-based approaches and simple 2D Eu-
clidean metrics in the texture space. For example, using overlap-
ping charts with one local chart for each ornament would still in-
troduce deformation on the larger charts, which could even amount
to global parameterizations for large ornaments. Using more elab-
orate techniques than just Euclidean metrics, we could use a low-
distortion parametrization presenting several cuts and employ jump

maps to account for patch transitions. However, this would increase
the computational complexity and still be an approximation of the
geodesic metric. To precisely trace geodesics in the texture space
we could employ similar techniques to [PKCH18] but it would be
more complex than computing geodesic directly over the surface
with no major benefits.

Our method synthesizes procedural floral ornaments directly
on surfaces, without relying on a parametrization and is inspired
by the space-colonization methods used in procedural vegetation
[RLP07, RFL∗05], that we port to the manifold setting. We gen-
erate geodesic floral ornaments by combining simple decorations,
composed of geodesic Bézier curves, placed greedily on the surface
until the surface is fully covered while ensuring that the added dec-
orations never overlap the already-placed ornaments. Users control
the final patterns by choosing the shape and size of the decorative
elements and by defining on them a set of growth points from which
the ornament can further split and grow. We guide the growth with a
metric that attempts to maximize surface coverage while adopting a
greedy algorithm to avoid the computational complexity of optimal
packing problems, which are known to be NP-hard. In performing
the growth, all operations are computed efficiently in the geodesic
metric including tracing splines, computing distances, verifying in-
tersections, etc.

We tested our method by generating detailed patterns on a vari-
ety of surfaces represented as triangle meshes. The resulting pat-
terns vary in the length of the ornaments’ lines, and the number,
scale, and orientation of the decorations, and can closely match the
design of hand-drawn patterns (see Figure 3). Our algorithm can
grow patterns on surfaces with high genus, with and without bor-
ders and holes, and that can include a mixture of thin and large
features.

Figure 3: The hand-drawn vase on the left presents several contin-
uous branches with leaves. We recreated a visually similar pattern
with our method.

2. Related work

Our method takes inspiration from ideas from different fields like
2D vector graphics synthesis, curve drawing on manifolds, space-
filling pattern generation, and decoration packing.

Many methods have been proposed to generate vector graphics
on the 2D Euclidean plane that target different pattern structures

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

88

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

and with different user controls. The interested reader should con-
sult the survey [GAM∗21].

A first class of algorithms generates patterns by examples.
[MM10] presents a method for taking curves sketched by a user
and automatically generating new curves that resemble the input
shapes. [TWY∗20] propose an example-based method to synthe-
size continuous curve patterns from exemplars. [LBW∗14] pro-
pose a data-driven drawing system that allows designers to cre-
ate highly structured patterns simply by choosing basic element
styles and specifying an approximate overall path. Differently from
these methods, we provide direct control to the user by specifying
the decorative elements. [TWZ22] generate element-based patterns
by explicit clustering to model larger element collections. These
example-based methods cannot be directly extended to the mani-
fold setting since they fundamentally assume that elements neigh-
borhoods are stationary, which is not the case on manifolds.

Pattern generators differ in the manner in which patterns are con-
trolled. [LHVT17] support full user control by defining patterns
with a domain-specific language. [RSP22] estimates the parame-
ters of procedural programs for vector patterns by optimization.
[SKAM17] use vector fields to guide the placement of element-
based decorations, creating streamlines, and deforming elements
according to them. [GBLM16] propose a method for encoding dis-
tinct and valid pattern variations, allowing users to directly navigate
the variation space.

Growing structures like vegetation patterns have often been gen-
erated using grammars and L-systems [PL12, STN∗16], with op-
timization procedures used to estimate the program parameters
[ŠBM∗10, GJB∗20]. The algorithmic generation of floral patterns
has been introduced by [WZS98]. The authors observe that the gen-
eration of ornament differs from the growth of real plants in several
significant ways and that the applicability of open L-systems in this
context is limited. [GALF17] extend the previous approach by sup-
porting global design constraints such as symmetry explicitly under
artist control. Both these methods are limited to 2D ornaments since
they assume that the local metric does not change and that the do-
main topology is an infinite plane when defining pattern repetitions,
but neither of these assumptions is true in the manifold setting.

For this reason, we designed a space-filling algorithm inspired
by the space colonization methods used for vegetation in [RLP07,
RFL∗05]. In these works, the iterative addition, in the Euclidean
setting, of non-overlapping elements forms the final structure. In
our approach, we add decorative elements directly on the manifold,
while avoiding the overlap with other ornaments on the surface.

In our approach, decorations are specified as geodesic Bézier
curves defined and traced directly on the surface. These curves
have only recently become practical, thanks to the robust and ef-
ficient methods proposed in [SC20, MNPP22]. We also exploit the
possibility of combining geodesic curves with the surface boolean
operations presented in [RNP∗22].

Extending the problem of creating a pattern to texture genera-
tion, many works have proposed methods to synthesize textures
by example, even directly on surfaces. As noted in [WLKT09,
AYD∗18], most of these methods characterize the textures as lo-
cal, i.e., each texture pixel depends only on the neighboring pix-

els, and as stationary, i.e., different regions of the texture (of
some appropriate size) remain similar to each other. Early ap-
proaches, such as [EL99, WL00, Ash01, TZL∗02], synthesize tex-
tures pixel-by-pixel by assigning to each output pixel the values
of the input one with the most similar neighborhood. The quality
of these methods is improved by synthesizing textures patch-by-
patch [PFH00, LLX∗01, EF01, KSE∗03]. Many recent texture syn-
thesis methods rely on Convolutional Neural Networks (CNNs).
[GEB15] use the features of a pre-trained CNN to synthesize tex-
tures, while [Sne17] improves on texture resolution using a multi-
scale approach. [TLH19] create irregular point sampling on a plane,
and use it to create textures and terrains.

Texture synthesis methods may be also formulated on mani-
folds by using vector fields to specify texture orientation [PFH00,
KCPS13]. The texture can then be generated by using scat-
tered surface points to implement neighbor-based searches [WL01,
Tur01], or possibly more sophisticated approaches [YHBZ01,
ZG03, LH06]. [SGW06] use exponential maps to place decals;
while this avoids global parameterizations, the exponential maps
present discontinuities around small handles and holes. [PS06] de-
scribe a method for maze generation that can be applied on 3D
surfaces using Euclidean distances to approximate the geodesic
metric. In [DLL∗15], an additional optimization step is employed
to make the pattern structurally sound for fabrication. Similar
structural goals are sought in [ZCT16, CXX∗16], in which pat-
terns are formed by packing small decorative elements and curves.
[ROM∗15, HWYZ20] are also element-based approaches to syn-
thesize structures or autocomplete a partial texture. In [CXX∗16],
a local parameterization is used to perform the computations, and
overlaps are also allowed in the final results. On the other hand,
[ZCT16] avoid overlaps by placing scaled-down versions of the
decorations and then iteratively scaling them up again, but approx-
imates the geodesic metric with the tangent plane 2D Euclidean
metric.

Compared to our work, most methods create textures with lo-
cality and stationary characteristics, meant to be tiled over the sur-
face, with only some methods able to encode non-local features.
The results suffer from distortions and discontinuities introduced
by parametrizations. Lastly, the methods that rely on Euclidean dis-
tances can be unreliable on surfaces with high-frequency details.
These limitations are the reason why we instead exploit geodesic
operators to create decorative patterns directly on the surface in-
stead of generating a texture and mapping it to the surface.

3. Space-Filling Geodesic Ornaments

In this section, we first give a formal definition of the terminology
used in this paper. We then present the details of the algorithm and
discuss the choices behind the design decisions.

3.1. Overview and definitions

The proposed algorithm combines ideas from space-filling tech-
niques and element-based texturing while being formulated directly
in the geodesic metric. Just like in space-filling methods, and in-
spired by procedural 2D ornaments and works on procedural vege-
tation, we greedily cover the whole domain, in our case a manifold

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

89

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

Ornament Decoration Tangent plane Alignment Mapping Tracing

Growth point Control point Mapped control point

Figure 4: A single step in the growth of an ornament. On the left the current state of the algorithm, with an already-placed ornament and
two growth points inserted in the queue. One of them is selected and a decoration with a compatible tag is randomly chosen. The decoration
is then aligned using the tangent plane of the current growth point and its associated growth direction. The control points of the Bézier
comprising the decorations are mapped on the surface using straightest geodesics. Lastly, geodesic Bézier curves are traced on the surface.

surface, by expanding a collection of ornaments, each of which de-
fined by decorative elements composed of sets of geodesic Bézier
splines (see Fig. 4). In the following, we give a formal definition of
these concepts and introduce the pattern generation framework.

A decorative element is a simple drawing composed of a set of
geodesic Bézier splines defined on a 2D reference frame. These
decorations can be drawn on arbitrary manifolds by mapping the
2D control points to points on the surface, and tracing geodesic
splines [MNPP22]. Decorative elements are associated with param-
eters determining material properties, size, and orientation.

On each decoration, we specify one or more growth points that
indicate locations from which the ornament can further grow or
split. Each growth point is associated with a tag, that selects the
class of decorative elements that can grow from there, e.g. leaves
or branches. At each growth point, we also associate a local frame
that specifies the desired growth direction, for example aligned with
the local spline tangent for continuous ornaments or angled on the
side for branching structures.

An ornament on a 2D manifold is a continuous pattern generated
by the iterative addition of decorative elements. It is logically a tree
structure rooted by a starting decoration, with bifurcations corre-
sponding to decorative elements with multiple growth points and
leaves corresponding to elements without growth points or where
the growth is stopped to avoid overlap.

3.2. Mapping decorative elements on surface meshes

To trace a decorative element on the surface, we map its 2D con-
trol points to points on the surface and trace geodesic splines on
the manifold (see Fig. 4). We map the control points by consider-
ing a tangent frame whose origin coincides with the current growth
point. We align such frame with respect to either the frame spec-
ified by the growth point or a global direction field. The former
alignment replicated the continuous curves or branching structures
defined in the decorative elements, while the latter gives global con-
trol over the direction of the ornaments. We map points between

the 2D reference frame of the decorative element to the rotated tan-
gent frame, and then trace straightest geodesics in the direction and
length specified by the point location in the tangent frame origin.
We considered also using a local parametrization, such as an expo-
nential map, but found hard it to integrate it into our method since it
is discontinuous around small handles in the mesh and significantly
slower than tracing straightest geodesics.

3.3. Space filling procedure

Algorithm 1 contains the pseudo-code for the growth of the or-
naments. For each seed point, we define a local frame on the mesh
and place a decorative element at the corresponding location to start
the ornament. We add then its growth points to a priority queue.

The priority can be used to make specific classes of decorative
elements start to fill spaces after all those belonging to other classes
cannot grow further, as shown in Figure 5. At each following step,
the queue is processed extracting the next growth point and trying
to add a decorative element compatible with it, according to the
related tag. If a novel element can be successfully added, its growth

Figure 5: Floral pattern grown at once from multiple seed points.
From left to right: decorations of different scales are placed at dif-
ferent times in the pattern growth using a priority queue.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

90

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

Algorithm 1: Pseudo code of our proposed algorithm.

def trace_ornaments(params):
draws one or more ornaments
depending on the number of seeds
ornaments = init_ornaments()
queue = init_queue(params.num_seeds,

params.align_to_field)
while queue is not Empty:

decoration, splines =
choose_decoration(queue.pop())

if deco is None: continue
append_splines(ornaments, splines)
update_geodesic_distances(splines)
append_growthpoints(queue, decoration)
update_intersections(spline)

return ornaments

def choose_decoration(growth_point):
candidates = []
for _ in range(trials):

decoration = random_decoration(growth_point)
control_pts = map_decoration(decoration)
splines = trace_geodesic_splines(control_pts)
if intersect_ornaments(splines): continue
candidates.append((decoration, splines))

if candidates == []: return None, None
scores = score_splines(candidates)
return candidates[argmax(scores)]

def map_decoration(...):
compute angle according to user options,
direction field and parent direction
if params.align_to_field:

rot_angle = field_direction
else:

rot_angle = parent_tangent
for control_pt in decoration.control_pts:

rotated_point = rotate(control_pt, rot_angle)
trace_straightest_geodesic(start_point,

rotated_point)
return spline

points are added to the queue and the procedure is iterated until the
queue is empty.

At each step, we consider a list of candidates with tags compat-
ible with the growth point tag. For each candidate, we trace the
corresponding splines on the surface and test for intersection with
the already-placed ornaments. Of all non-intersecting candidates,
we pick the one that is, on average, farthest away from the already
placed decorations, as is done in best candidate sampling [Mit91],
to improve surface coverage. More specifically, we pick the non-
intersecting decoration that maximizes the following metric

S =
∑

n
i=1 D(Pn)

n
where n is the number of points P in the decoration, and the func-
tion D is the geodesic distance from the points of already placed
decorations (which we keep track of throughout the whole proce-
dure). We chose this metric since it guides the algorithm to select

Figure 6: A dandelion-like pattern. The circles are placed first
and from there the stem and petals grow to fill the remaining space.
There are three possible sizes for the petals, and selecting the first
non-intersecting candidate decoration (on the left) yields poor cov-
erage of the mesh. Instead (on the right), the best candidate sam-
pling and our space-filling metric guide the algorithm to almost
always select the longest petal possible.

decorations that split the empty space well. While checking for can-
didates, we could consider all possible ones, but that would lead to
high computation times. Instead, we pick only ten candidates at
random to keep execution time constant. Another possibility would
be to perform the assignment in a purely greedy fashion, i.e. con-
sidering only one candidate. In our experiments, we found that ap-
proach to produce low-quality patterns, as shown in Figure 6.

Floral patterns are generally comprised of multiple ornaments,
since a single one may not cover the whole surface well, depending
on the choice of input decorations and the surface shape. To cover
the whole surface, we grow multiple patterns, either sequentially or
concurrently, as shown in Figure 7. We grow patterns sequentially,
i.e. one after another, by running the ornament growth algorithm
(Algorithm 1) multiple times with a single seed. For better surface
coverage, we select as the starting point of each ornament the point
with the largest geodesic distance to the ornaments already placed.
We grow patterns concurrently, by initializing the growth procedure
(Algorithm 1) with multiple seeds, again using a best-candidate ap-
proach in the geodesic metric. Internally, these seed points are ef-
fectively growth points, not different from the ones inserted by the
growing decorations. In general, growing patterns sequentially fa-
vors better surface coverage, while growing patterns concurrently
generates ornaments of similar lengths. In both methods, the orien-
tation of the patterns at their starting locations are either random or
aligned with a global direction field (see Figure 8).

By setting the growth procedures with the related options, and
selecting for them different sets of ornaments with optional place-
ment priority, it is possible to draw on complex shapes a broad vari-
ety of patterns, as shown in Section 4. These controls are similar to
current practice for procedural methods such as grammar-based ap-
proaches [SW15] and industry-standard workflows in Blender and
Houdini.

3.4. Discussion

In the previous subsection, we discussed most of the design de-
cisions that motivate our algorithm. But we did so under the as-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

91

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

Figure 7: An ornament, whose decorations are not designed to
branch, will not fill the surface (left). To cover the whole surface,
we can either grow multiple ornaments concurrently by starting
from multiple locations at once (center), or grow multiple orna-
ments sequentially one after the other (right). We note that con-
current growth keeps the ornaments more similar in length, while
sequential growth gives better surface coverage.

Figure 8: Ornaments may start with random alignments (left) or
have a coherent orientation (right) that is aligned with a global
direction field (middle).

sumption of a formulation based on space-filling with a fixed set
of decorations. In this subsection, we revisit that assumption and
compare it to possible alternatives.

The main motivation for using a fixed set of decorations is to
provide direct user control during synthesis. The shape of the dec-
orations defines the overall look of the final pattern. The placement
of growth points and the use of tags directly control the growth on
the mesh. To the best of our knowledge, no other work gives the
same level of direct control as using predefined decorations.

The use of a predefined set of decorations and their guidance by
defining growth points and tags may sound similar to shape gram-
mars that guide shape synthesis with tagged rules. The main dif-
ference of this work is that grammars cannot express space-filling
constraints since they define substitution rules that are applied lo-
cally in time, rather than globally as constraints on the synthesis.
In fact, our algorithm does not use user-specified rules, but only
branching positions and labels as in procedural vegetation.

Our method can be seen as a variant of packing a specified do-
main with as many shapes as possible. This class of problem is

known to be NP-hard, so most algorithms presented are approxi-
mations that differ in the constraints they pose on the final solution.
In the graphics literature, two main classes of algorithms have been
explored. Greedy packing, possibly with backtracking, attempts to
fill the space one decoration at a time. Optimization-based meth-
ods attempt to place all decorations at once by using proxy shapes,
such as circles or rectangles, to perform the initial placement and
then deform the decorations to minimize overlap. In our work, we
favor a greedy placement approach since it supports all decora-
tion shapes, regardless of whether they can be approximated with
simple proxies, and since it does not deform the original decora-
tions, thus maintaining direct user control. An optimization-based
method might have also worked, but no current methods we know
support arbitrary and undeformed decoration shapes.

3.5. Implementation

We implemented our prototype in Python using wrapped C++ li-
braries for the geodesic computation kernels. Our algorithm is in-
dependent of the choice of implementation for most computation
kernels. Our choice was guided by the availability of implementa-
tions, their robustness, and their interoperability.

Our method depends entirely on a fast and robust implementa-
tion of geodesic Bézier splines. We use cubic Bézier curves since
they are the foundation of 2D vector graphics, and since we can eas-
ily use 2D decorations from available libraries. We represent Bézier
curves with control points specified as pairs of triangle identifier
and barycentric coordinates. To perform further computation, we
approximate Bézier curves as lists of segments with vertices rep-
resented intrinsically as triangle identifiers and barycentric coordi-
nates pairs. In our prototype, we use the geodesic Bézier implemen-
tation from [MNPP22] that we found to be reliable for our needs.
Since Bézier curves are tessellated into segments whose coordi-
nates are referred intrinsically to each triangle, we perform inter-
section tests one triangle at a time. In each triangle, the intersections
are expressed in barycentric coordinates, so they can be resolved as
2D segment-to-segment intersections. We speed up computation by
first determining the list of segments that cross each triangle, which
can be done trivially using triangle ids, and then processing the in-
tersections in each triangle independently. For highly tessellated
surfaces, this method is linear in the number of segments.

We map the 2D control points of each decoration to intrinsic
points on the surface by using straightest geodesics traced from the
tangent space of the current growth point. We do not depend on
a specific implementation, provided that it supports expressing all
computation in intrinsic coordinates. In our prototype, we use the
implementation from [SC∗19].

We compute geodesic distances using the heat method
[CWW13] using the implementation provided in [SC∗19]. We
chose the heat method since it is efficient for non-changing meshes
and accurate enough for our application. Modern geodesic solvers
might provide more accurate and efficient alternatives [NPP21,
TBK21]. In our experiments, however, we found the time used to
compute geodesic distances negligible with respect to the compu-
tation of the geodesic Béziers.

We compute the smoothest direction field using the method pre-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

92

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

sented in [KCPS13] and implemented in [SC∗19], as it provides
a simple initialization for the subsequent operations. More direct
control may be achieved with different methods, although this
choice is mostly orthogonal to our work.

3.6. Limitations

Our main limitation stems from the greedy assumption of our al-
gorithm. Since we are solving a packing problem, that is NP-hard,
we cannot guarantee good coverage of the surface, nor that we can
grow ornaments that are long with respect to the surface size. This
limitation is shared with all other packing methods. Optimization
methods do not have this limitation, but in turn may arbitrarily de-
form the decorations to achieve good coverage. We mitigate this
problem by growing multiple ornaments. In our tests, we found this
problem to be only relevant when the decorations’ sizes are similar
to the size of the whole surface, which is generally not desirable
since decorations are meant to be small.

A second limitation is that our execution speeds are not yet inter-
active, as we will show in the next section. This is partly due to our
unoptimized Python implementation that is good enough for ex-
ploring the problem, but not sufficiently fast to be executed in real-
time. More significantly though, a very large number of geodesic
queries are executed to generate a full pattern. Packing problems
are notoriously slow in the Euclidean setting, and performing all
computations in the geodesic metric, including spline tessellation,
curve intersection, and distance computation, makes them even
slower. We expect that the speed of our algorithm will improve sig-
nificantly as better geodesic computation kernels are developed and
maybe ported to massively parallel architectures. Furthermore, per-
formance is limited by the high number of triangles, and by the fine
tessellation of splines, which were used to ensure a good approx-
imation of all the geodesic functions. To improve the user experi-
ence, we could use coarser tessellations while editing, and use finer
ones for final rendering, as typical in subdivision methods.

4. Results

Throughout this paper, we have shown several results created with
our method. We include further results in Figure 9. The variety of
these results shows that our algorithm is general and can be easily
controlled by changing input decorations. Indeed, we demonstrate
long continuous ornaments, branching floral and abstract patterns,
and synthesis at multiple scales. In particular, in Figure 9 we show
a floral pattern generated from 4 seeds in parallel, with 50 more
flowers added in a second step (9a), a minimal and an abstract
pattern grown by a single seed (9b and 9c), a pattern made with a
parallel growth from a pair of seeds 20 times (9d), and finally, one
pattern created by growing thousands of seeds in parallel (9e).

In terms of input surfaces, we support smooth and corrugated
meshes and surfaces with low and high genus, with or without
boundaries. Our only assumption is that the underlying surface is
manifold so that decoration placement is well-defined. This gener-
ality shows that our method is useful in practice to decorate most
surfaces.

Table 1 reports summary statistics for the examples in this pa-

per. In terms of the generated patterns, our results have on aver-
age two thousand decorations. Our most complex result in terms
of the number of decorations is the dress image in 9e, where we
place more than 7 thousand decorations, requiring almost 3 million
geodesic segments to represent the 22 thousand geodesic Bézier
splines applied.

The reported times are measured on a single-thread implemen-
tation running on a 3.8GHz CPU. Most of the execution times are
in the 100 to 500 seconds range, with only a few outliers, which
makes our prototype useful for offline texturing and modeling ap-
plications. On the other hand, initialization times required for the
creation of the geodesic solvers are on average less than five sec-
onds. Overall, we believe that by lowering the implementation to
C++ and using multiple threads, we can easily cut computation
times by more than a factor of 10, since the algorithm is trivially
parallelizable. At the same time, we should note that our algorithm
performs a remarkably large number of geodesic operations since
we focus on modeling highly detailed patterns. For example, our
most complex result in terms of the number of operations is the
hoodie model in Figure 1, where we trace one million straightest
geodesics and almost 300 thousand geodesic Bézier splines.

Furthermore, the ornaments always achieve good coverage of the
mesh, except in the vase of 9b, where the decorations were specif-
ically designed not to cover the whole surface. Considering that we
are packing one-dimension lines on a surface, we consider only an
approximate metric of surface coverage by reporting the average
distance from each mesh vertex to the closest point of the pattern.
We report also the area of the base mesh since the chosen metric
depends on it. If we consider the square root of the surface area as
a characteristic size of the mesh, we can easily compare it with the
average vertex to decoration distance. The median value we find in
doing so is 0.007, where the worst possible value one could achieve
on a unit sphere by placing a single point is approximately 0.44,
supporting our claim of good coverage.

5. Conclusions

In summary, this paper presented FloralSurf, an algorithm for gen-
erating geodesic space-filling ornaments directly on the surface.
FloralSurf takes as input a set of deformed, defined by cubic Bézier
splines with specified endpoints, and generates ornaments by plac-
ing decorations greedily one after the other. In FloralSurf, artists
control the final pattern by choosing a decoration set, and can apply
the pattern on any manifold surfaces, including surfaces with high
genus and open boundaries, without requiring a parametrization.

In the future, we plan to further speed up our algorithm by in-
vestigating geodesic computational kernels that run efficiently on
massively parallel hardware, and provide more direct control by
integrating interactive sketching to guide the growth.

Acknowledgments

This study was partially partially carried out within the PNRR
research activities of the consortium iNEST (Interconnected
North-Est Innovation Ecosystem) funded by the European Union
Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

93

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

(a) (b) (c) (d) (e)

Figure 9: More patterns generated by FloralSurf, including results on high genus and open boundary meshes.

Model
Init Exec Mesh

Decos Splines
Growth

Iterations
Straightest Splines Geodesic Average Mesh

time time triangles points geodesics traced segments distance surface

Fig. 1, left 4.0 s 251.3 s 80k 815 2633 1831 1885 198250 57636 367505 0.01155 3.02
Fig. 1, center 2.4 s 526.6 s 60k 4568 7287 9454 9455 574412 156608 964953 0.00887 6.10
Fig. 1, right 13.0 s 2884.8 s 200k 1271 6355 5882 5936 1127840 296800 857887 0.00911 3.35
Fig. 3 2.6 s 162.3 s 60k 1937 3513 2347 2407 129128 43330 465139 0.01428 2.93
Fig. 5 5.5 s 1458.4 s 100k 1458 7290 6733 6745 1281550 337250 956718 0.01153 4.17
Fig. 6, right 4.8 s 460.5 s 100k 4340 5210 5133 5237 208070 67970 720049 0.00593 2.35
Fig. 7, left 5.7 s 35.9 s 100k 253 464 293 294 16212 5440 65725 0.10045 4.17
Fig. 7, center 5.5 s 157.4 s 100k 877 1545 1353 1403 74384 24970 218799 0.02004 4.17
Fig. 7, right 5.5 s 145.1 s 100k 889 1586 1216 1266 66678 22400 223602 0.01821 4.17
Fig. 8, left 5.5 s 182.9 s 100k 652 2163 852 1012 80440 29480 314214 0.01575 4.17
Fig. 8, right 5.5 s 215.5 s 100k 843 2527 1083 1243 96610 34870 362598 0.01457 4.17
Fig. 9a 3.0 s 496.7 s 60k 2331 7125 5440 5494 562586 163826 949045 0.00768 2.90
Fig. 9b, 2.9 s 4.2 s 60k 44 72 45 46 2115 705 13587 0.04659 1.05
Fig. 9c 6.2 s 493.3 s 120k 1995 3206 4159 4160 254972 69323 454419 0.00760 2.59
Fig. 9d, 1.3 s 45.5 s 40k 804 1450 1016 1056 52797 17116 194098 0.01588 1.31
Fig. 9e, 2.3 s 964.8 s 60k 7592 22663 9432 10947 838589 300176 2936602 0.00649 2.39

Table 1: Summary statistics for the results in the paper. For each model, we list the initialization time in seconds to generate all the
geodesic solvers, the execution time in seconds to create the ornaments, the number of triangles of the base model, the number of decorations
comprising the ornaments, the number of splines comprising the decorations, the number of growth points, the number of iterations performed
by the algorithm, the number of straight geodesics performed, the number of Bézier splines constructed (including the discarded ones), the
number of geodesic segments necessary to represent the ornaments, the average distance from the vertices to the closest ornament, and the
base mesh surface. Note that we are testing 10 decorations at each growth point.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

94

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

(PNRR) – Missione 4 Componente 2, Investimento 1.5 –
D.D. 1058 23/06/2022, ECS00000043). For the models, we thank:
ManuelDerErste for the corrugated vase, lahbibforce for the sim-
ple, tall vase, fablabuv for the vase with holes, designbynumbers
for the prime knot, Angelina Scher for the dress, Marashe for the
hoodie, Greg Zaal for the elephant, James Ray Cock for the wide
vase, and terpsichore for the cat mask.

References
[Ado21] Adobe illustrator, 2021. URL: https://adobe.com/
products/illustrator. 1

[Ash01] ASHIKHMIN M.: Synthesizing natural textures. In Proc. of In-
teractive 3D Graphics (2001), p. 217–226. 3

[AYD∗18] AKL A., YAACOUB C., DONIAS M., DA COSTA J.-P., GER-
MAIN C.: A survey of exemplar-based texture synthesis methods. Com-
puter Vision and Image Understanding 172 (2018), 12–24. 3

[Ble23] BLENDER F.: Blender. https://www.blender.org, 2023.
2

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.: Geodesics
in heat: A new approach to computing distance based on heat flow. ACM
Trans. Graph. 32, 5 (2013). 6

[CXX∗16] CHEN W., XIA X., XIN S., XIA Y., LEFEBVRE S., WANG
W.: Synthesis of Filigrees for Digital Fabrication. ACM Trans. Graph.
35, 4 (2016). 3

[DLL∗15] DUMAS J., LU A., LEFEBVRE S., WU J., DICK C.: By-
example synthesis of structurally sound patterns. ACM Trans. Graph.
34, 4 (jul 2015). 3

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for texture syn-
thesis and transfer. In Proc. of ACM SIGGRAPH (2001), p. 341–346.
3

[EL99] EFROS A., LEUNG T.: Texture synthesis by non-parametric sam-
pling. In Proc. of ICCV (1999), vol. 2. 3

[GALF17] GIESEKE L., ASENTE P., LU J., FUCHS M.: Organized order
in ornamentation. In Proc. of Symp. on Comp. Aesthetics (2017), CAE
’17. 2, 3

[GAM∗21] GIESEKE L., ASENTE P., MĚCH R., BENES B., FUCHS M.:
A survey of control mechanisms for creative pattern generation. Com-
puter Graphics Forum 40, 2 (2021), 585–609. 3

[GBLM16] GUERRERO P., BERNSTEIN G., LI W., MITRA N. J.: Patex:
Exploring pattern variations. ACM Trans. Graph. 35, 4 (jul 2016). 2, 3

[GEB15] GATYS L. A., ECKER A. S., BETHGE M.: Texture syn-
thesis using convolutional neural networks. In Proc. of NIPS (2015),
p. 262–270. 3

[GJB∗20] GUO J., JIANG H., BENES B., DEUSSEN O., ZHANG X.,
LISCHINSKI D., HUANG H.: Inverse procedural modeling of branch-
ing structures by inferring l-systems. ACM Trans. Graph. 39, 5 (2020).
2, 3

[HWYZ20] HSU C.-Y., WEI L.-Y., YOU L., ZHANG J. J.: Autocom-
plete element fields. In Proc. of SIGCHI (2020), p. 1–13. 3

[KCPS13] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Glob-
ally optimal direction fields. ACM Trans. Graph. 32, 4 (2013), 1–10. 3,
7

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G., BOBICK A.:
Graphcut textures: Image and video synthesis using graph cuts. ACM
Trans. Graph. 22, 3 (jul 2003), 277–286. 3

[LBW∗14] LU J., BARNES C., WAN C., ASENTE P., MECH R.,
FINKELSTEIN A.: Decobrush: Drawing structured decorative patterns
by example. ACM Trans. Graph. 33, 4 (2014), 1–9. 3

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture synthesis.
ACM Trans. Graph. 25, 3 (2006), 541–548. 3

[LHVT17] LOI H., HURTUT T., VERGNE R., THOLLOT J.: Pro-
grammable 2d arrangements for element texture design. ACM Trans.
Graph. 36, 4 (2017), 1. 3

[LLX∗01] LIANG L., LIU C., XU Y.-Q., GUO B., SHUM H.-Y.: Real-
time texture synthesis by patch-based sampling. ACM Trans. Graph. 20,
3 (2001), 127–150. 3

[Mit91] MITCHELL D. P.: Spectrally optimal sampling for distribution
ray tracing. In Proc. of ACM SIGGRAPH (1991), p. 157–164. 5

[MM10] MERRELL P., MANOCHA D.: Example-based curve synthesis.
Computers & Graphics 34, 4 (2010), 304–311. 3

[MNPP22] MANCINELLI C., NAZZARO G., PELLACINI F., PUPPO E.:
B/surf: Interactive bézier splines on surfaces. IEEE Trans. Vis. Comp.
Graph (2022). 3, 4, 6

[NPP21] NAZZARO G., PUPPO E., PELLACINI F.: geoTangle: Interac-
tive design of geodesic tangle patterns on surfaces. ACM Trans. Graph.
41, 2 (2021), 12:1–12:17. 2, 6

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped textures. In
Proc. of ACM SIGGRAPH (2000), p. 465–470. 3

[PKCH18] PRADA F., KAZHDAN M., CHUANG M., HOPPE H.:
Gradient-domain processing within a texture atlas. ACM Trans. Graph.
37, 4 (2018). 2

[PL12] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants. Springer Science & Business Media, 2012. 3

[PS06] PEDERSEN H., SINGH K.: Organic labyrinths and mazes. In
Proc. of NPAR (2006), p. 79–86. 3

[RFL∗05] RUNIONS A., FUHRER M., LANE B., FEDERL P.,
ROLLAND-LAGAN A.-G., PRUSINKIEWICZ P.: Modeling and visu-
alization of leaf venation patterns. In ACM SIGGRAPH 2005 Papers.
2005, p. 702–711. 2, 3

[RLP07] RUNIONS A., LANE B., PRUSINKIEWICZ P.: Modeling trees
with a space colonization algorithm. NPH 7, 63-70 (2007), 6. 2, 3

[RNP∗22] RISO M., NAZZARO G., PUPPO E., JACOBSON A., ZHOU
Q., PELLACINI F.: Boolsurf: Boolean operations on surfaces. ACM
Trans. Graph. 41, 6 (2022). 3

[ROM∗15] ROVERI R., ÖZTIRELI A. C., MARTIN S., SOLENTHALER
B., GROSS M.: Example based repetitive structure synthesis. In Proc.
of SGP (2015), p. 39–52. 3

[RSP22] RISO M., SFORZA D., PELLACINI F.: pop: Parameter opti-
mization of differentiable vector patterns. Computer Graphics Forum
41, 4 (2022), 161–168. 3

[ŠBM∗10] ŠT’AVA O., BENEŠ B., MĚCH R., ALIAGA D. G., KRIŠTOF
P.: Inverse procedural modeling by automatic generation of l-systems.
Computer Graphics Forum 29, 2 (2010), 665–674. 2, 3

[SC17] SAWHNEY R., CRANE K.: Boundary first flattening. ACM Trans.
Graph. 37, 1 (2017). 2

[SC∗19] SHARP N., CRANE K., ET AL.: geometry-central, 2019.
www.geometry-central.net. 6, 7

[SC20] SHARP N., CRANE K.: You can find geodesic paths in triangle
meshes by just flipping edges. ACM Trans. Graph. 39, 6 (2020), 249:1–
15. 3

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Interactive decal com-
positing with discrete exponential maps. ACM Trans. Graph. 25, 3
(2006), 605–613. 3

[SKAM17] SAPUTRA R. A., KAPLAN C. S., ASENTE P., MECH R.:
Flowpak: Flow-based ornamental element packing. In Graphics Inter-
face (2017), pp. 8–15. 3

[Sne17] SNELGROVE X.: High-resolution multi-scale neural texture syn-
thesis. In SIGGRAPH Asia 2017 Technical Briefs (2017). 3

[SP16] SANTONI C., PELLACINI F.: Gtangle: A grammar for the proce-
dural generation of tangle patterns. ACM Trans. Graph. 35, 6 (dec 2016).
2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

95

https://adobe.com/products/illustrator
https://adobe.com/products/illustrator
https://www.blender.org

Valerio Albano, Filippo Andrea Fanni, Andrea Giachetti and Fabio Pellacini / FloralSurf: Space-Filling Geodesic Ornaments

[STN∗16] SHAKER N., TOGELIUS J., NELSON M. J., TOGELIUS J.,
SHAKER N., DORMANS J.: Grammars and l-systems with applica-
tions to vegetation and levels. Procedural Content Generation in Games
(2016), 73–98. 3

[SW15] SCHWARZ M., WONKA P.: Practical grammar-based procedural
modeling of architecture. In SIGGRAPH Asia 2015 Courses (2015). 5

[TBK21] TRETTNER P., BOMMES D., KOBBELT L.: Geodesic distance
computation via virtual source propagation. Computer Graphics Forum
40, 5 (2021), 247–260. 6

[TLH19] TU P., LISCHINSKI D., HUANG H.: Point pattern synthesis via
irregular convolution. Computer Graphics Forum 38, 5 (2019), 109–122.
3

[Tur01] TURK G.: Texture synthesis on surfaces. In Proc. of ACM SIG-
GRAPH (2001), p. 347–354. 3

[TWY∗20] TU P., WEI L.-Y., YATANI K., IGARASHI T., ZWICKER M.:
Continuous curve textures. ACM Trans. Graph. 39, 6 (2020), 1–16. 2, 3

[TWZ22] TU P., WEI L.-Y., ZWICKER M.: Clustered vector textures.
ACM Trans. Graph. 41, 4 (2022), 1–23. 3

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO B., SHUM
H.-Y.: Synthesis of bidirectional texture functions on arbitrary surfaces.
ACM Trans. Graph. 21, 3 (2002), 665–672. 3

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using tree-
structured vector quantization. In Proc. of ACM SIGGRAPH (2000),
p. 479–488. 3

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over arbitrary mani-
fold surfaces. In Proc. of ACM SIGGRAPH (2001), p. 355–360. 3

[WLKT09] WIE L.-Y., LEFEBVRE S., KWATRA V., TURK G.: State of
the Art in Example-based Texture Synthesis. In EG STAR (2009), Pauly
M., Greiner G., (Eds.). 3

[WZS98] WONG M. T., ZONGKER D. E., SALESIN D. H.: Computer-
generated floral ornament. In Proc. of ACM SIGGRAPH (1998), pp. 423–
434. 2, 3

[YHBZ01] YING L., HERTZMANN A., BIERMANN H., ZORIN D.: Tex-
ture and shape synthesis on surfaces. In Rendering Techniques 2001
(2001), pp. 301–312. 3

[ZCT16] ZEHNDER J., COROS S., THOMASZEWSKI B.: Designing
structurally-sound ornamental curve networks. ACM Trans. Graph. 35,
4 (2016). 3

[ZG03] ZELINKA S., GARLAND M.: Interactive Texture Synthesis on
Surfaces Using Jump Maps. In Eurographics Workshop on Rendering
(2003). 3

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

96

